Properties

Label 585.6.a.m.1.3
Level $585$
Weight $6$
Character 585.1
Self dual yes
Analytic conductor $93.825$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [585,6,Mod(1,585)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(585, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("585.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 585.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(93.8245345906\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 163x^{4} - 8x^{3} + 6120x^{2} + 6624x - 19440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.34530\) of defining polynomial
Character \(\chi\) \(=\) 585.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.34530 q^{2} -30.1902 q^{4} +25.0000 q^{5} +48.6530 q^{7} +83.6645 q^{8} -33.6325 q^{10} -283.440 q^{11} +169.000 q^{13} -65.4530 q^{14} +853.531 q^{16} -789.522 q^{17} +83.3795 q^{19} -754.754 q^{20} +381.312 q^{22} +1935.13 q^{23} +625.000 q^{25} -227.356 q^{26} -1468.84 q^{28} -222.752 q^{29} -2789.48 q^{31} -3825.52 q^{32} +1062.15 q^{34} +1216.33 q^{35} +8369.56 q^{37} -112.170 q^{38} +2091.61 q^{40} -1218.51 q^{41} +5638.89 q^{43} +8557.10 q^{44} -2603.34 q^{46} -17776.2 q^{47} -14439.9 q^{49} -840.813 q^{50} -5102.14 q^{52} -10834.4 q^{53} -7086.00 q^{55} +4070.53 q^{56} +299.668 q^{58} +5363.36 q^{59} -18670.7 q^{61} +3752.69 q^{62} -22166.5 q^{64} +4225.00 q^{65} +13985.1 q^{67} +23835.8 q^{68} -1636.32 q^{70} -50969.5 q^{71} +42394.9 q^{73} -11259.6 q^{74} -2517.24 q^{76} -13790.2 q^{77} +106279. q^{79} +21338.3 q^{80} +1639.26 q^{82} -75513.6 q^{83} -19738.1 q^{85} -7586.01 q^{86} -23713.8 q^{88} -77017.8 q^{89} +8222.36 q^{91} -58422.0 q^{92} +23914.4 q^{94} +2084.49 q^{95} +126702. q^{97} +19426.0 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 134 q^{4} + 150 q^{5} + 220 q^{7} - 24 q^{8} + 170 q^{11} + 1014 q^{13} + 1440 q^{14} + 3506 q^{16} - 728 q^{17} + 1218 q^{19} + 3350 q^{20} + 5154 q^{22} - 8954 q^{23} + 3750 q^{25} + 13212 q^{28}+ \cdots + 4736 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34530 −0.237818 −0.118909 0.992905i \(-0.537940\pi\)
−0.118909 + 0.992905i \(0.537940\pi\)
\(3\) 0 0
\(4\) −30.1902 −0.943443
\(5\) 25.0000 0.447214
\(6\) 0 0
\(7\) 48.6530 0.375288 0.187644 0.982237i \(-0.439915\pi\)
0.187644 + 0.982237i \(0.439915\pi\)
\(8\) 83.6645 0.462185
\(9\) 0 0
\(10\) −33.6325 −0.106355
\(11\) −283.440 −0.706284 −0.353142 0.935570i \(-0.614887\pi\)
−0.353142 + 0.935570i \(0.614887\pi\)
\(12\) 0 0
\(13\) 169.000 0.277350
\(14\) −65.4530 −0.0892502
\(15\) 0 0
\(16\) 853.531 0.833527
\(17\) −789.522 −0.662586 −0.331293 0.943528i \(-0.607485\pi\)
−0.331293 + 0.943528i \(0.607485\pi\)
\(18\) 0 0
\(19\) 83.3795 0.0529877 0.0264939 0.999649i \(-0.491566\pi\)
