# Properties

 Label 5850.2.e.bi.5149.3 Level $5850$ Weight $2$ Character 5850.5149 Analytic conductor $46.712$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$5850 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 5850.e (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$46.7124851824$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(i, \sqrt{41})$$ Defining polynomial: $$x^{4} + 21 x^{2} + 100$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 1950) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## Embedding invariants

 Embedding label 5149.3 Root $$-3.70156i$$ of defining polynomial Character $$\chi$$ $$=$$ 5850.5149 Dual form 5850.2.e.bi.5149.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+1.00000i q^{2} -1.00000 q^{4} -4.70156i q^{7} -1.00000i q^{8} +O(q^{10})$$ $$q+1.00000i q^{2} -1.00000 q^{4} -4.70156i q^{7} -1.00000i q^{8} -4.70156 q^{11} -1.00000i q^{13} +4.70156 q^{14} +1.00000 q^{16} -0.701562i q^{17} +1.70156 q^{19} -4.70156i q^{22} +1.00000 q^{26} +4.70156i q^{28} -6.40312 q^{29} -10.1047 q^{31} +1.00000i q^{32} +0.701562 q^{34} +1.70156i q^{37} +1.70156i q^{38} +3.70156 q^{41} -11.4031i q^{43} +4.70156 q^{44} +7.00000i q^{47} -15.1047 q^{49} +1.00000i q^{52} -2.40312i q^{53} -4.70156 q^{56} -6.40312i q^{58} +2.70156 q^{59} +14.1047 q^{61} -10.1047i q^{62} -1.00000 q^{64} +6.40312i q^{67} +0.701562i q^{68} +1.70156 q^{71} -12.0000i q^{73} -1.70156 q^{74} -1.70156 q^{76} +22.1047i q^{77} +5.70156 q^{79} +3.70156i q^{82} +10.7016i q^{83} +11.4031 q^{86} +4.70156i q^{88} +11.4031 q^{89} -4.70156 q^{91} -7.00000 q^{94} +2.59688i q^{97} -15.1047i q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q - 4 q^{4} + O(q^{10})$$ $$4 q - 4 q^{4} - 6 q^{11} + 6 q^{14} + 4 q^{16} - 6 q^{19} + 4 q^{26} - 2 q^{31} - 10 q^{34} + 2 q^{41} + 6 q^{44} - 22 q^{49} - 6 q^{56} - 2 q^{59} + 18 q^{61} - 4 q^{64} - 6 q^{71} + 6 q^{74} + 6 q^{76} + 10 q^{79} + 20 q^{86} + 20 q^{89} - 6 q^{91} - 28 q^{94} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/5850\mathbb{Z}\right)^\times$$.

 $$n$$ $$2251$$ $$3251$$ $$3277$$ $$\chi(n)$$ $$1$$ $$1$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 1.00000i 0.707107i
$$3$$ 0 0
$$4$$ −1.00000 −0.500000
$$5$$ 0 0
$$6$$ 0 0
$$7$$ − 4.70156i − 1.77702i −0.458854 0.888512i $$-0.651740\pi$$
0.458854 0.888512i $$-0.348260\pi$$
$$8$$ − 1.00000i − 0.353553i
$$9$$ 0 0
$$10$$ 0 0
$$11$$ −4.70156 −1.41757 −0.708787 0.705422i $$-0.750757\pi$$
−0.708787 + 0.705422i $$0.750757\pi$$
$$12$$ 0 0
$$13$$ − 1.00000i − 0.277350i
$$14$$ 4.70156 1.25655
$$15$$ 0 0
$$16$$ 1.00000 0.250000
$$17$$ − 0.701562i − 0.170154i −0.996374 0.0850769i $$-0.972886\pi$$
0.996374 0.0850769i $$-0.0271136\pi$$
$$18$$ 0 0
$$19$$ 1.70156 0.390365 0.195183 0.980767i $$-0.437470\pi$$
0.195183 + 0.980767i $$0.437470\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ − 4.70156i − 1.00238i
$$23$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 1.00000 0.196116
$$27$$ 0 0
$$28$$ 4.70156i 0.888512i
$$29$$ −6.40312 −1.18903 −0.594515 0.804084i $$-0.702656\pi$$
−0.594515 + 0.804084i $$0.702656\pi$$
$$30$$ 0 0
$$31$$ −10.1047 −1.81486 −0.907428 0.420208i $$-0.861957\pi$$
−0.907428 + 0.420208i $$0.861957\pi$$
$$32$$ 1.00000i 0.176777i
$$33$$ 0 0
$$34$$ 0.701562 0.120317
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 1.70156i 0.279735i 0.990170 + 0.139868i $$0.0446677\pi$$
−0.990170 + 0.139868i $$0.955332\pi$$
$$38$$ 1.70156i 0.276030i
$$39$$ 0 0
$$40$$ 0 0
$$41$$ 3.70156 0.578087 0.289043 0.957316i $$-0.406663\pi$$
0.289043 + 0.957316i $$0.406663\pi$$
$$42$$ 0 0
$$43$$ − 11.4031i − 1.73896i −0.493968 0.869480i $$-0.664454\pi$$
0.493968 0.869480i $$-0.335546\pi$$
$$44$$ 4.70156 0.708787
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 7.00000i 1.02105i 0.859861 + 0.510527i $$0.170550\pi$$
−0.859861 + 0.510527i $$0.829450\pi$$
$$48$$ 0 0
$$49$$ −15.1047 −2.15781
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 1.00000i 0.138675i
$$53$$ − 2.40312i − 0.330095i −0.986286 0.165047i $$-0.947222\pi$$
0.986286 0.165047i $$-0.0527777\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ −4.70156 −0.628273
$$57$$ 0 0
$$58$$ − 6.40312i − 0.840771i
$$59$$ 2.70156 0.351713 0.175857 0.984416i $$-0.443730\pi$$
0.175857 + 0.984416i $$0.443730\pi$$
$$60$$ 0 0
$$61$$ 14.1047 1.80592 0.902960 0.429725i $$-0.141389\pi$$
0.902960 + 0.429725i $$0.141389\pi$$
$$62$$ − 10.1047i − 1.28330i
$$63$$ 0 0
$$64$$ −1.00000 −0.125000
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 6.40312i 0.782266i 0.920334 + 0.391133i $$0.127917\pi$$
