Properties

Label 5850.2.e.bd.5149.2
Level $5850$
Weight $2$
Character 5850.5149
Analytic conductor $46.712$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5850,2,Mod(5149,5850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5850, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5850.5149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5850 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5850.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(46.7124851824\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 5149.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 5850.5149
Dual form 5850.2.e.bd.5149.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} -2.00000i q^{7} -1.00000i q^{8} +O(q^{10})\) \(q+1.00000i q^{2} -1.00000 q^{4} -2.00000i q^{7} -1.00000i q^{8} +4.00000 q^{11} +1.00000i q^{13} +2.00000 q^{14} +1.00000 q^{16} +6.00000 q^{19} +4.00000i q^{22} +4.00000i q^{23} -1.00000 q^{26} +2.00000i q^{28} -8.00000 q^{29} -2.00000 q^{31} +1.00000i q^{32} +6.00000i q^{37} +6.00000i q^{38} -6.00000 q^{41} +8.00000i q^{43} -4.00000 q^{44} -4.00000 q^{46} -8.00000i q^{47} +3.00000 q^{49} -1.00000i q^{52} +12.0000i q^{53} -2.00000 q^{56} -8.00000i q^{58} +4.00000 q^{59} +10.0000 q^{61} -2.00000i q^{62} -1.00000 q^{64} -2.00000i q^{67} +16.0000 q^{71} -14.0000i q^{73} -6.00000 q^{74} -6.00000 q^{76} -8.00000i q^{77} +4.00000 q^{79} -6.00000i q^{82} -12.0000i q^{83} -8.00000 q^{86} -4.00000i q^{88} -6.00000 q^{89} +2.00000 q^{91} -4.00000i q^{92} +8.00000 q^{94} -10.0000i q^{97} +3.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{4} + 8 q^{11} + 4 q^{14} + 2 q^{16} + 12 q^{19} - 2 q^{26} - 16 q^{29} - 4 q^{31} - 12 q^{41} - 8 q^{44} - 8 q^{46} + 6 q^{49} - 4 q^{56} + 8 q^{59} + 20 q^{61} - 2 q^{64} + 32 q^{71} - 12 q^{74} - 12 q^{76} + 8 q^{79} - 16 q^{86} - 12 q^{89} + 4 q^{91} + 16 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5850\mathbb{Z}\right)^\times\).

\(n\) \(2251\) \(3251\) \(3277\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) − 2.00000i − 0.755929i −0.925820 0.377964i \(-0.876624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 2.00000 0.534522
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 4.00000i 0.852803i
\(23\) 4.00000i 0.834058i 0.908893 + 0.417029i \(0.136929\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −1.00000 −0.196116
\(27\) 0 0
\(28\) 2.00000i 0.377964i
\(29\) −8.00000 −1.48556 −0.742781 0.669534i \(-0.766494\pi\)
−0.742781 + 0.669534i \(0.766494\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.00000i 0.986394i 0.869918 + 0.493197i \(0.164172\pi\)
−0.869918 + 0.493197i \(0.835828\pi\)
\(38\) 6.00000i 0.973329i
\(39\) 0 0
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 8.00000i 1.21999i 0.792406 + 0.609994i \(0.208828\pi\)
−0.792406 + 0.609994i \(0.791172\pi\)
\(44\) −4.00000 −0.603023
\(45\) 0 0
\(46\) −4.00000 −0.589768
\(47\) − 8.00000i − 1.16692i −0.812142 0.583460i \(-0.801699\pi\)
0.812142 0.583460i \(-0.198301\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) − 1.00000i − 0.138675i
\(53\) 12.0000i 1.64833i 0.566352 + 0.824163i \(0.308354\pi\)
−0.566352 + 0.824163i \(0.691646\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −2.00000 −0.267261
\(57\) 0 0
\(58\) − 8.00000i − 1.05045i
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) − 2.00000i − 0.254000i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) − 2.00000i − 0.244339i −0.992509 0.122169i \(-0.961015\pi\)
0.992509 0.122169i \(-0.0389851\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 16.0000 1.89885 0.949425 0.313993i \(-0.101667\pi\)
0.949425 + 0.313993i \(0.101667\pi\)
\(72\) 0 0
\(73\) − 14.0000i − 1.63858i −0.573382 0.819288i \(-0.694369\pi\)
0.573382 0.819288i \(-0.305631\pi\)
\(74\) −6.00000 −0.697486
\(75\) 0 0
\(76\) −6.00000 −0.688247
\(77\) − 8.00000i − 0.911685i
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) − 6.00000i − 0.662589i
\(83\) − 12.0000i − 1.31717i −0.752506 0.658586i \(-0.771155\pi\)
0.752506 0.658586i \(-0.228845\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −8.00000 −0.862662
\(87\) 0 0