0.0264939 + 0.999649i \(0.491566\pi\)
\(20\) −754.754 −0.421920
\(21\) 0 0
\(22\) 381.312 0.167967
\(23\) 1935.13 0.762767 0.381383 0.924417i \(-0.375448\pi\)
0.381383 + 0.924417i \(0.375448\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) −227.356 −0.0659588
\(27\) 0 0
\(28\) −1468.84 −0.354063
\(29\) −222.752 −0.0491843 −0.0245922 0.999698i \(-0.507829\pi\)
−0.0245922 + 0.999698i \(0.507829\pi\)
\(30\) 0 0
\(31\) −2789.48 −0.521338 −0.260669 0.965428i \(-0.583943\pi\)
−0.260669 + 0.965428i \(0.583943\pi\)
\(32\) −3825.52 −0.660413
\(33\) 0 0
\(34\) 1062.15 0.157575
\(35\) 1216.33 0.167834
\(36\) 0 0
\(37\) 8369.56 1.00507 0.502537 0.864555i \(-0.332400\pi\)
0.502537 + 0.864555i \(0.332400\pi\)
\(38\) −112.170 −0.0126014
\(39\) 0 0
\(40\) 2091.61 0.206696
\(41\) −1218.51 −0.113206 −0.0566029 0.998397i \(-0.518027\pi\)
−0.0566029 + 0.998397i \(0.518027\pi\)
\(42\) 0 0
\(43\) 5638.89 0.465075 0.232537 0.972587i \(-0.425297\pi\)
0.232537 + 0.972587i \(0.425297\pi\)
\(44\) 8557.10 0.666338
\(45\) 0 0
\(46\) −2603.34 −0.181399
\(47\) −17776.2 −1.17380 −0.586902 0.809658i \(-0.699652\pi\)
−0.586902 + 0.809658i \(0.699652\pi\)
\(48\) 0 0
\(49\) −14439.9 −0.859159
\(50\) −840.813 −0.0475636
\(51\) 0 0
\(52\) −5102.14 −0.261664
\(53\) −10834.4 −0.529803 −0.264902 0.964275i \(-0.585339\pi\)
−0.264902 + 0.964275i \(0.585339\pi\)
\(54\) 0 0
\(55\) −7086.00 −0.315860
\(56\) 4070.53 0.173453
\(57\) 0 0
\(58\) 299.668 0.0116969
\(59\) 5363.36 0.200589 0.100295 0.994958i \(-0.468021\pi\)
0.100295 + 0.994958i \(0.468021\pi\)
\(60\) 0 0
\(61\) −18670.7 −0.642445 −0.321222 0.947004i \(-0.604094\pi\)
−0.321222 + 0.947004i \(0.604094\pi\)
\(62\) 3752.69 0.123983
\(63\) 0 0
\(64\) −22166.5 −0.676469
\(65\) 4225.00 0.124035
\(66\) 0 0
\(67\) 13985.1 0.380607 0.190304 0.981725i \(-0.439053\pi\)
0.190304 + 0.981725i \(0.439053\pi\)
\(68\) 23835.8 0.625112
\(69\) 0 0
\(70\) −1636.32 −0.0399139
\(71\) −50969.5 −1.19995 −0.599976 0.800018i \(-0.704823\pi\)
−0.599976 + 0.800018i \(0.704823\pi\)
\(72\) 0 0
\(73\) 42394.9 0.931122 0.465561 0.885016i \(-0.345853\pi\)
0.465561 + 0.885016i \(0.345853\pi\)
\(74\) −11259.6 −0.239025
\(75\) 0 0
\(76\) −2517.24 −0.0499909
\(77\) −13790.2 −0.265060
\(78\) 0 0
\(79\) 106279. 1.91593 0.957964 0.286888i \(-0.0926208\pi\)
0.957964 + 0.286888i \(0.0926208\pi\)
\(80\) 21338.3 0.372765
\(81\) 0 0
\(82\) 1639.26 0.0269224
\(83\) −75513.6 −1.20318 −0.601589 0.798806i \(-0.705465\pi\)
−0.601589 + 0.798806i \(0.705465\pi\)
\(84\) 0 0
\(85\) −19738.1 −0.296317
\(86\) −7586.01 −0.110603
\(87\) 0 0
\(88\) −23713.8 −0.326434
\(89\) −77017.8 −1.03066 −0.515331 0.856991i \(-0.672331\pi\)
−0.515331 + 0.856991i \(0.672331\pi\)
\(90\) 0 0
\(91\) 8222.36 0.104086
\(92\) −58422.0 −0.719627
\(93\) 0 0
\(94\) 23914.4 0.279151