−0.920334 + 0.391133i $$0.872083\pi$$
$$68$$ 0.701562i 0.0850769i
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 1.70156 0.201938 0.100969 0.994890i $$-0.467806\pi$$
0.100969 + 0.994890i $$0.467806\pi$$
$$72$$ 0 0
$$73$$ − 12.0000i − 1.40449i −0.711934 0.702247i $$-0.752180\pi$$
0.711934 0.702247i $$-0.247820\pi$$
$$74$$ −1.70156 −0.197803
$$75$$ 0 0
$$76$$ −1.70156 −0.195183
$$77$$ 22.1047i 2.51906i
$$78$$ 0 0
$$79$$ 5.70156 0.641476 0.320738 0.947168i $$-0.396069\pi$$
0.320738 + 0.947168i $$0.396069\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 3.70156i 0.408769i
$$83$$ 10.7016i 1.17465i 0.809352 + 0.587325i $$0.199819\pi$$
−0.809352 + 0.587325i $$0.800181\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 11.4031 1.22963
$$87$$ 0 0
$$88$$ 4.70156i 0.501188i
$$89$$ 11.4031 1.20873 0.604364 0.796708i $$-0.293427\pi$$
0.604364 + 0.796708i $$0.293427\pi$$
$$90$$ 0 0
$$91$$ −4.70156 −0.492858
$$92$$ 0 0
$$93$$ 0 0
$$94$$ −7.00000 −0.721995
$$95$$ 0 0
$$96$$ 0 0
$$97$$ 2.59688i 0.263673i 0.991271 + 0.131836i $$0.0420874\pi$$
−0.991271 + 0.131836i $$0.957913\pi$$
$$98$$ − 15.1047i − 1.52580i
$$99$$ 0 0
$$100$$ 0 0
$$101$$ −6.70156 −0.666830 −0.333415 0.942780i $$-0.608201\pi$$
−0.333415 + 0.942780i $$0.608201\pi$$
$$102$$ 0 0
$$103$$ 1.40312i 0.138254i 0.997608 + 0.0691270i $$0.0220214\pi$$
−0.997608 + 0.0691270i $$0.977979\pi$$
$$104$$ −1.00000 −0.0980581
$$105$$ 0 0
$$106$$ 2.40312 0.233412
$$107$$ 19.1047i 1.84692i 0.383695 + 0.923460i $$0.374651\pi$$
−0.383695 + 0.923460i $$0.625349\pi$$
$$108$$ 0 0
$$109$$ −4.29844 −0.411716 −0.205858 0.978582i $$-0.565998\pi$$
−0.205858 + 0.978582i $$0.565998\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ − 4.70156i − 0.444256i
$$113$$ 14.0000i 1.31701i 0.752577 + 0.658505i $$0.228811\pi$$
−0.752577 + 0.658505i $$0.771189\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 6.40312 0.594515
$$117$$ 0 0
$$118$$ 2.70156i 0.248699i
$$119$$ −3.29844 −0.302367
$$120$$ 0 0
$$121$$ 11.1047 1.00952
$$122$$ 14.1047i 1.27698i
$$123$$ 0 0
$$124$$ 10.1047 0.907428
$$125$$ 0 0
$$126$$ 0 0
$$127$$ 6.29844i 0.558896i 0.960161 + 0.279448i $$0.0901515\pi$$
−0.960161 + 0.279448i $$0.909849\pi$$
$$128$$ − 1.00000i − 0.0883883i
$$129$$ 0 0
$$130$$ 0 0
$$131$$ −22.5078 −1.96652 −0.983258 0.182217i $$-0.941673\pi$$
−0.983258 + 0.182217i $$0.941673\pi$$
$$132$$ 0 0
$$133$$ − 8.00000i − 0.693688i
$$134$$ −6.40312 −0.553146
$$135$$ 0 0
$$136$$ −0.701562 −0.0601585
$$137$$ 13.7016i 1.17060i 0.810816 + 0.585302i $$0.199024\pi$$
−0.810816 + 0.585302i $$0.800976\pi$$
$$138$$ 0 0
$$139$$ −9.40312 −0.797563 −0.398781 0.917046i $$-0.630567\pi$$
−0.398781 + 0.917046i $$0.630567\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 1.70156i 0.142792i
$$143$$ 4.70156i 0.393164i
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 12.0000 0.993127
$$147$$ 0 0
$$148$$ − 1.70156i − 0.139868i
$$149$$ 6.59688 0.540437 0.270219 0.962799i $$-0.412904\pi$$
0.270219 + 0.962799i $$0.412904\pi$$
$$150$$ 0 0
$$151$$ −14.1047 −1.14782 −0.573912 0.818917i $$-0.694575\pi$$
−0.573912 + 0.818917i $$0.694575\pi$$
$$152$$ − 1.70156i − 0.138015i
$$153$$ 0 0
$$154$$ −22.1047 −1.78125
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 22.7016i 1.81178i 0.423511 + 0.905891i $$0.360797\pi$$
−0.423511 + 0.905891i $$0.639203\pi$$
$$158$$ 5.70156i 0.453592i
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ − 18.8062i − 1.47302i −0.676427 0.736510i $$-0.736473\pi$$
0.676427 0.736510i $$-0.263527\pi$$
$$164$$ −3.70156 −0.289043
$$165$$ 0 0
$$166$$ −10.7016 −0.830602
$$167$$ − 1.10469i − 0.0854832i −0.999086 0.0427416i $$-0.986391\pi$$
0.999086 0.0427416i $$-0.0136092\pi$$
$$168$$ 0 0
$$169$$ −1.00000 −0.0769231
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 11.4031i 0.869480i
$$173$$ 0.193752i 0.0147307i 0.999973 + 0.00736533i $$0.00234448\pi$$
−0.999973 + 0.00736533i $$0.997656\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ −4.70156 −0.354394
$$177$$ 0 0
$$178$$ 11.4031i 0.854700i
$$179$$ −24.2094 −1.80949 −0.904747 0.425950i $$-0.859940\pi$$
−0.904747 + 0.425950i $$0.859940\pi$$
$$180$$ 0 0
$$181$$ 11.2984 0.839806 0.419903 0.907569i $$-0.362064\pi$$
0.419903 + 0.907569i $$0.362064\pi$$
$$182$$ − 4.70156i − 0.348503i
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ 3.29844i 0.241206i
$$188$$ − 7.00000i − 0.510527i
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 12.8062 0.926628 0.463314 0.886194i $$-0.346660\pi$$
0.463314 + 0.886194i $$0.346660\pi$$
$$192$$ 0 0