\(88\) − 4.00000i − 0.426401i
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) − 4.00000i − 0.417029i
\(93\) 0 0
\(94\) 8.00000 0.825137
\(95\) 0 0
\(96\) 0 0
\(97\) − 10.0000i − 1.01535i −0.861550 0.507673i \(-0.830506\pi\)
0.861550 0.507673i \(-0.169494\pi\)
\(98\) 3.00000i 0.303046i
\(99\) 0 0
\(100\) 0 0
\(101\) 16.0000 1.59206 0.796030 0.605257i \(-0.206930\pi\)
0.796030 + 0.605257i \(0.206930\pi\)
\(102\) 0 0
\(103\) − 4.00000i − 0.394132i −0.980390 0.197066i \(-0.936859\pi\)
0.980390 0.197066i \(-0.0631413\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) −12.0000 −1.16554
\(107\) 20.0000i 1.93347i 0.255774 + 0.966736i \(0.417670\pi\)
−0.255774 + 0.966736i \(0.582330\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 2.00000i − 0.188982i
\(113\) 4.00000i 0.376288i 0.982141 + 0.188144i \(0.0602472\pi\)
−0.982141 + 0.188144i \(0.939753\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 8.00000 0.742781
\(117\) 0 0
\(118\) 4.00000i 0.368230i
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 10.0000i 0.905357i
\(123\) 0 0
\(124\) 2.00000 0.179605
\(125\) 0 0
\(126\) 0 0
\(127\) − 8.00000i − 0.709885i −0.934888 0.354943i \(-0.884500\pi\)
0.934888 0.354943i \(-0.115500\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) − 12.0000i − 1.04053i
\(134\) 2.00000 0.172774
\(135\) 0 0
\(136\) 0 0
\(137\) 18.0000i 1.53784i 0.639343 + 0.768922i \(0.279207\pi\)
−0.639343 + 0.768922i \(0.720793\pi\)
\(138\) 0 0
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 16.0000i 1.34269i
\(143\) 4.00000i 0.334497i
\(144\) 0 0
\(145\) 0 0
\(146\) 14.0000 1.15865
\(147\) 0 0
\(148\) − 6.00000i − 0.493197i
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 18.0000 1.46482 0.732410 0.680864i \(-0.238396\pi\)
0.732410 + 0.680864i \(0.238396\pi\)
\(152\) − 6.00000i − 0.486664i
\(153\) 0 0
\(154\) 8.00000 0.644658
\(155\) 0 0
\(156\) 0 0
\(157\) 2.00000i 0.159617i 0.996810 + 0.0798087i \(0.0254309\pi\)
−0.996810 + 0.0798087i \(0.974569\pi\)
\(158\) 4.00000i 0.318223i
\(159\) 0 0
\(160\) 0 0
\(161\) 8.00000 0.630488
\(162\) 0 0
\(163\) 10.0000i 0.783260i 0.920123 + 0.391630i \(0.128089\pi\)
−0.920123 + 0.391630i \(0.871911\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) − 8.00000i − 0.609994i
\(173\) 16.0000i 1.21646i 0.793762 + 0.608229i \(0.208120\pi\)
−0.793762 + 0.608229i \(0.791880\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4.00000 0.301511
\(177\) 0 0
\(178\) − 6.00000i − 0.449719i
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) −18.0000 −1.33793 −0.668965 0.743294i \(-0.733262\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) 2.00000i 0.148250i
\(183\) 0 0
\(184\) 4.00000 0.294884
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 8.00000i 0.583460i
\(189\) 0 0
\(190\) 0 0
\(191\) 4.00000 0.289430 0.144715 0.989473i \(-0.453773\pi\)
0.144715 + 0.989473i \(0.453773\pi\)
\(192\) 0 0
\(193\) − 2.00000i − 0.143963i −0.997406 0.0719816i \(-0.977068\pi\)
0.997406 0.0719816i \(-0.0229323\pi\)
\(194\) 10.0000 0.717958
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 18.0000i 1.28245i 0.767354 + 0.641223i \(0.221573\pi\)
−0.767354 + 0.641223i \(0.778427\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 16.0000i 1.12576i
\(203\) 16.0000i 1.12298i
\(204\) 0 0
\(205\) 0 0
\(206\) 4.00000 0.278693
\(207\) 0 0
\(208\) 1.00000i 0.0693375i
\(209\) 24.0000 1.66011
\(210\) 0 0
\(211\) 8.00000 0.550743 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(212\) − 12.0000i − 0.824163i
\(213\) 0 0
\(214\) −20.0000 −1.36717
\(215\) 0 0
\(216\) 0 0
\(217\) 4.00000i 0.271538i
\(218\) − 10.0000i − 0.677285i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) − 6.00000i − 0.401790i −0.979613 0.200895i \(-0.935615\pi\)
0.979613 0.200895i \(-0.0643850\pi\)
\(224\) 2.00000 0.133631
\(225\) 0 0
\(226\) −4.00000 −0.266076
\(227\) − 12.0000i − 0.796468i −0.917284 0.398234i \(-0.869623\pi\)
0.917284 0.398234i \(-0.130377\pi\)
\(228\) 0 0
\(229\) 30.0000 1.98246 0.991228 0.132164i \(-0.0421925\pi\)
0.991228 + 0.132164i \(0.0421925\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 8.00000i 0.525226i