\(95\) 2084.49 0.0236968
\(96\) 0 0
\(97\) 126702. 1.36727 0.683637 0.729822i \(-0.260397\pi\)
0.683637 + 0.729822i \(0.260397\pi\)
\(98\) 19426.0 0.204323
\(99\) 0 0
\(100\) −18868.9 −0.188689
\(101\) 177513. 1.73151 0.865757 0.500464i \(-0.166837\pi\)
0.865757 + 0.500464i \(0.166837\pi\)
\(102\) 0 0
\(103\) 149599. 1.38943 0.694714 0.719286i \(-0.255531\pi\)
0.694714 + 0.719286i \(0.255531\pi\)
\(104\) 14139.3 0.128187
\(105\) 0 0
\(106\) 14575.5 0.125997
\(107\) 111466. 0.941199 0.470600 0.882347i \(-0.344038\pi\)
0.470600 + 0.882347i \(0.344038\pi\)
\(108\) 0 0
\(109\) −85200.4 −0.686872 −0.343436 0.939176i \(-0.611591\pi\)
−0.343436 + 0.939176i \(0.611591\pi\)
\(110\) 9532.80 0.0751171
\(111\) 0 0
\(112\) 41526.9 0.312813
\(113\) 204137. 1.50392 0.751961 0.659208i \(-0.229108\pi\)
0.751961 + 0.659208i \(0.229108\pi\)
\(114\) 0 0
\(115\) 48378.4 0.341120
\(116\) 6724.92 0.0464026
\(117\) 0 0
\(118\) −7215.34 −0.0477037
\(119\) −38412.7 −0.248661
\(120\) 0 0
\(121\) −80712.8 −0.501163
\(122\) 25117.7 0.152785
\(123\) 0 0
\(124\) 84214.9 0.491852
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) 272404. 1.49866 0.749331 0.662196i \(-0.230375\pi\)
0.749331 + 0.662196i \(0.230375\pi\)
\(128\) 152237. 0.821289
\(129\) 0 0
\(130\) −5683.90 −0.0294977
\(131\) −42029.3 −0.213980 −0.106990 0.994260i \(-0.534121\pi\)
−0.106990 + 0.994260i \(0.534121\pi\)
\(132\) 0 0
\(133\) 4056.66 0.0198857
\(134\) −18814.1 −0.0905152
\(135\) 0 0
\(136\) −66055.0 −0.306237
\(137\) 56817.3 0.258630 0.129315 0.991604i \(-0.458722\pi\)
0.129315 + 0.991604i \(0.458722\pi\)
\(138\) 0 0
\(139\) −136297. −0.598342 −0.299171 0.954200i \(-0.596710\pi\)
−0.299171 + 0.954200i \(0.596710\pi\)
\(140\) −36721.1 −0.158342
\(141\) 0 0
\(142\) 68569.3 0.285370
\(143\) −47901.3 −0.195888
\(144\) 0 0
\(145\) −5568.80 −0.0219959
\(146\) −57033.9 −0.221437
\(147\) 0 0
\(148\) −252678. −0.948230
\(149\) 398843. 1.47176 0.735879 0.677113i \(-0.236769\pi\)
0.735879 + 0.677113i \(0.236769\pi\)
\(150\) 0 0
\(151\) −16131.0 −0.0575730 −0.0287865 0.999586i \(-0.509164\pi\)
−0.0287865 + 0.999586i \(0.509164\pi\)
\(152\) 6975.90 0.0244901
\(153\) 0 0
\(154\) 18552.0 0.0630360
\(155\) −69737.0 −0.233149
\(156\) 0 0
\(157\) 9495.80 0.0307456 0.0153728 0.999882i \(-0.495107\pi\)
0.0153728 + 0.999882i \(0.495107\pi\)
\(158\) −142977. −0.455642
\(159\) 0 0
\(160\) −95638.0 −0.295346
\(161\) 94150.2 0.286257
\(162\) 0 0
\(163\) 439257. 1.29494 0.647469 0.762091i \(-0.275827\pi\)
0.647469 + 0.762091i \(0.275827\pi\)
\(164\) 36787.0 0.106803
\(165\) 0 0
\(166\) 101588. 0.286137
\(167\) 233417. 0.647651 0.323825 0.946117i \(-0.395031\pi\)
0.323825 + 0.946117i \(0.395031\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 26553.6 0.0704696