$$193$$ 16.2094i 1.16678i 0.812194 + 0.583388i $$0.198273\pi$$
−0.812194 + 0.583388i $$0.801727\pi$$
$$194$$ −2.59688 −0.186445
$$195$$ 0 0
$$196$$ 15.1047 1.07891
$$197$$ − 5.40312i − 0.384957i −0.981301 0.192478i $$-0.938347\pi$$
0.981301 0.192478i $$-0.0616525\pi$$
$$198$$ 0 0
$$199$$ −8.29844 −0.588261 −0.294130 0.955765i $$-0.595030\pi$$
−0.294130 + 0.955765i $$0.595030\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ − 6.70156i − 0.471520i
$$203$$ 30.1047i 2.11293i
$$204$$ 0 0
$$205$$ 0 0
$$206$$ −1.40312 −0.0977603
$$207$$ 0 0
$$208$$ − 1.00000i − 0.0693375i
$$209$$ −8.00000 −0.553372
$$210$$ 0 0
$$211$$ 6.80625 0.468561 0.234281 0.972169i $$-0.424727\pi$$
0.234281 + 0.972169i $$0.424727\pi$$
$$212$$ 2.40312i 0.165047i
$$213$$ 0 0
$$214$$ −19.1047 −1.30597
$$215$$ 0 0
$$216$$ 0 0
$$217$$ 47.5078i 3.22504i
$$218$$ − 4.29844i − 0.291127i
$$219$$ 0 0
$$220$$ 0 0
$$221$$ −0.701562 −0.0471922
$$222$$ 0 0
$$223$$ 11.4031i 0.763610i 0.924243 + 0.381805i $$0.124697\pi$$
−0.924243 + 0.381805i $$0.875303\pi$$
$$224$$ 4.70156 0.314136
$$225$$ 0 0
$$226$$ −14.0000 −0.931266
$$227$$ − 16.1047i − 1.06891i −0.845198 0.534453i $$-0.820518\pi$$
0.845198 0.534453i $$-0.179482\pi$$
$$228$$ 0 0
$$229$$ −15.7016 −1.03759 −0.518794 0.854899i $$-0.673619\pi$$
−0.518794 + 0.854899i $$0.673619\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 6.40312i 0.420386i
$$233$$ 20.2094i 1.32396i 0.749521 + 0.661980i $$0.230284\pi$$
−0.749521 + 0.661980i $$0.769716\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ −2.70156 −0.175857
$$237$$ 0 0
$$238$$ − 3.29844i − 0.213806i
$$239$$ 6.10469 0.394879 0.197440 0.980315i $$-0.436737\pi$$
0.197440 + 0.980315i $$0.436737\pi$$
$$240$$ 0 0
$$241$$ −2.59688 −0.167279 −0.0836397 0.996496i $$-0.526654\pi$$
−0.0836397 + 0.996496i $$0.526654\pi$$
$$242$$ 11.1047i 0.713836i
$$243$$ 0 0
$$244$$ −14.1047 −0.902960
$$245$$ 0 0
$$246$$ 0 0
$$247$$ − 1.70156i − 0.108268i
$$248$$ 10.1047i 0.641648i
$$249$$ 0 0
$$250$$ 0 0
$$251$$ −0.298438 −0.0188372 −0.00941862 0.999956i $$-0.502998\pi$$
−0.00941862 + 0.999956i $$0.502998\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ −6.29844 −0.395199
$$255$$ 0 0
$$256$$ 1.00000 0.0625000
$$257$$ − 15.2984i − 0.954290i −0.878824 0.477145i $$-0.841672\pi$$
0.878824 0.477145i $$-0.158328\pi$$
$$258$$ 0 0
$$259$$ 8.00000 0.497096
$$260$$ 0 0
$$261$$ 0 0
$$262$$ − 22.5078i − 1.39054i
$$263$$ − 2.00000i − 0.123325i −0.998097 0.0616626i $$-0.980360\pi$$
0.998097 0.0616626i $$-0.0196403\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 8.00000 0.490511
$$267$$ 0 0
$$268$$ − 6.40312i − 0.391133i
$$269$$ 31.2094 1.90287 0.951435 0.307851i $$-0.0996099\pi$$
0.951435 + 0.307851i $$0.0996099\pi$$
$$270$$ 0 0
$$271$$ 19.5078 1.18502 0.592508 0.805565i $$-0.298138\pi$$
0.592508 + 0.805565i $$0.298138\pi$$
$$272$$ − 0.701562i − 0.0425385i
$$273$$ 0 0
$$274$$ −13.7016 −0.827742
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 22.0000i 1.32185i 0.750451 + 0.660926i $$0.229836\pi$$
−0.750451 + 0.660926i $$0.770164\pi$$
$$278$$ − 9.40312i − 0.563962i
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 21.9109 1.30710 0.653548 0.756885i $$-0.273280\pi$$
0.653548 + 0.756885i $$0.273280\pi$$
$$282$$ 0 0
$$283$$ 21.4031i 1.27228i 0.771572 + 0.636142i $$0.219471\pi$$
−0.771572 + 0.636142i $$0.780529\pi$$
$$284$$ −1.70156 −0.100969
$$285$$ 0 0
$$286$$ −4.70156 −0.278009
$$287$$ − 17.4031i − 1.02727i
$$288$$ 0 0
$$289$$ 16.5078 0.971048
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 12.0000i 0.702247i
$$293$$ − 21.4031i − 1.25038i −0.780471 0.625192i $$-0.785021\pi$$
0.780471 0.625192i $$-0.214979\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 1.70156 0.0989013
$$297$$ 0 0
$$298$$ 6.59688i 0.382147i
$$299$$ 0 0
$$300$$ 0 0
$$301$$ −53.6125 −3.09017
$$302$$ − 14.1047i − 0.811633i
$$303$$ 0 0
$$304$$ 1.70156 0.0975913
$$305$$ 0 0
$$306$$ 0 0
$$307$$ 5.70156i 0.325405i 0.986675 + 0.162703i $$0.0520211\pi$$
−0.986675 + 0.162703i $$0.947979\pi$$
$$308$$ − 22.1047i − 1.25953i
$$309$$ 0 0
$$310$$ 0 0
$$311$$ −30.0000 −1.70114 −0.850572 0.525859i $$-0.823744\pi$$
−0.850572 + 0.525859i $$0.823744\pi$$
$$312$$ 0 0
$$313$$ − 21.2094i − 1.19882i −0.800440 0.599412i $$-0.795401\pi$$
0.800440 0.599412i $$-0.204599\pi$$
$$314$$ −22.7016 −1.28112
$$315$$ 0 0
$$316$$ −5.70156 −0.320738
$$317$$ 1.19375i 0.0670478i 0.999438 + 0.0335239i $$0.0106730\pi$$
−0.999438 + 0.0335239i $$0.989327\pi$$
$$318$$ 0 0
$$319$$ 30.1047 1.68554
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ − 1.19375i − 0.0664221i