\(233\) 20.0000i 1.31024i 0.755523 + 0.655122i \(0.227383\pi\)
−0.755523 + 0.655122i \(0.772617\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −4.00000 −0.260378
\(237\) 0 0
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) 6.00000 0.386494 0.193247 0.981150i \(-0.438098\pi\)
0.193247 + 0.981150i \(0.438098\pi\)
\(242\) 5.00000i 0.321412i
\(243\) 0 0
\(244\) −10.0000 −0.640184
\(245\) 0 0
\(246\) 0 0
\(247\) 6.00000i 0.381771i
\(248\) 2.00000i 0.127000i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 16.0000i 1.00591i
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) − 12.0000i − 0.748539i −0.927320 0.374270i \(-0.877893\pi\)
0.927320 0.374270i \(-0.122107\pi\)
\(258\) 0 0
\(259\) 12.0000 0.745644
\(260\) 0 0
\(261\) 0 0
\(262\) − 4.00000i − 0.247121i
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 12.0000 0.735767
\(267\) 0 0
\(268\) 2.00000i 0.122169i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 22.0000 1.33640 0.668202 0.743980i \(-0.267064\pi\)
0.668202 + 0.743980i \(0.267064\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −18.0000 −1.08742
\(275\) 0 0
\(276\) 0 0
\(277\) − 6.00000i − 0.360505i −0.983620 0.180253i \(-0.942309\pi\)
0.983620 0.180253i \(-0.0576915\pi\)
\(278\) 20.0000i 1.19952i
\(279\) 0 0
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) 20.0000i 1.18888i 0.804141 + 0.594438i \(0.202626\pi\)
−0.804141 + 0.594438i \(0.797374\pi\)
\(284\) −16.0000 −0.949425
\(285\) 0 0
\(286\) −4.00000 −0.236525
\(287\) 12.0000i 0.708338i
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 14.0000i 0.819288i
\(293\) 2.00000i 0.116841i 0.998292 + 0.0584206i \(0.0186065\pi\)
−0.998292 + 0.0584206i \(0.981394\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 6.00000 0.348743
\(297\) 0 0
\(298\) − 6.00000i − 0.347571i
\(299\) −4.00000 −0.231326
\(300\) 0 0
\(301\) 16.0000 0.922225
\(302\) 18.0000i 1.03578i
\(303\) 0 0
\(304\) 6.00000 0.344124
\(305\) 0 0
\(306\) 0 0
\(307\) 2.00000i 0.114146i 0.998370 + 0.0570730i \(0.0181768\pi\)
−0.998370 + 0.0570730i \(0.981823\pi\)
\(308\) 8.00000i 0.455842i
\(309\) 0 0
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) − 26.0000i − 1.46961i −0.678280 0.734803i \(-0.737274\pi\)
0.678280 0.734803i \(-0.262726\pi\)
\(314\) −2.00000 −0.112867
\(315\) 0 0
\(316\) −4.00000 −0.225018
\(317\) − 6.00000i − 0.336994i −0.985702 0.168497i \(-0.946109\pi\)
0.985702 0.168497i \(-0.0538913\pi\)
\(318\) 0 0
\(319\) −32.0000 −1.79166
\(320\) 0 0
\(321\) 0 0
\(322\) 8.00000i 0.445823i
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) −10.0000 −0.553849
\(327\) 0 0
\(328\) 6.00000i 0.331295i
\(329\) −16.0000 −0.882109
\(330\) 0 0
\(331\) −10.0000 −0.549650 −0.274825 0.961494i \(-0.588620\pi\)
−0.274825 + 0.961494i \(0.588620\pi\)
\(332\) 12.0000i 0.658586i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 34.0000i − 1.85210i −0.377403 0.926049i \(-0.623183\pi\)
0.377403 0.926049i \(-0.376817\pi\)
\(338\) − 1.00000i − 0.0543928i
\(339\) 0 0
\(340\) 0 0
\(341\) −8.00000 −0.433224
\(342\) 0 0
\(343\) − 20.0000i − 1.07990i
\(344\) 8.00000 0.431331
\(345\) 0 0
\(346\) −16.0000 −0.860165
\(347\) 24.0000i 1.28839i 0.764862 + 0.644194i \(0.222807\pi\)
−0.764862 + 0.644194i \(0.777193\pi\)
\(348\) 0 0
\(349\) −22.0000 −1.17763 −0.588817 0.808267i \(-0.700406\pi\)
−0.588817 + 0.808267i \(0.700406\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4.00000i 0.213201i
\(353\) 14.0000i 0.745145i 0.928003 + 0.372572i \(0.121524\pi\)
−0.928003 + 0.372572i \(0.878476\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 6.00000 0.317999
\(357\) 0 0
\(358\) 12.0000i 0.634220i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) − 18.0000i − 0.946059i
\(363\) 0 0
\(364\) −2.00000 −0.104828
\(365\) 0 0
\(366\) 0 0
\(367\) 8.00000i 0.417597i 0.977959 + 0.208798i \(0.0669552\pi\)
−0.977959 + 0.208798i \(0.933045\pi\)
\(368\) 4.00000i 0.208514i
\(369\) 0 0
\(370\) 0 0
\(371\) 24.0000 1.24602
\(372\) 0 0
\(373\) 10.0000i 0.517780i 0.965907 + 0.258890i \(0.0833568\pi\)
−0.965907 + 0.258890i \(0.916643\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −8.00000 −0.412568