\(171\) 0 0
\(172\) −170239. −0.438771
\(173\) −121696. −0.309144 −0.154572 0.987982i \(-0.549400\pi\)
−0.154572 + 0.987982i \(0.549400\pi\)
\(174\) 0 0
\(175\) 30408.1 0.0750576
\(176\) −241925. −0.588706
\(177\) 0 0
\(178\) 103612. 0.245110
\(179\) 280901. 0.655271 0.327636 0.944804i \(-0.393748\pi\)
0.327636 + 0.944804i \(0.393748\pi\)
\(180\) 0 0
\(181\) 324458. 0.736142 0.368071 0.929798i \(-0.380018\pi\)
0.368071 + 0.929798i \(0.380018\pi\)
\(182\) −11061.6 −0.0247536
\(183\) 0 0
\(184\) 161902. 0.352540
\(185\) 209239. 0.449483
\(186\) 0 0
\(187\) 223782. 0.467974
\(188\) 536668. 1.10742
\(189\) 0 0
\(190\) −2804.26 −0.00563553
\(191\) −803448. −1.59358 −0.796791 0.604256i \(-0.793471\pi\)
−0.796791 + 0.604256i \(0.793471\pi\)
\(192\) 0 0
\(193\) −62706.7 −0.121177 −0.0605886 0.998163i \(-0.519298\pi\)
−0.0605886 + 0.998163i \(0.519298\pi\)
\(194\) −170453. −0.325162
\(195\) 0 0
\(196\) 435942. 0.810567
\(197\) 367605. 0.674864 0.337432 0.941350i \(-0.390442\pi\)
0.337432 + 0.941350i \(0.390442\pi\)
\(198\) 0 0
\(199\) 860523. 1.54039 0.770193 0.637810i \(-0.220160\pi\)
0.770193 + 0.637810i \(0.220160\pi\)
\(200\) 52290.3 0.0924371
\(201\) 0 0
\(202\) −238808. −0.411785
\(203\) −10837.6 −0.0184583
\(204\) 0 0
\(205\) −30462.7 −0.0506272
\(206\) −201256. −0.330431
\(207\) 0 0
\(208\) 144247. 0.231179
\(209\) −23633.1 −0.0374244
\(210\) 0 0
\(211\) −457688. −0.707723 −0.353861 0.935298i \(-0.615132\pi\)
−0.353861 + 0.935298i \(0.615132\pi\)
\(212\) 327092. 0.499839
\(213\) 0 0
\(214\) −149955. −0.223834
\(215\) 140972. 0.207988
\(216\) 0 0
\(217\) −135717. −0.195652
\(218\) 114620. 0.163350
\(219\) 0 0
\(220\) 213927. 0.297996
\(221\) −133429. −0.183768
\(222\) 0 0
\(223\) −925567. −1.24637 −0.623183 0.782076i \(-0.714161\pi\)
−0.623183 + 0.782076i \(0.714161\pi\)
\(224\) −186123. −0.247845
\(225\) 0 0
\(226\) −274625. −0.357659
\(227\) 1.54248e6 1.98681 0.993403 0.114679i \(-0.0365839\pi\)
0.993403 + 0.114679i \(0.0365839\pi\)
\(228\) 0 0
\(229\) 1.09184e6 1.37584 0.687922 0.725784i \(-0.258523\pi\)
0.687922 + 0.725784i \(0.258523\pi\)
\(230\) −65083.5 −0.0811243
\(231\) 0 0
\(232\) −18636.4 −0.0227323
\(233\) −141596. −0.170868 −0.0854341 0.996344i \(-0.527228\pi\)
−0.0854341 + 0.996344i \(0.527228\pi\)
\(234\) 0 0
\(235\) −444406. −0.524941
\(236\) −161921. −0.189244
\(237\) 0 0
\(238\) 51676.6 0.0591359
\(239\) 791678. 0.896507 0.448253 0.893906i \(-0.352046\pi\)
0.448253 + 0.893906i \(0.352046\pi\)
\(240\) 0 0
\(241\) 1.39653e6 1.54884 0.774421 0.632671i \(-0.218041\pi\)
0.774421 + 0.632671i \(0.218041\pi\)
\(242\) 108583. 0.119186
\(243\) 0 0
\(244\) 563671. 0.606110
\(245\) −360997. −0.384228
\(246\) 0 0
\(247\) 14091.1 0.0146961
\(248\) −233380. −0.240955
\(249\) 0 0