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 18.8062 1.04158
$$327$$ 0 0
$$328$$ − 3.70156i − 0.204385i
$$329$$ 32.9109 1.81444
$$330$$ 0 0
$$331$$ −12.0000 −0.659580 −0.329790 0.944054i $$-0.606978\pi$$
−0.329790 + 0.944054i $$0.606978\pi$$
$$332$$ − 10.7016i − 0.587325i
$$333$$ 0 0
$$334$$ 1.10469 0.0604457
$$335$$ 0 0
$$336$$ 0 0
$$337$$ − 8.10469i − 0.441490i −0.975332 0.220745i $$-0.929151\pi$$
0.975332 0.220745i $$-0.0708489\pi$$
$$338$$ − 1.00000i − 0.0543928i
$$339$$ 0 0
$$340$$ 0 0
$$341$$ 47.5078 2.57269
$$342$$ 0 0
$$343$$ 38.1047i 2.05746i
$$344$$ −11.4031 −0.614815
$$345$$ 0 0
$$346$$ −0.193752 −0.0104161
$$347$$ 10.5078i 0.564089i 0.959401 + 0.282044i $$0.0910126\pi$$
−0.959401 + 0.282044i $$0.908987\pi$$
$$348$$ 0 0
$$349$$ 11.4031 0.610395 0.305198 0.952289i $$-0.401277\pi$$
0.305198 + 0.952289i $$0.401277\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ − 4.70156i − 0.250594i
$$353$$ − 14.5078i − 0.772173i −0.922463 0.386086i $$-0.873827\pi$$
0.922463 0.386086i $$-0.126173\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ −11.4031 −0.604364
$$357$$ 0 0
$$358$$ − 24.2094i − 1.27951i
$$359$$ −34.6125 −1.82678 −0.913389 0.407088i $$-0.866544\pi$$
−0.913389 + 0.407088i $$0.866544\pi$$
$$360$$ 0 0
$$361$$ −16.1047 −0.847615
$$362$$ 11.2984i 0.593833i
$$363$$ 0 0
$$364$$ 4.70156 0.246429
$$365$$ 0 0
$$366$$ 0 0
$$367$$ 2.29844i 0.119977i 0.998199 + 0.0599887i $$0.0191065\pi$$
−0.998199 + 0.0599887i $$0.980894\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ −11.2984 −0.586586
$$372$$ 0 0
$$373$$ 5.29844i 0.274343i 0.990547 + 0.137171i $$0.0438011\pi$$
−0.990547 + 0.137171i $$0.956199\pi$$
$$374$$ −3.29844 −0.170558
$$375$$ 0 0
$$376$$ 7.00000 0.360997
$$377$$ 6.40312i 0.329778i
$$378$$ 0 0
$$379$$ 13.8953 0.713754 0.356877 0.934151i $$-0.383841\pi$$
0.356877 + 0.934151i $$0.383841\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 12.8062i 0.655225i
$$383$$ − 32.5078i − 1.66107i −0.556965 0.830536i $$-0.688034\pi$$
0.556965 0.830536i $$-0.311966\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ −16.2094 −0.825035
$$387$$ 0 0
$$388$$ − 2.59688i − 0.131836i
$$389$$ −27.1047 −1.37426 −0.687131 0.726533i $$-0.741130\pi$$
−0.687131 + 0.726533i $$0.741130\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ 15.1047i 0.762902i
$$393$$ 0 0
$$394$$ 5.40312 0.272205
$$395$$ 0 0
$$396$$ 0 0
$$397$$ 21.9109i 1.09968i 0.835271 + 0.549839i $$0.185311\pi$$
−0.835271 + 0.549839i $$0.814689\pi$$
$$398$$ − 8.29844i − 0.415963i
$$399$$ 0 0
$$400$$ 0 0
$$401$$ −18.2094 −0.909333 −0.454666 0.890662i $$-0.650241\pi$$
−0.454666 + 0.890662i $$0.650241\pi$$
$$402$$ 0 0
$$403$$ 10.1047i 0.503350i
$$404$$ 6.70156 0.333415
$$405$$ 0 0
$$406$$ −30.1047 −1.49407
$$407$$ − 8.00000i − 0.396545i
$$408$$ 0 0
$$409$$ −29.4031 −1.45389 −0.726945 0.686695i $$-0.759061\pi$$
−0.726945 + 0.686695i $$0.759061\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ − 1.40312i − 0.0691270i
$$413$$ − 12.7016i − 0.625003i
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 1.00000 0.0490290
$$417$$ 0 0
$$418$$ − 8.00000i − 0.391293i
$$419$$ 9.91093 0.484181 0.242090 0.970254i $$-0.422167\pi$$
0.242090 + 0.970254i $$0.422167\pi$$
$$420$$ 0 0
$$421$$ −0.596876 −0.0290899 −0.0145450 0.999894i $$-0.504630\pi$$
−0.0145450 + 0.999894i $$0.504630\pi$$
$$422$$ 6.80625i 0.331323i
$$423$$ 0 0
$$424$$ −2.40312 −0.116706
$$425$$ 0 0
$$426$$ 0 0
$$427$$ − 66.3141i − 3.20916i
$$428$$ − 19.1047i − 0.923460i
$$429$$ 0 0
$$430$$ 0 0
$$431$$ −35.3141 −1.70102 −0.850509 0.525960i $$-0.823706\pi$$
−0.850509 + 0.525960i $$0.823706\pi$$
$$432$$ 0 0
$$433$$ − 11.1047i − 0.533657i −0.963744 0.266829i $$-0.914024\pi$$
0.963744 0.266829i $$-0.0859758\pi$$
$$434$$ −47.5078 −2.28045
$$435$$ 0 0
$$436$$ 4.29844 0.205858
$$437$$ 0 0
$$438$$ 0 0
$$439$$ 10.2984 0.491518 0.245759 0.969331i $$-0.420963\pi$$
0.245759 + 0.969331i $$0.420963\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ − 0.701562i − 0.0333699i
$$443$$ − 32.5078i − 1.54449i −0.635323 0.772246i $$-0.719133\pi$$
0.635323 0.772246i $$-0.280867\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ −11.4031 −0.539954
$$447$$ 0 0
$$448$$ 4.70156i 0.222128i
$$449$$ 2.29844 0.108470 0.0542350 0.998528i $$-0.482728\pi$$
0.0542350 + 0.998528i $$0.482728\pi$$
$$450$$ 0 0
$$451$$ −17.4031 −0.819481
$$452$$ − 14.0000i − 0.658505i
$$453$$ 0 0
$$454$$ 16.1047 0.755830
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 2.59688i 0.121477i 0.998154 + 0.0607384i $$0.0193455\pi$$