\(377\) − 8.00000i − 0.412021i
\(378\) 0 0
\(379\) −10.0000 −0.513665 −0.256833 0.966456i \(-0.582679\pi\)
−0.256833 + 0.966456i \(0.582679\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 4.00000i 0.204658i
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.00000 0.101797
\(387\) 0 0
\(388\) 10.0000i 0.507673i
\(389\) −12.0000 −0.608424 −0.304212 0.952604i \(-0.598393\pi\)
−0.304212 + 0.952604i \(0.598393\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) − 3.00000i − 0.151523i
\(393\) 0 0
\(394\) −18.0000 −0.906827
\(395\) 0 0
\(396\) 0 0
\(397\) − 10.0000i − 0.501886i −0.968002 0.250943i \(-0.919259\pi\)
0.968002 0.250943i \(-0.0807406\pi\)
\(398\) − 8.00000i − 0.401004i
\(399\) 0 0
\(400\) 0 0
\(401\) 6.00000 0.299626 0.149813 0.988714i \(-0.452133\pi\)
0.149813 + 0.988714i \(0.452133\pi\)
\(402\) 0 0
\(403\) − 2.00000i − 0.0996271i
\(404\) −16.0000 −0.796030
\(405\) 0 0
\(406\) −16.0000 −0.794067
\(407\) 24.0000i 1.18964i
\(408\) 0 0
\(409\) 26.0000 1.28562 0.642809 0.766027i \(-0.277769\pi\)
0.642809 + 0.766027i \(0.277769\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 4.00000i 0.197066i
\(413\) − 8.00000i − 0.393654i
\(414\) 0 0
\(415\) 0 0
\(416\) −1.00000 −0.0490290
\(417\) 0 0
\(418\) 24.0000i 1.17388i
\(419\) 36.0000 1.75872 0.879358 0.476162i \(-0.157972\pi\)
0.879358 + 0.476162i \(0.157972\pi\)
\(420\) 0 0
\(421\) 10.0000 0.487370 0.243685 0.969854i \(-0.421644\pi\)
0.243685 + 0.969854i \(0.421644\pi\)
\(422\) 8.00000i 0.389434i
\(423\) 0 0
\(424\) 12.0000 0.582772
\(425\) 0 0
\(426\) 0 0
\(427\) − 20.0000i − 0.967868i
\(428\) − 20.0000i − 0.966736i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 2.00000i 0.0961139i 0.998845 + 0.0480569i \(0.0153029\pi\)
−0.998845 + 0.0480569i \(0.984697\pi\)
\(434\) −4.00000 −0.192006
\(435\) 0 0
\(436\) 10.0000 0.478913
\(437\) 24.0000i 1.14808i
\(438\) 0 0
\(439\) 4.00000 0.190910 0.0954548 0.995434i \(-0.469569\pi\)
0.0954548 + 0.995434i \(0.469569\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 36.0000i 1.71041i 0.518289 + 0.855206i \(0.326569\pi\)
−0.518289 + 0.855206i \(0.673431\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 6.00000 0.284108
\(447\) 0 0
\(448\) 2.00000i 0.0944911i
\(449\) 26.0000 1.22702 0.613508 0.789689i \(-0.289758\pi\)
0.613508 + 0.789689i \(0.289758\pi\)
\(450\) 0 0
\(451\) −24.0000 −1.13012
\(452\) − 4.00000i − 0.188144i
\(453\) 0 0
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) 0 0
\(457\) − 2.00000i − 0.0935561i −0.998905 0.0467780i \(-0.985105\pi\)
0.998905 0.0467780i \(-0.0148953\pi\)
\(458\) 30.0000i 1.40181i
\(459\) 0 0
\(460\) 0 0
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) − 22.0000i − 1.02243i −0.859454 0.511213i \(-0.829196\pi\)
0.859454 0.511213i \(-0.170804\pi\)
\(464\) −8.00000 −0.371391
\(465\) 0 0
\(466\) −20.0000 −0.926482
\(467\) 8.00000i 0.370196i 0.982720 + 0.185098i \(0.0592602\pi\)
−0.982720 + 0.185098i \(0.940740\pi\)
\(468\) 0 0
\(469\) −4.00000 −0.184703
\(470\) 0 0
\(471\) 0 0
\(472\) − 4.00000i − 0.184115i
\(473\) 32.0000i 1.47136i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) − 24.0000i − 1.09773i
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) −6.00000 −0.273576
\(482\) 6.00000i 0.273293i
\(483\) 0 0
\(484\) −5.00000 −0.227273
\(485\) 0 0
\(486\) 0 0
\(487\) 38.0000i 1.72194i 0.508652 + 0.860972i \(0.330144\pi\)
−0.508652 + 0.860972i \(0.669856\pi\)
\(488\) − 10.0000i − 0.452679i
\(489\) 0 0
\(490\) 0 0
\(491\) 16.0000 0.722070 0.361035 0.932552i \(-0.382424\pi\)
0.361035 + 0.932552i \(0.382424\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −6.00000 −0.269953
\(495\) 0 0
\(496\) −2.00000 −0.0898027
\(497\) − 32.0000i − 1.43540i
\(498\) 0 0
\(499\) −22.0000 −0.984855 −0.492428 0.870353i \(-0.663890\pi\)
−0.492428 + 0.870353i \(0.663890\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 32.0000i 1.42681i 0.700752 + 0.713405i \(0.252848\pi\)
−0.700752 + 0.713405i \(0.747152\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −16.0000 −0.711287
\(507\) 0 0
\(508\) 8.00000i 0.354943i
\(509\) −10.0000 −0.443242 −0.221621 0.975133i \(-0.571135\pi\)