\(250\) −21020.3 −0.0212711
\(251\) −927565. −0.929309 −0.464654 0.885492i \(-0.653821\pi\)
−0.464654 + 0.885492i \(0.653821\pi\)
\(252\) 0 0
\(253\) −548494. −0.538730
\(254\) −366465. −0.356408
\(255\) 0 0
\(256\) 504524. 0.481152
\(257\) −1.21697e6 −1.14934 −0.574670 0.818385i \(-0.694870\pi\)
−0.574670 + 0.818385i \(0.694870\pi\)
\(258\) 0 0
\(259\) 407205. 0.377193
\(260\) −127553. −0.117020
\(261\) 0 0
\(262\) 56542.0 0.0508883
\(263\) 188972. 0.168464 0.0842321 0.996446i \(-0.473156\pi\)
0.0842321 + 0.996446i \(0.473156\pi\)
\(264\) 0 0
\(265\) −270860. −0.236935
\(266\) −5457.43 −0.00472916
\(267\) 0 0
\(268\) −422211. −0.359081
\(269\) 1.68629e6 1.42086 0.710432 0.703766i \(-0.248500\pi\)
0.710432 + 0.703766i \(0.248500\pi\)
\(270\) 0 0
\(271\) 1.71354e6 1.41733 0.708664 0.705546i \(-0.249298\pi\)
0.708664 + 0.705546i \(0.249298\pi\)
\(272\) −673882. −0.552283
\(273\) 0 0
\(274\) −76436.4 −0.0615069
\(275\) −177150. −0.141257
\(276\) 0 0
\(277\) 1.51635e6 1.18741 0.593706 0.804682i \(-0.297664\pi\)
0.593706 + 0.804682i \(0.297664\pi\)
\(278\) 183360. 0.142296
\(279\) 0 0
\(280\) 101763. 0.0775704
\(281\) −2.01362e6 −1.52129 −0.760644 0.649169i \(-0.775117\pi\)
−0.760644 + 0.649169i \(0.775117\pi\)
\(282\) 0 0
\(283\) 451062. 0.334788 0.167394 0.985890i \(-0.446465\pi\)
0.167394 + 0.985890i \(0.446465\pi\)
\(284\) 1.53878e6 1.13209
\(285\) 0 0
\(286\) 64441.7 0.0465856
\(287\) −59284.1 −0.0424848
\(288\) 0 0
\(289\) −796511. −0.560980
\(290\) 7491.71 0.00523102
\(291\) 0 0
\(292\) −1.27991e6 −0.878460
\(293\) 1.60140e6 1.08976 0.544879 0.838514i \(-0.316575\pi\)
0.544879 + 0.838514i \(0.316575\pi\)
\(294\) 0 0
\(295\) 134084. 0.0897062
\(296\) 700235. 0.464531
\(297\) 0 0
\(298\) −536564. −0.350010
\(299\) 327038. 0.211553
\(300\) 0 0
\(301\) 274349. 0.174537
\(302\) 21701.0 0.0136919
\(303\) 0 0
\(304\) 71167.0 0.0441667
\(305\) −466767. −0.287310
\(306\) 0 0
\(307\) 3.03553e6 1.83818 0.919091 0.394046i \(-0.128925\pi\)
0.919091 + 0.394046i \(0.128925\pi\)
\(308\) 416329. 0.250069
\(309\) 0 0
\(310\) 93817.2 0.0554470
\(311\) −1.48427e6 −0.870184 −0.435092 0.900386i \(-0.643284\pi\)
−0.435092 + 0.900386i \(0.643284\pi\)
\(312\) 0 0
\(313\) 1.57466e6 0.908504 0.454252 0.890873i \(-0.349906\pi\)
0.454252 + 0.890873i \(0.349906\pi\)
\(314\) −12774.7 −0.00731184
\(315\) 0 0
\(316\) −3.20858e6 −1.80757
\(317\) −2.88960e6 −1.61507 −0.807533 0.589822i \(-0.799198\pi\)
−0.807533 + 0.589822i \(0.799198\pi\)
\(318\) 0 0
\(319\) 63136.8 0.0347381
\(320\) −554163. −0.302526
\(321\) 0 0
\(322\) −126660. −0.0680771
\(323\) −65830.0 −0.0351089
\(324\) 0 0
\(325\) 105625. 0.0554700
\(326\) −590932. −0.307960
\(327\) 0 0
\(328\) −101946. −0.0523221
\(329\) −864868. −0.440514
\(330\) 0 0