−0.998154 + 0.0607384i $$0.980654\pi$$
$$458$$ − 15.7016i − 0.733686i
$$459$$ 0 0
$$460$$ 0 0
$$461$$ −36.2094 −1.68644 −0.843219 0.537570i $$-0.819342\pi$$
−0.843219 + 0.537570i $$0.819342\pi$$
$$462$$ 0 0
$$463$$ − 21.2984i − 0.989822i −0.868944 0.494911i $$-0.835201\pi$$
0.868944 0.494911i $$-0.164799\pi$$
$$464$$ −6.40312 −0.297258
$$465$$ 0 0
$$466$$ −20.2094 −0.936181
$$467$$ 30.2984i 1.40204i 0.713139 + 0.701022i $$0.247273\pi$$
−0.713139 + 0.701022i $$0.752727\pi$$
$$468$$ 0 0
$$469$$ 30.1047 1.39011
$$470$$ 0 0
$$471$$ 0 0
$$472$$ − 2.70156i − 0.124349i
$$473$$ 53.6125i 2.46511i
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 3.29844 0.151184
$$477$$ 0 0
$$478$$ 6.10469i 0.279222i
$$479$$ −40.6125 −1.85563 −0.927816 0.373038i $$-0.878316\pi$$
−0.927816 + 0.373038i $$0.878316\pi$$
$$480$$ 0 0
$$481$$ 1.70156 0.0775846
$$482$$ − 2.59688i − 0.118284i
$$483$$ 0 0
$$484$$ −11.1047 −0.504758
$$485$$ 0 0
$$486$$ 0 0
$$487$$ 7.89531i 0.357771i 0.983870 + 0.178885i $$0.0572491\pi$$
−0.983870 + 0.178885i $$0.942751\pi$$
$$488$$ − 14.1047i − 0.638489i
$$489$$ 0 0
$$490$$ 0 0
$$491$$ −33.4031 −1.50746 −0.753731 0.657183i $$-0.771748\pi$$
−0.753731 + 0.657183i $$0.771748\pi$$
$$492$$ 0 0
$$493$$ 4.49219i 0.202318i
$$494$$ 1.70156 0.0765569
$$495$$ 0 0
$$496$$ −10.1047 −0.453714
$$497$$ − 8.00000i − 0.358849i
$$498$$ 0 0
$$499$$ −17.2094 −0.770397 −0.385199 0.922834i $$-0.625867\pi$$
−0.385199 + 0.922834i $$0.625867\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ − 0.298438i − 0.0133199i
$$503$$ 12.2094i 0.544389i 0.962242 + 0.272195i $$0.0877494\pi$$
−0.962242 + 0.272195i $$0.912251\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 0 0
$$508$$ − 6.29844i − 0.279448i
$$509$$ −5.40312 −0.239489 −0.119745 0.992805i $$-0.538208\pi$$
−0.119745 + 0.992805i $$0.538208\pi$$
$$510$$ 0 0
$$511$$ −56.4187 −2.49582
$$512$$ 1.00000i 0.0441942i
$$513$$ 0 0
$$514$$ 15.2984 0.674785
$$515$$ 0 0
$$516$$ 0 0
$$517$$ − 32.9109i − 1.44742i
$$518$$ 8.00000i 0.351500i
$$519$$ 0 0
$$520$$ 0 0
$$521$$ 36.2094 1.58636 0.793181 0.608986i $$-0.208424\pi$$
0.793181 + 0.608986i $$0.208424\pi$$
$$522$$ 0 0
$$523$$ − 24.8062i − 1.08470i −0.840152 0.542351i $$-0.817534\pi$$
0.840152 0.542351i $$-0.182466\pi$$
$$524$$ 22.5078 0.983258
$$525$$ 0 0
$$526$$ 2.00000 0.0872041
$$527$$ 7.08907i 0.308805i
$$528$$ 0 0
$$529$$ 23.0000 1.00000
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 8.00000i 0.346844i
$$533$$ − 3.70156i − 0.160332i
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 6.40312 0.276573
$$537$$ 0 0
$$538$$ 31.2094i 1.34553i
$$539$$ 71.0156 3.05886
$$540$$ 0 0
$$541$$ −1.79063 −0.0769851 −0.0384925 0.999259i $$-0.512256\pi$$
−0.0384925 + 0.999259i $$0.512256\pi$$
$$542$$ 19.5078i 0.837932i
$$543$$ 0 0
$$544$$ 0.701562 0.0300792
$$545$$ 0 0
$$546$$ 0 0
$$547$$ 31.6125i 1.35165i 0.737061 + 0.675826i $$0.236213\pi$$
−0.737061 + 0.675826i $$0.763787\pi$$
$$548$$ − 13.7016i − 0.585302i
$$549$$ 0 0
$$550$$ 0 0
$$551$$ −10.8953 −0.464156
$$552$$ 0 0
$$553$$ − 26.8062i − 1.13992i
$$554$$ −22.0000 −0.934690
$$555$$ 0 0
$$556$$ 9.40312 0.398781
$$557$$ 16.8062i 0.712104i 0.934466 + 0.356052i $$0.115877\pi$$
−0.934466 + 0.356052i $$0.884123\pi$$
$$558$$ 0 0
$$559$$ −11.4031 −0.482301
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 21.9109i 0.924257i
$$563$$ 32.5078i 1.37004i 0.728524 + 0.685020i $$0.240207\pi$$
−0.728524 + 0.685020i $$0.759793\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ −21.4031 −0.899640
$$567$$ 0 0
$$568$$ − 1.70156i − 0.0713960i
$$569$$ −11.2984 −0.473655 −0.236828 0.971552i $$-0.576108\pi$$
−0.236828 + 0.971552i $$0.576108\pi$$
$$570$$ 0 0
$$571$$ 40.0000 1.67395 0.836974 0.547243i $$-0.184323\pi$$
0.836974 + 0.547243i $$0.184323\pi$$
$$572$$ − 4.70156i − 0.196582i
$$573$$ 0 0
$$574$$ 17.4031 0.726392
$$575$$ 0 0
$$576$$ 0 0
$$577$$ − 24.2094i − 1.00785i −0.863748 0.503925i $$-0.831889\pi$$
0.863748 0.503925i $$-0.168111\pi$$
$$578$$ 16.5078i 0.686634i
$$579$$ 0 0
$$580$$ 0 0
$$581$$ 50.3141 2.08738
$$582$$ 0 0
$$583$$ 11.2984i 0.467933i
$$584$$ −12.0000 −0.496564
$$585$$ 0 0
$$586$$ 21.4031 0.884155
$$587$$ − 7.50781i − 0.309881i −0.987924 0.154940i $$-0.950481\pi$$
0.987924 0.154940i $$-0.0495185\pi$$
$$588$$ 0 0
$$589$$ −17.1938 −0.708456
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 1.70156i 0.0699338i
$$593$$ − 17.9109i − 0.735514i −0.929922 0.367757i $$-0.880126\pi$$
0.929922 0.367757i $$-0.119874\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ −6.59688 −0.270219