−0.221621 + 0.975133i \(0.571135\pi\)
\(510\) 0 0
\(511\) −28.0000 −1.23865
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 12.0000 0.529297
\(515\) 0 0
\(516\) 0 0
\(517\) − 32.0000i − 1.40736i
\(518\) 12.0000i 0.527250i
\(519\) 0 0
\(520\) 0 0
\(521\) 36.0000 1.57719 0.788594 0.614914i \(-0.210809\pi\)
0.788594 + 0.614914i \(0.210809\pi\)
\(522\) 0 0
\(523\) 12.0000i 0.524723i 0.964970 + 0.262362i \(0.0845013\pi\)
−0.964970 + 0.262362i \(0.915499\pi\)
\(524\) 4.00000 0.174741
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) 12.0000i 0.520266i
\(533\) − 6.00000i − 0.259889i
\(534\) 0 0
\(535\) 0 0
\(536\) −2.00000 −0.0863868
\(537\) 0 0
\(538\) 0 0
\(539\) 12.0000 0.516877
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 22.0000i 0.944981i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 20.0000i − 0.855138i −0.903983 0.427569i \(-0.859370\pi\)
0.903983 0.427569i \(-0.140630\pi\)
\(548\) − 18.0000i − 0.768922i
\(549\) 0 0
\(550\) 0 0
\(551\) −48.0000 −2.04487
\(552\) 0 0
\(553\) − 8.00000i − 0.340195i
\(554\) 6.00000 0.254916
\(555\) 0 0
\(556\) −20.0000 −0.848189
\(557\) − 18.0000i − 0.762684i −0.924434 0.381342i \(-0.875462\pi\)
0.924434 0.381342i \(-0.124538\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 10.0000i 0.421825i
\(563\) − 20.0000i − 0.842900i −0.906852 0.421450i \(-0.861521\pi\)
0.906852 0.421450i \(-0.138479\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −20.0000 −0.840663
\(567\) 0 0
\(568\) − 16.0000i − 0.671345i
\(569\) −4.00000 −0.167689 −0.0838444 0.996479i \(-0.526720\pi\)
−0.0838444 + 0.996479i \(0.526720\pi\)
\(570\) 0 0
\(571\) 36.0000 1.50655 0.753277 0.657704i \(-0.228472\pi\)
0.753277 + 0.657704i \(0.228472\pi\)
\(572\) − 4.00000i − 0.167248i
\(573\) 0 0
\(574\) −12.0000 −0.500870
\(575\) 0 0
\(576\) 0 0
\(577\) − 30.0000i − 1.24892i −0.781058 0.624458i \(-0.785320\pi\)
0.781058 0.624458i \(-0.214680\pi\)
\(578\) 17.0000i 0.707107i
\(579\) 0 0
\(580\) 0 0
\(581\) −24.0000 −0.995688
\(582\) 0 0
\(583\) 48.0000i 1.98796i
\(584\) −14.0000 −0.579324
\(585\) 0 0
\(586\) −2.00000 −0.0826192
\(587\) − 28.0000i − 1.15568i −0.816149 0.577842i \(-0.803895\pi\)
0.816149 0.577842i \(-0.196105\pi\)
\(588\) 0 0
\(589\) −12.0000 −0.494451
\(590\) 0 0
\(591\) 0 0
\(592\) 6.00000i 0.246598i
\(593\) − 38.0000i − 1.56047i −0.625485 0.780236i \(-0.715099\pi\)
0.625485 0.780236i \(-0.284901\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) 0 0
\(598\) − 4.00000i − 0.163572i
\(599\) −40.0000 −1.63436 −0.817178 0.576386i \(-0.804463\pi\)
−0.817178 + 0.576386i \(0.804463\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 16.0000i 0.652111i
\(603\) 0 0
\(604\) −18.0000 −0.732410
\(605\) 0 0
\(606\) 0 0
\(607\) 24.0000i 0.974130i 0.873366 + 0.487065i \(0.161933\pi\)
−0.873366 + 0.487065i \(0.838067\pi\)
\(608\) 6.00000i 0.243332i
\(609\) 0 0
\(610\) 0 0
\(611\) 8.00000 0.323645
\(612\) 0 0
\(613\) 34.0000i 1.37325i 0.727013 + 0.686624i \(0.240908\pi\)
−0.727013 + 0.686624i \(0.759092\pi\)
\(614\) −2.00000 −0.0807134
\(615\) 0 0
\(616\) −8.00000 −0.322329
\(617\) − 14.0000i − 0.563619i −0.959470 0.281809i \(-0.909065\pi\)
0.959470 0.281809i \(-0.0909346\pi\)
\(618\) 0 0
\(619\) −34.0000 −1.36658 −0.683288 0.730149i \(-0.739451\pi\)
−0.683288 + 0.730149i \(0.739451\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 12.0000i 0.481156i
\(623\) 12.0000i 0.480770i
\(624\) 0 0
\(625\) 0 0
\(626\) 26.0000 1.03917
\(627\) 0 0
\(628\) − 2.00000i − 0.0798087i
\(629\) 0 0
\(630\) 0 0
\(631\) −14.0000 −0.557331 −0.278666 0.960388i \(-0.589892\pi\)
−0.278666 + 0.960388i \(0.589892\pi\)
\(632\) − 4.00000i − 0.159111i
\(633\) 0 0
\(634\) 6.00000 0.238290
\(635\) 0 0
\(636\) 0 0
\(637\) 3.00000i 0.118864i
\(638\) − 32.0000i − 1.26689i
\(639\) 0 0
\(640\) 0 0
\(641\) 40.0000 1.57991 0.789953 0.613168i \(-0.210105\pi\)
0.789953 + 0.613168i \(0.210105\pi\)
\(642\) 0 0
\(643\) 10.0000i 0.394362i 0.980367 + 0.197181i \(0.0631786\pi\)
−0.980367 + 0.197181i \(0.936821\pi\)
\(644\) −8.00000 −0.315244
\(645\) 0 0
\(646\) 0 0
\(647\) − 8.00000i − 0.314512i −0.987558 0.157256i \(-0.949735\pi\)