\(331\) 2.93760e6 1.47374 0.736872 0.676032i \(-0.236302\pi\)
0.736872 + 0.676032i \(0.236302\pi\)
\(332\) 2.27977e6 1.13513
\(333\) 0 0
\(334\) −314016. −0.154023
\(335\) 349626. 0.170213
\(336\) 0 0
\(337\) −842611. −0.404159 −0.202079 0.979369i \(-0.564770\pi\)
−0.202079 + 0.979369i \(0.564770\pi\)
\(338\) −38423.1 −0.0182937
\(339\) 0 0
\(340\) 595895. 0.279558
\(341\) 790650. 0.368212
\(342\) 0 0
\(343\) −1.52026e6 −0.697720
\(344\) 471775. 0.214951
\(345\) 0 0
\(346\) 163718. 0.0735200
\(347\) 719797. 0.320912 0.160456 0.987043i \(-0.448703\pi\)
0.160456 + 0.987043i \(0.448703\pi\)
\(348\) 0 0
\(349\) −2.28139e6 −1.00262 −0.501309 0.865269i \(-0.667148\pi\)
−0.501309 + 0.865269i \(0.667148\pi\)
\(350\) −40908.1 −0.0178500
\(351\) 0 0
\(352\) 1.08430e6 0.466439
\(353\) −7769.01 −0.00331840 −0.00165920 0.999999i \(-0.500528\pi\)
−0.00165920 + 0.999999i \(0.500528\pi\)
\(354\) 0 0
\(355\) −1.27424e6 −0.536635
\(356\) 2.32518e6 0.972371
\(357\) 0 0
\(358\) −377897. −0.155835
\(359\) −309145. −0.126598 −0.0632989 0.997995i \(-0.520162\pi\)
−0.0632989 + 0.997995i \(0.520162\pi\)
\(360\) 0 0
\(361\) −2.46915e6 −0.997192
\(362\) −436493. −0.175068
\(363\) 0 0
\(364\) −248234. −0.0981994
\(365\) 1.05987e6 0.416410
\(366\) 0 0
\(367\) −2.32781e6 −0.902156 −0.451078 0.892484i \(-0.648960\pi\)
−0.451078 + 0.892484i \(0.648960\pi\)
\(368\) 1.65170e6 0.635786
\(369\) 0 0
\(370\) −281489. −0.106895
\(371\) −527126. −0.198829
\(372\) 0 0
\(373\) −1.60840e6 −0.598579 −0.299289 0.954162i \(-0.596750\pi\)
−0.299289 + 0.954162i \(0.596750\pi\)
\(374\) −301054. −0.111292
\(375\) 0 0
\(376\) −1.48724e6 −0.542515
\(377\) −37645.1 −0.0136413
\(378\) 0 0
\(379\) −473484. −0.169320 −0.0846599 0.996410i \(-0.526980\pi\)
−0.0846599 + 0.996410i \(0.526980\pi\)
\(380\) −62931.0 −0.0223566
\(381\) 0 0
\(382\) 1.08088e6 0.378982
\(383\) −363362. −0.126574 −0.0632868 0.997995i \(-0.520158\pi\)
−0.0632868 + 0.997995i \(0.520158\pi\)
\(384\) 0 0
\(385\) −344755. −0.118538
\(386\) 84359.4 0.0288181
\(387\) 0 0
\(388\) −3.82517e6 −1.28994
\(389\) 901091. 0.301922 0.150961 0.988540i \(-0.451763\pi\)
0.150961 + 0.988540i \(0.451763\pi\)
\(390\) 0 0
\(391\) −1.52783e6 −0.505398
\(392\) −1.20811e6 −0.397091
\(393\) 0 0
\(394\) −494539. −0.160495
\(395\) 2.65697e6 0.856829
\(396\) 0 0
\(397\) −3.36685e6 −1.07213 −0.536064 0.844177i \(-0.680090\pi\)
−0.536064 + 0.844177i \(0.680090\pi\)
\(398\) −1.15766e6 −0.366331
\(399\) 0 0
\(400\) 533457. 0.166705
\(401\) −1.49612e6 −0.464629 −0.232315 0.972641i \(-0.574630\pi\)
−0.232315 + 0.972641i \(0.574630\pi\)
\(402\) 0 0
\(403\) −471422. −0.144593
\(404\) −5.35914e6 −1.63358
\(405\) 0 0
\(406\) 14579.8 0.00438971
\(407\) −2.37227e6 −0.709868
\(408\) 0 0
\(409\) 1.78884e6 0.528765 0.264382 0.964418i \(-0.414832\pi\)