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 8.20937 0.335426 0.167713 0.985836i $$-0.446362\pi$$
0.167713 + 0.985836i $$0.446362\pi$$
$$600$$ 0 0
$$601$$ 10.6125 0.432893 0.216446 0.976295i $$-0.430553\pi$$
0.216446 + 0.976295i $$0.430553\pi$$
$$602$$ − 53.6125i − 2.18508i
$$603$$ 0 0
$$604$$ 14.1047 0.573912
$$605$$ 0 0
$$606$$ 0 0
$$607$$ 35.1047i 1.42486i 0.701746 + 0.712428i $$0.252404\pi$$
−0.701746 + 0.712428i $$0.747596\pi$$
$$608$$ 1.70156i 0.0690075i
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 7.00000 0.283190
$$612$$ 0 0
$$613$$ − 12.8062i − 0.517240i −0.965979 0.258620i $$-0.916732\pi$$
0.965979 0.258620i $$-0.0832677\pi$$
$$614$$ −5.70156 −0.230096
$$615$$ 0 0
$$616$$ 22.1047 0.890623
$$617$$ − 27.1047i − 1.09119i −0.838048 0.545597i $$-0.816303\pi$$
0.838048 0.545597i $$-0.183697\pi$$
$$618$$ 0 0
$$619$$ 13.1938 0.530302 0.265151 0.964207i $$-0.414578\pi$$
0.265151 + 0.964207i $$0.414578\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ − 30.0000i − 1.20289i
$$623$$ − 53.6125i − 2.14794i
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 21.2094 0.847697
$$627$$ 0 0
$$628$$ − 22.7016i − 0.905891i
$$629$$ 1.19375 0.0475980
$$630$$ 0 0
$$631$$ 33.6125 1.33809 0.669046 0.743221i $$-0.266703\pi$$
0.669046 + 0.743221i $$0.266703\pi$$
$$632$$ − 5.70156i − 0.226796i
$$633$$ 0 0
$$634$$ −1.19375 −0.0474099
$$635$$ 0 0
$$636$$ 0 0
$$637$$ 15.1047i 0.598469i
$$638$$ 30.1047i 1.19186i
$$639$$ 0 0
$$640$$ 0 0
$$641$$ −5.50781 −0.217545 −0.108773 0.994067i $$-0.534692\pi$$
−0.108773 + 0.994067i $$0.534692\pi$$
$$642$$ 0 0
$$643$$ − 10.2984i − 0.406131i −0.979165 0.203065i $$-0.934910\pi$$
0.979165 0.203065i $$-0.0650904\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 1.19375 0.0469675
$$647$$ − 24.0000i − 0.943537i −0.881722 0.471769i $$-0.843616\pi$$
0.881722 0.471769i $$-0.156384\pi$$
$$648$$ 0 0
$$649$$ −12.7016 −0.498580
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 18.8062i 0.736510i
$$653$$ 21.2984i 0.833472i 0.909027 + 0.416736i $$0.136826\pi$$
−0.909027 + 0.416736i $$0.863174\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 3.70156 0.144522
$$657$$ 0 0
$$658$$ 32.9109i 1.28300i
$$659$$ −19.3141 −0.752369 −0.376184 0.926545i $$-0.622764\pi$$
−0.376184 + 0.926545i $$0.622764\pi$$
$$660$$ 0 0
$$661$$ −40.1203 −1.56050 −0.780250 0.625468i $$-0.784908\pi$$
−0.780250 + 0.625468i $$0.784908\pi$$
$$662$$ − 12.0000i − 0.466393i
$$663$$ 0 0
$$664$$ 10.7016 0.415301
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 0 0
$$668$$ 1.10469i 0.0427416i
$$669$$ 0 0
$$670$$ 0 0
$$671$$ −66.3141 −2.56003
$$672$$ 0 0
$$673$$ 36.0156i 1.38830i 0.719830 + 0.694150i $$0.244220\pi$$
−0.719830 + 0.694150i $$0.755780\pi$$
$$674$$ 8.10469 0.312181
$$675$$ 0 0
$$676$$ 1.00000 0.0384615
$$677$$ 31.6125i 1.21497i 0.794332 + 0.607483i $$0.207821\pi$$
−0.794332 + 0.607483i $$0.792179\pi$$
$$678$$ 0 0
$$679$$ 12.2094 0.468553
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 47.5078i 1.81917i
$$683$$ − 44.7016i − 1.71046i −0.518251 0.855229i $$-0.673417\pi$$
0.518251 0.855229i $$-0.326583\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ −38.1047 −1.45484
$$687$$ 0 0
$$688$$ − 11.4031i − 0.434740i
$$689$$ −2.40312 −0.0915517
$$690$$ 0 0
$$691$$ −22.1938 −0.844290 −0.422145 0.906528i $$-0.638723\pi$$
−0.422145 + 0.906528i $$0.638723\pi$$
$$692$$ − 0.193752i − 0.00736533i
$$693$$ 0 0
$$694$$ −10.5078 −0.398871
$$695$$ 0 0
$$696$$ 0 0
$$697$$ − 2.59688i − 0.0983637i
$$698$$ 11.4031i 0.431615i
$$699$$ 0 0
$$700$$ 0 0
$$701$$ −30.9109 −1.16749 −0.583745 0.811937i $$-0.698413\pi$$
−0.583745 + 0.811937i $$0.698413\pi$$
$$702$$ 0 0
$$703$$ 2.89531i 0.109199i
$$704$$ 4.70156 0.177197
$$705$$ 0 0
$$706$$ 14.5078 0.546009
$$707$$ 31.5078i 1.18497i
$$708$$ 0 0
$$709$$ −15.6125 −0.586340 −0.293170 0.956060i $$-0.594710\pi$$
−0.293170 + 0.956060i $$0.594710\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ − 11.4031i − 0.427350i
$$713$$ 0 0
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 24.2094 0.904747
$$717$$ 0 0
$$718$$ − 34.6125i − 1.29173i
$$719$$ −11.0156 −0.410813 −0.205407 0.978677i $$-0.565852\pi$$
−0.205407 + 0.978677i $$0.565852\pi$$
$$720$$ 0 0
$$721$$ 6.59688 0.245680
$$722$$ − 16.1047i − 0.599354i
$$723$$ 0 0
$$724$$ −11.2984 −0.419903
$$725$$ 0 0
$$726$$ 0 0
$$727$$ − 7.79063i − 0.288938i −0.989509 0.144469i $$-0.953853\pi$$
0.989509 0.144469i $$-0.0461475\pi$$
$$728$$ 4.70156i 0.174251i
$$729$$ 0 0
$$730$$ 0 0
$$731$$ −8.00000 −0.295891
$$732$$ 0 0
$$733$$ 47.9109i 1.76963i 0.465942 + 0.884815i $$0.345716\pi$$