0.987558 0.157256i \(-0.0502649\pi\)
\(648\) 0 0
\(649\) 16.0000 0.628055
\(650\) 0 0
\(651\) 0 0
\(652\) − 10.0000i − 0.391630i
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −6.00000 −0.234261
\(657\) 0 0
\(658\) − 16.0000i − 0.623745i
\(659\) −48.0000 −1.86981 −0.934907 0.354892i \(-0.884518\pi\)
−0.934907 + 0.354892i \(0.884518\pi\)
\(660\) 0 0
\(661\) 14.0000 0.544537 0.272268 0.962221i \(-0.412226\pi\)
0.272268 + 0.962221i \(0.412226\pi\)
\(662\) − 10.0000i − 0.388661i
\(663\) 0 0
\(664\) −12.0000 −0.465690
\(665\) 0 0
\(666\) 0 0
\(667\) − 32.0000i − 1.23904i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 40.0000 1.54418
\(672\) 0 0
\(673\) − 22.0000i − 0.848038i −0.905653 0.424019i \(-0.860619\pi\)
0.905653 0.424019i \(-0.139381\pi\)
\(674\) 34.0000 1.30963
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) 12.0000i 0.461197i 0.973049 + 0.230599i \(0.0740685\pi\)
−0.973049 + 0.230599i \(0.925932\pi\)
\(678\) 0 0
\(679\) −20.0000 −0.767530
\(680\) 0 0
\(681\) 0 0
\(682\) − 8.00000i − 0.306336i
\(683\) − 4.00000i − 0.153056i −0.997067 0.0765279i \(-0.975617\pi\)
0.997067 0.0765279i \(-0.0243834\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 20.0000 0.763604
\(687\) 0 0
\(688\) 8.00000i 0.304997i
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) −26.0000 −0.989087 −0.494543 0.869153i \(-0.664665\pi\)
−0.494543 + 0.869153i \(0.664665\pi\)
\(692\) − 16.0000i − 0.608229i
\(693\) 0 0
\(694\) −24.0000 −0.911028
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) − 22.0000i − 0.832712i
\(699\) 0 0
\(700\) 0 0
\(701\) 12.0000 0.453234 0.226617 0.973984i \(-0.427233\pi\)
0.226617 + 0.973984i \(0.427233\pi\)
\(702\) 0 0
\(703\) 36.0000i 1.35777i
\(704\) −4.00000 −0.150756
\(705\) 0 0
\(706\) −14.0000 −0.526897
\(707\) − 32.0000i − 1.20348i
\(708\) 0 0
\(709\) 22.0000 0.826227 0.413114 0.910679i \(-0.364441\pi\)
0.413114 + 0.910679i \(0.364441\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 6.00000i 0.224860i
\(713\) − 8.00000i − 0.299602i
\(714\) 0 0
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) 0 0
\(718\) 0 0
\(719\) 28.0000 1.04422 0.522112 0.852877i \(-0.325144\pi\)
0.522112 + 0.852877i \(0.325144\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 17.0000i 0.632674i
\(723\) 0 0
\(724\) 18.0000 0.668965
\(725\) 0 0
\(726\) 0 0
\(727\) − 8.00000i − 0.296704i −0.988935 0.148352i \(-0.952603\pi\)
0.988935 0.148352i \(-0.0473968\pi\)
\(728\) − 2.00000i − 0.0741249i
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 22.0000i 0.812589i 0.913742 + 0.406294i \(0.133179\pi\)
−0.913742 + 0.406294i \(0.866821\pi\)
\(734\) −8.00000 −0.295285
\(735\) 0 0
\(736\) −4.00000 −0.147442
\(737\) − 8.00000i − 0.294684i
\(738\) 0 0
\(739\) 54.0000 1.98642 0.993211 0.116326i \(-0.0371118\pi\)
0.993211 + 0.116326i \(0.0371118\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 24.0000i 0.881068i
\(743\) − 40.0000i − 1.46746i −0.679442 0.733729i \(-0.737778\pi\)
0.679442 0.733729i \(-0.262222\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −10.0000 −0.366126
\(747\) 0 0
\(748\) 0 0
\(749\) 40.0000 1.46157
\(750\) 0 0
\(751\) −12.0000 −0.437886 −0.218943 0.975738i \(-0.570261\pi\)
−0.218943 + 0.975738i \(0.570261\pi\)
\(752\) − 8.00000i − 0.291730i
\(753\) 0 0
\(754\) 8.00000 0.291343
\(755\) 0 0
\(756\) 0 0
\(757\) − 18.0000i − 0.654221i −0.944986 0.327111i \(-0.893925\pi\)
0.944986 0.327111i \(-0.106075\pi\)
\(758\) − 10.0000i − 0.363216i
\(759\) 0 0
\(760\) 0 0
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) 0 0
\(763\) 20.0000i 0.724049i
\(764\) −4.00000 −0.144715
\(765\) 0 0
\(766\) 0 0
\(767\) 4.00000i 0.144432i
\(768\) 0 0
\(769\) 30.0000 1.08183 0.540914 0.841078i \(-0.318079\pi\)
0.540914 + 0.841078i \(0.318079\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 2.00000i 0.0719816i
\(773\) − 14.0000i − 0.503545i −0.967786 0.251773i \(-0.918987\pi\)
0.967786 0.251773i \(-0.0810135\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −10.0000 −0.358979
\(777\) 0 0
\(778\) − 12.0000i − 0.430221i
\(779\) −36.0000 −1.28983
\(780\) 0 0
\(781\) 64.0000 2.29010