−0.465942 + 0.884815i $$0.654284\pi$$
$$734$$ −2.29844 −0.0848369
$$735$$ 0 0
$$736$$ 0 0
$$737$$ − 30.1047i − 1.10892i
$$738$$ 0 0
$$739$$ −4.61250 −0.169673 −0.0848367 0.996395i $$-0.527037\pi$$
−0.0848367 + 0.996395i $$0.527037\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ − 11.2984i − 0.414779i
$$743$$ 30.6125i 1.12306i 0.827455 + 0.561532i $$0.189788\pi$$
−0.827455 + 0.561532i $$0.810212\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ −5.29844 −0.193990
$$747$$ 0 0
$$748$$ − 3.29844i − 0.120603i
$$749$$ 89.8219 3.28202
$$750$$ 0 0
$$751$$ 8.50781 0.310454 0.155227 0.987879i $$-0.450389\pi$$
0.155227 + 0.987879i $$0.450389\pi$$
$$752$$ 7.00000i 0.255264i
$$753$$ 0 0
$$754$$ −6.40312 −0.233188
$$755$$ 0 0
$$756$$ 0 0
$$757$$ 17.8953i 0.650416i 0.945642 + 0.325208i $$0.105434\pi$$
−0.945642 + 0.325208i $$0.894566\pi$$
$$758$$ 13.8953i 0.504701i
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 26.7172 0.968497 0.484249 0.874930i $$-0.339093\pi$$
0.484249 + 0.874930i $$0.339093\pi$$
$$762$$ 0 0
$$763$$ 20.2094i 0.731628i
$$764$$ −12.8062 −0.463314
$$765$$ 0 0
$$766$$ 32.5078 1.17455
$$767$$ − 2.70156i − 0.0975478i
$$768$$ 0 0
$$769$$ 8.00000 0.288487 0.144244 0.989542i $$-0.453925\pi$$
0.144244 + 0.989542i $$0.453925\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ − 16.2094i − 0.583388i
$$773$$ − 26.5969i − 0.956623i −0.878190 0.478312i $$-0.841249\pi$$
0.878190 0.478312i $$-0.158751\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 2.59688 0.0932224
$$777$$ 0 0
$$778$$ − 27.1047i − 0.971750i
$$779$$ 6.29844 0.225665
$$780$$ 0 0
$$781$$ −8.00000 −0.286263
$$782$$ 0 0
$$783$$ 0 0
$$784$$ −15.1047 −0.539453
$$785$$ 0 0
$$786$$ 0 0
$$787$$ − 33.8953i − 1.20824i −0.796894 0.604119i $$-0.793525\pi$$
0.796894 0.604119i $$-0.206475\pi$$
$$788$$ 5.40312i 0.192478i
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 65.8219 2.34036
$$792$$ 0 0
$$793$$ − 14.1047i − 0.500872i
$$794$$ −21.9109 −0.777590
$$795$$ 0 0
$$796$$ 8.29844 0.294130
$$797$$ 2.91093i 0.103111i 0.998670 + 0.0515553i $$0.0164178\pi$$
−0.998670 + 0.0515553i $$0.983582\pi$$
$$798$$ 0 0
$$799$$ 4.91093 0.173736
$$800$$ 0 0
$$801$$ 0 0
$$802$$ − 18.2094i − 0.642995i
$$803$$ 56.4187i 1.99097i
$$804$$ 0 0
$$805$$ 0 0
$$806$$ −10.1047 −0.355922
$$807$$ 0 0
$$808$$ 6.70156i 0.235760i
$$809$$ 7.19375 0.252919 0.126459 0.991972i $$-0.459639\pi$$
0.126459 + 0.991972i $$0.459639\pi$$
$$810$$ 0 0
$$811$$ 48.7016 1.71014 0.855072 0.518510i $$-0.173513\pi$$
0.855072 + 0.518510i $$0.173513\pi$$
$$812$$ − 30.1047i − 1.05647i
$$813$$ 0 0
$$814$$ 8.00000 0.280400
$$815$$ 0 0
$$816$$ 0 0
$$817$$ − 19.4031i − 0.678829i
$$818$$ − 29.4031i − 1.02806i
$$819$$ 0 0
$$820$$ 0 0
$$821$$ 20.5969 0.718836 0.359418 0.933177i $$-0.382975\pi$$
0.359418 + 0.933177i $$0.382975\pi$$
$$822$$ 0 0
$$823$$ 17.1047i 0.596232i 0.954530 + 0.298116i $$0.0963582\pi$$
−0.954530 + 0.298116i $$0.903642\pi$$
$$824$$ 1.40312 0.0488801
$$825$$ 0 0
$$826$$ 12.7016 0.441944
$$827$$ 20.7016i 0.719864i 0.932979 + 0.359932i $$0.117200\pi$$
−0.932979 + 0.359932i $$0.882800\pi$$
$$828$$ 0 0
$$829$$ 5.50781 0.191294 0.0956471 0.995415i $$-0.469508\pi$$
0.0956471 + 0.995415i $$0.469508\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 1.00000i 0.0346688i
$$833$$ 10.5969i 0.367160i
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 8.00000 0.276686
$$837$$ 0 0
$$838$$ 9.91093i 0.342368i
$$839$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$840$$ 0 0
$$841$$ 12.0000 0.413793
$$842$$ − 0.596876i − 0.0205697i
$$843$$ 0 0
$$844$$ −6.80625 −0.234281
$$845$$ 0 0
$$846$$ 0 0
$$847$$ − 52.2094i − 1.79394i
$$848$$ − 2.40312i − 0.0825236i
$$849$$ 0 0
$$850$$ 0 0
$$851$$ 0 0
$$852$$ 0 0
$$853$$ 0.507811i 0.0173871i 0.999962 + 0.00869355i $$0.00276728\pi$$
−0.999962 + 0.00869355i $$0.997233\pi$$
$$854$$ 66.3141 2.26922
$$855$$ 0 0
$$856$$ 19.1047 0.652985
$$857$$ − 7.61250i − 0.260038i −0.991512 0.130019i $$-0.958496\pi$$
0.991512 0.130019i $$-0.0415038\pi$$
$$858$$ 0 0
$$859$$ 6.20937 0.211861 0.105931 0.994374i $$-0.466218\pi$$
0.105931 + 0.994374i $$0.466218\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ − 35.3141i − 1.20280i
$$863$$ − 54.2250i − 1.84584i −0.384991 0.922920i $$-0.625796\pi$$
0.384991 0.922920i $$-0.374204\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 11.1047 0.377353
$$867$$ 0 0
$$868$$ − 47.5078i − 1.61252i
$$869$$ −26.8062 −0.909340
$$870$$ 0 0
$$871$$ 6.40312 0.216962
$$872$$ 4.29844i 0.145563i
$$873$$ 0 0