\(782\) 0 0
\(783\) 0 0
\(784\) 3.00000 0.107143
\(785\) 0 0
\(786\) 0 0
\(787\) − 22.0000i − 0.784215i −0.919919 0.392108i \(-0.871746\pi\)
0.919919 0.392108i \(-0.128254\pi\)
\(788\) − 18.0000i − 0.641223i
\(789\) 0 0
\(790\) 0 0
\(791\) 8.00000 0.284447
\(792\) 0 0
\(793\) 10.0000i 0.355110i
\(794\) 10.0000 0.354887
\(795\) 0 0
\(796\) 8.00000 0.283552
\(797\) 12.0000i 0.425062i 0.977154 + 0.212531i \(0.0681706\pi\)
−0.977154 + 0.212531i \(0.931829\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 6.00000i 0.211867i
\(803\) − 56.0000i − 1.97620i
\(804\) 0 0
\(805\) 0 0
\(806\) 2.00000 0.0704470
\(807\) 0 0
\(808\) − 16.0000i − 0.562878i
\(809\) 36.0000 1.26569 0.632846 0.774277i \(-0.281886\pi\)
0.632846 + 0.774277i \(0.281886\pi\)
\(810\) 0 0
\(811\) 50.0000 1.75574 0.877869 0.478901i \(-0.158965\pi\)
0.877869 + 0.478901i \(0.158965\pi\)
\(812\) − 16.0000i − 0.561490i
\(813\) 0 0
\(814\) −24.0000 −0.841200
\(815\) 0 0
\(816\) 0 0
\(817\) 48.0000i 1.67931i
\(818\) 26.0000i 0.909069i
\(819\) 0 0
\(820\) 0 0
\(821\) −34.0000 −1.18661 −0.593304 0.804978i \(-0.702177\pi\)
−0.593304 + 0.804978i \(0.702177\pi\)
\(822\) 0 0
\(823\) 12.0000i 0.418294i 0.977884 + 0.209147i \(0.0670687\pi\)
−0.977884 + 0.209147i \(0.932931\pi\)
\(824\) −4.00000 −0.139347
\(825\) 0 0
\(826\) 8.00000 0.278356
\(827\) 12.0000i 0.417281i 0.977992 + 0.208640i \(0.0669038\pi\)
−0.977992 + 0.208640i \(0.933096\pi\)
\(828\) 0 0
\(829\) −46.0000 −1.59765 −0.798823 0.601566i \(-0.794544\pi\)
−0.798823 + 0.601566i \(0.794544\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 1.00000i − 0.0346688i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) −24.0000 −0.830057
\(837\) 0 0
\(838\) 36.0000i 1.24360i
\(839\) 16.0000 0.552381 0.276191 0.961103i \(-0.410928\pi\)
0.276191 + 0.961103i \(0.410928\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) 10.0000i 0.344623i
\(843\) 0 0
\(844\) −8.00000 −0.275371
\(845\) 0 0
\(846\) 0 0
\(847\) − 10.0000i − 0.343604i
\(848\) 12.0000i 0.412082i
\(849\) 0 0
\(850\) 0 0
\(851\) −24.0000 −0.822709
\(852\) 0 0
\(853\) 26.0000i 0.890223i 0.895475 + 0.445112i \(0.146836\pi\)
−0.895475 + 0.445112i \(0.853164\pi\)
\(854\) 20.0000 0.684386
\(855\) 0 0
\(856\) 20.0000 0.683586
\(857\) 28.0000i 0.956462i 0.878234 + 0.478231i \(0.158722\pi\)
−0.878234 + 0.478231i \(0.841278\pi\)
\(858\) 0 0
\(859\) −8.00000 −0.272956 −0.136478 0.990643i \(-0.543578\pi\)
−0.136478 + 0.990643i \(0.543578\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 8.00000i 0.272323i 0.990687 + 0.136162i \(0.0434766\pi\)
−0.990687 + 0.136162i \(0.956523\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −2.00000 −0.0679628
\(867\) 0 0
\(868\) − 4.00000i − 0.135769i
\(869\) 16.0000 0.542763
\(870\) 0 0
\(871\) 2.00000 0.0677674
\(872\) 10.0000i 0.338643i
\(873\) 0 0
\(874\) −24.0000 −0.811812
\(875\) 0 0
\(876\) 0 0
\(877\) 6.00000i 0.202606i 0.994856 + 0.101303i \(0.0323011\pi\)
−0.994856 + 0.101303i \(0.967699\pi\)
\(878\) 4.00000i 0.134993i
\(879\) 0 0
\(880\) 0 0
\(881\) −36.0000 −1.21287 −0.606435 0.795133i \(-0.707401\pi\)
−0.606435 + 0.795133i \(0.707401\pi\)
\(882\) 0 0
\(883\) 20.0000i 0.673054i 0.941674 + 0.336527i \(0.109252\pi\)
−0.941674 + 0.336527i \(0.890748\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −36.0000 −1.20944
\(887\) − 44.0000i − 1.47738i −0.674048 0.738688i \(-0.735446\pi\)
0.674048 0.738688i \(-0.264554\pi\)
\(888\) 0 0
\(889\) −16.0000 −0.536623
\(890\) 0 0
\(891\) 0 0
\(892\) 6.00000i 0.200895i
\(893\) − 48.0000i − 1.60626i
\(894\) 0 0
\(895\) 0 0
\(896\) −2.00000 −0.0668153
\(897\) 0 0
\(898\) 26.0000i 0.867631i
\(899\) 16.0000 0.533630
\(900\) 0 0
\(901\) 0 0
\(902\) − 24.0000i − 0.799113i
\(903\) 0 0
\(904\) 4.00000 0.133038
\(905\) 0 0
\(906\) 0 0
\(907\) 12.0000i 0.398453i 0.979953 + 0.199227i \(0.0638430\pi\)
−0.979953 + 0.199227i \(0.936157\pi\)
\(908\) 12.0000i 0.398234i
\(909\) 0 0
\(910\) 0 0
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) − 48.0000i − 1.58857i
\(914\) 2.00000 0.0661541
\(915\) 0 0
\(916\) −30.0000 −0.991228
\(917\) 8.00000i 0.264183i
\(918\) 0 0
\(919\) −12.0000 −0.395843 −0.197922 0.980218i \(-0.563419\pi\)
−0.197922 + 0.980218i \(0.563419\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 30.0000i − 0.987997i
\(923\) 16.0000i 0.526646i
\(924\) 0 0
\(925\) 0 0
\(926\) 22.0000 0.722965
\(927\) 0 0
\(928\) − 8.00000i − 0.262613i
\(929\) 30.0000 0.984268 0.492134 0.870519i \(-0.336217\pi\)
0.492134 + 0.870519i \(0.336217\pi\)
\(930\) 0 0
\(931\) 18.0000 0.589926
\(932\) − 20.0000i − 0.655122i
\(933\) 0 0
\(934\) −8.00000 −0.261768
\(935\) 0 0
\(936\) 0 0
\(937\) 30.0000i 0.980057i 0.871706 + 0.490029i \(0.163014\pi\)
−0.871706 + 0.490029i \(0.836986\pi\)
\(938\) − 4.00000i − 0.130605i
\(939\) 0 0
\(940\) 0 0
\(941\) −26.0000 −0.847576 −0.423788 0.905761i \(-0.639300\pi\)
−0.423788 + 0.905761i \(0.639300\pi\)
\(942\) 0 0
\(943\) − 24.0000i − 0.781548i
\(944\) 4.00000 0.130189
\(945\) 0 0
\(946\) −32.0000 −1.04041
\(947\) − 36.0000i − 1.16984i −0.811090 0.584921i \(-0.801125\pi\)
0.811090 0.584921i \(-0.198875\pi\)
\(948\) 0 0
\(949\) 14.0000 0.454459
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 28.0000i 0.907009i 0.891254 + 0.453504i \(0.149826\pi\)
−0.891254 + 0.453504i \(0.850174\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 24.0000 0.776215
\(957\) 0 0
\(958\) 0 0
\(959\) 36.0000 1.16250
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) − 6.00000i − 0.193448i
\(963\) 0 0
\(964\) −6.00000 −0.193247
\(965\) 0 0
\(966\) 0 0
\(967\) − 58.0000i − 1.86515i −0.360971 0.932577i \(-0.617555\pi\)
0.360971 0.932577i \(-0.382445\pi\)
\(968\) − 5.00000i − 0.160706i
\(969\) 0 0
\(970\) 0 0
\(971\) −48.0000 −1.54039 −0.770197 0.637806i \(-0.779842\pi\)
−0.770197 + 0.637806i \(0.779842\pi\)
\(972\) 0 0
\(973\) − 40.0000i − 1.28234i
\(974\) −38.0000 −1.21760
\(975\) 0 0
\(976\) 10.0000 0.320092
\(977\) − 18.0000i − 0.575871i −0.957650 0.287936i \(-0.907031\pi\)
0.957650 0.287936i \(-0.0929689\pi\)
\(978\) 0 0
\(979\) −24.0000 −0.767043
\(980\) 0 0
\(981\) 0 0
\(982\) 16.0000i 0.510581i
\(983\) − 32.0000i − 1.02064i −0.859984 0.510321i \(-0.829527\pi\)
0.859984 0.510321i \(-0.170473\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) − 6.00000i − 0.190885i
\(989\) −32.0000 −1.01754
\(990\) 0 0
\(991\) −48.0000 −1.52477 −0.762385 0.647124i \(-0.775972\pi\)
−0.762385 + 0.647124i \(0.775972\pi\)
\(992\) − 2.00000i − 0.0635001i
\(993\) 0 0
\(994\) 32.0000 1.01498
\(995\) 0 0
\(996\) 0 0
\(997\) 38.0000i 1.20347i 0.798695 + 0.601736i \(0.205524\pi\)
−0.798695 + 0.601736i \(0.794476\pi\)
\(998\) − 22.0000i − 0.696398i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5850.2.e.bd.5149.2 2
3.2 odd 2 5850.2.e.d.5149.1 2
5.2 odd 4 5850.2.a.v.1.1 1
5.3 odd 4 234.2.a.d.1.1 yes 1
5.4 even 2 inner 5850.2.e.bd.5149.1 2
15.2 even 4 5850.2.a.bv.1.1 1
15.8 even 4 234.2.a.a.1.1 1
15.14 odd 2 5850.2.e.d.5149.2 2
20.3 even 4 1872.2.a.p.1.1 1
40.3 even 4 7488.2.a.s.1.1 1
40.13 odd 4 7488.2.a.j.1.1 1
45.13 odd 12 2106.2.e.e.703.1 2
45.23 even 12 2106.2.e.z.703.1 2
45.38 even 12 2106.2.e.z.1405.1 2
45.43 odd 12 2106.2.e.e.1405.1 2
60.23 odd 4 1872.2.a.g.1.1 1
65.8 even 4 3042.2.b.b.1351.2 2
65.18 even 4 3042.2.b.b.1351.1 2
65.38 odd 4 3042.2.a.b.1.1 1
120.53 even 4 7488.2.a.bp.1.1 1
120.83 odd 4 7488.2.a.bu.1.1 1
195.8 odd 4 3042.2.b.c.1351.1 2
195.38 even 4 3042.2.a.o.1.1 1
195.83 odd 4 3042.2.b.c.1351.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.a.a.1.1 1 15.8 even 4
234.2.a.d.1.1 yes 1 5.3 odd 4
1872.2.a.g.1.1 1 60.23 odd 4
1872.2.a.p.1.1 1 20.3 even 4
2106.2.e.e.703.1 2 45.13 odd 12
2106.2.e.e.1405.1 2 45.43 odd 12
2106.2.e.z.703.1 2 45.23 even 12
2106.2.e.z.1405.1 2 45.38 even 12
3042.2.a.b.1.1 1 65.38 odd 4
3042.2.a.o.1.1 1 195.38 even 4
3042.2.b.b.1351.1 2 65.18 even 4
3042.2.b.b.1351.2 2 65.8 even 4
3042.2.b.c.1351.1 2 195.8 odd 4
3042.2.b.c.1351.2 2 195.83 odd 4
5850.2.a.v.1.1 1 5.2 odd 4
5850.2.a.bv.1.1 1 15.2 even 4
5850.2.e.d.5149.1 2 3.2 odd 2
5850.2.e.d.5149.2 2 15.14 odd 2
5850.2.e.bd.5149.1 2 5.4 even 2 inner
5850.2.e.bd.5149.2 2 1.1 even 1 trivial
7488.2.a.j.1.1 1 40.13 odd 4
7488.2.a.s.1.1 1 40.3 even 4
7488.2.a.bp.1.1 1 120.53 even 4
7488.2.a.bu.1.1 1 120.83 odd 4