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ 42.7172i 1.44246i 0.692697 + 0.721228i $$0.256422\pi$$
−0.692697 + 0.721228i $$0.743578\pi$$
$$878$$ 10.2984i 0.347555i
$$879$$ 0 0
$$880$$ 0 0
$$881$$ 39.7172 1.33811 0.669053 0.743215i $$-0.266700\pi$$
0.669053 + 0.743215i $$0.266700\pi$$
$$882$$ 0 0
$$883$$ 45.6125i 1.53498i 0.641059 + 0.767491i $$0.278495\pi$$
−0.641059 + 0.767491i $$0.721505\pi$$
$$884$$ 0.701562 0.0235961
$$885$$ 0 0
$$886$$ 32.5078 1.09212
$$887$$ − 20.0000i − 0.671534i −0.941945 0.335767i $$-0.891004\pi$$
0.941945 0.335767i $$-0.108996\pi$$
$$888$$ 0 0
$$889$$ 29.6125 0.993171
$$890$$ 0 0
$$891$$ 0 0
$$892$$ − 11.4031i − 0.381805i
$$893$$ 11.9109i 0.398584i
$$894$$ 0 0
$$895$$ 0 0
$$896$$ −4.70156 −0.157068
$$897$$ 0 0
$$898$$ 2.29844i 0.0766999i
$$899$$ 64.7016 2.15792
$$900$$ 0 0
$$901$$ −1.68594 −0.0561668
$$902$$ − 17.4031i − 0.579461i
$$903$$ 0 0
$$904$$ 14.0000 0.465633
$$905$$ 0 0
$$906$$ 0 0
$$907$$ 25.0156i 0.830630i 0.909678 + 0.415315i $$0.136329\pi$$
−0.909678 + 0.415315i $$0.863671\pi$$
$$908$$ 16.1047i 0.534453i
$$909$$ 0 0
$$910$$ 0 0
$$911$$ −42.2094 −1.39846 −0.699229 0.714897i $$-0.746473\pi$$
−0.699229 + 0.714897i $$0.746473\pi$$
$$912$$ 0 0
$$913$$ − 50.3141i − 1.66515i
$$914$$ −2.59688 −0.0858970
$$915$$ 0 0
$$916$$ 15.7016 0.518794
$$917$$ 105.822i 3.49455i
$$918$$ 0 0
$$919$$ 4.89531 0.161481 0.0807407 0.996735i $$-0.474271\pi$$
0.0807407 + 0.996735i $$0.474271\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ − 36.2094i − 1.19249i
$$923$$ − 1.70156i − 0.0560076i
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 21.2984 0.699910
$$927$$ 0 0
$$928$$ − 6.40312i − 0.210193i
$$929$$ 52.2984 1.71586 0.857928 0.513770i $$-0.171751\pi$$
0.857928 + 0.513770i $$0.171751\pi$$
$$930$$ 0 0
$$931$$ −25.7016 −0.842335
$$932$$ − 20.2094i − 0.661980i
$$933$$ 0 0
$$934$$ −30.2984 −0.991395
$$935$$ 0 0
$$936$$ 0 0
$$937$$ − 14.9109i − 0.487119i −0.969886 0.243560i $$-0.921685\pi$$
0.969886 0.243560i $$-0.0783151\pi$$
$$938$$ 30.1047i 0.982953i
$$939$$ 0 0
$$940$$ 0 0
$$941$$ −28.4187 −0.926425 −0.463212 0.886247i $$-0.653303\pi$$
−0.463212 + 0.886247i $$0.653303\pi$$
$$942$$ 0 0
$$943$$ 0 0
$$944$$ 2.70156 0.0879284
$$945$$ 0 0
$$946$$ −53.6125 −1.74309
$$947$$ 47.5078i 1.54380i 0.635746 + 0.771898i $$0.280693\pi$$
−0.635746 + 0.771898i $$0.719307\pi$$
$$948$$ 0 0
$$949$$ −12.0000 −0.389536
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 3.29844i 0.106903i
$$953$$ 31.2984i 1.01386i 0.861988 + 0.506928i $$0.169219\pi$$
−0.861988 + 0.506928i $$0.830781\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ −6.10469 −0.197440
$$957$$ 0 0
$$958$$ − 40.6125i − 1.31213i
$$959$$ 64.4187 2.08019
$$960$$ 0 0
$$961$$ 71.1047 2.29370
$$962$$ 1.70156i 0.0548606i
$$963$$ 0 0
$$964$$ 2.59688 0.0836397
$$965$$ 0 0
$$966$$ 0 0
$$967$$ − 29.8953i − 0.961368i −0.876894 0.480684i $$-0.840388\pi$$
0.876894 0.480684i $$-0.159612\pi$$
$$968$$ − 11.1047i − 0.356918i
$$969$$ 0 0
$$970$$ 0 0
$$971$$ 36.8953 1.18403 0.592013 0.805928i $$-0.298333\pi$$
0.592013 + 0.805928i $$0.298333\pi$$
$$972$$ 0 0
$$973$$ 44.2094i 1.41729i
$$974$$ −7.89531 −0.252982
$$975$$ 0 0
$$976$$ 14.1047 0.451480
$$977$$ − 23.4031i − 0.748732i −0.927281 0.374366i $$-0.877860\pi$$
0.927281 0.374366i $$-0.122140\pi$$
$$978$$ 0 0
$$979$$ −53.6125 −1.71346
$$980$$ 0 0
$$981$$ 0 0
$$982$$ − 33.4031i − 1.06594i
$$983$$ 7.50781i 0.239462i 0.992806 + 0.119731i $$0.0382032\pi$$
−0.992806 + 0.119731i $$0.961797\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ −4.49219 −0.143060
$$987$$ 0 0
$$988$$ 1.70156i 0.0541339i
$$989$$ 0 0
$$990$$ 0 0
$$991$$ −9.10469 −0.289220 −0.144610 0.989489i $$-0.546193\pi$$
−0.144610 + 0.989489i $$0.546193\pi$$
$$992$$ − 10.1047i − 0.320824i
$$993$$ 0 0
$$994$$ 8.00000 0.253745
$$995$$ 0 0
$$996$$ 0 0
$$997$$ 10.4922i 0.332291i 0.986101 + 0.166145i $$0.0531321\pi$$
−0.986101 + 0.166145i $$0.946868\pi$$
$$998$$ − 17.2094i − 0.544753i
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5850.2.e.bi.5149.3 4
3.2 odd 2 1950.2.e.p.1249.1 4
5.2 odd 4 5850.2.a.cg.1.2 2
5.3 odd 4 5850.2.a.cj.1.1 2
5.4 even 2 inner 5850.2.e.bi.5149.2 4
15.2 even 4 1950.2.a.bg.1.2 yes 2
15.8 even 4 1950.2.a.bc.1.1 2
15.14 odd 2 1950.2.e.p.1249.4 4

By twisted newform
Twist Min Dim Char Parity Ord Type
1950.2.a.bc.1.1 2 15.8 even 4
1950.2.a.bg.1.2 yes 2 15.2 even 4
1950.2.e.p.1249.1 4 3.2 odd 2
1950.2.e.p.1249.4 4 15.14 odd 2
5850.2.a.cg.1.2 2 5.2 odd 4
5850.2.a.cj.1.1 2 5.3 odd 4
5850.2.e.bi.5149.2 4 5.4 even 2 inner
5850.2.e.bi.5149.3 4 1.1 even 1 trivial