0.264382 + 0.964418i \(0.414832\pi\)
\(410\) 40981.5 0.0120401
\(411\) 0 0
\(412\) −4.51642e6 −1.31085
\(413\) 260944. 0.0752787
\(414\) 0 0
\(415\) −1.88784e6 −0.538077
\(416\) −646513. −0.183166
\(417\) 0 0
\(418\) 31793.6 0.00890018
\(419\) −3.06163e6 −0.851956 −0.425978 0.904733i \(-0.640070\pi\)
−0.425978 + 0.904733i \(0.640070\pi\)
\(420\) 0 0
\(421\) −6.32711e6 −1.73980 −0.869901 0.493226i \(-0.835817\pi\)
−0.869901 + 0.493226i \(0.835817\pi\)
\(422\) 615728. 0.168309
\(423\) 0 0
\(424\) −906453. −0.244867
\(425\) −493452. −0.132517
\(426\) 0 0
\(427\) −908386. −0.241102
\(428\) −3.36517e6 −0.887967
\(429\) 0 0
\(430\) −189650. −0.0494632
\(431\) 2.68796e6 0.696995 0.348498 0.937310i \(-0.386692\pi\)
0.348498 + 0.937310i \(0.386692\pi\)
\(432\) 0 0
\(433\) 1.62239e6 0.415850 0.207925 0.978145i \(-0.433329\pi\)
0.207925 + 0.978145i \(0.433329\pi\)
\(434\) 182580. 0.0465295
\(435\) 0 0
\(436\) 2.57222e6 0.648024
\(437\) 161351. 0.0404172
\(438\) 0 0
\(439\) 6.21478e6 1.53909 0.769546 0.638592i \(-0.220483\pi\)
0.769546 + 0.638592i \(0.220483\pi\)
\(440\) −592846. −0.145986
\(441\) 0 0
\(442\) 179503. 0.0437034
\(443\) 517107. 0.125191 0.0625953 0.998039i \(-0.480062\pi\)
0.0625953 + 0.998039i \(0.480062\pi\)
\(444\) 0 0
\(445\) −1.92545e6 −0.460926
\(446\) 1.24517e6 0.296408
\(447\) 0 0
\(448\) −1.07847e6 −0.253871
\(449\) 7.08559e6 1.65867 0.829336 0.558750i \(-0.188719\pi\)
0.829336 + 0.558750i \(0.188719\pi\)
\(450\) 0 0
\(451\) 345374. 0.0799555
\(452\) −6.16292e6 −1.41886
\(453\) 0 0
\(454\) −2.07510e6 −0.472498
\(455\) 205559. 0.0465488
\(456\) 0 0
\(457\) −929335. −0.208153 −0.104076 0.994569i \(-0.533189\pi\)
−0.104076 + 0.994569i \(0.533189\pi\)
\(458\) −1.46885e6 −0.327200
\(459\) 0 0
\(460\) −1.46055e6 −0.321827
\(461\) −7.91310e6 −1.73418 −0.867091 0.498150i \(-0.834013\pi\)
−0.867091 + 0.498150i \(0.834013\pi\)
\(462\) 0 0
\(463\) −1.60654e6 −0.348289 −0.174144 0.984720i \(-0.555716\pi\)
−0.174144 + 0.984720i \(0.555716\pi\)
\(464\) −190126. −0.0409964
\(465\) 0 0
\(466\) 190489. 0.0406355
\(467\) −2.57909e6 −0.547236 −0.273618 0.961838i \(-0.588220\pi\)
−0.273618 + 0.961838i \(0.588220\pi\)
\(468\) 0 0
\(469\) 680415. 0.142837
\(470\) 597860. 0.124840
\(471\) 0 0
\(472\) 448723. 0.0927093
\(473\) −1.59829e6 −0.328475
\(474\) 0 0
\(475\) 52112.2 0.0105975
\(476\) 1.15968e6 0.234597
\(477\) 0 0
\(478\) −1.06504e6 −0.213205
\(479\) −1.57546e6 −0.313739 −0.156869 0.987619i \(-0.550140\pi\)
−0.156869 + 0.987619i \(0.550140\pi\)
\(480\) 0 0
\(481\) 1.41446e6 0.278758
\(482\) −1.87875e6 −0.368342
\(483\) 0 0
\(484\) 2.43673e6 0.472819
\(485\) 3.16756e6 0.611464
\(486\) 0 0
\(487\) −3.52518e6 −0.673534 −0.336767 0.941588i \(-0.609333\pi\)
−0.336767 + 0.941588i \(0.609333\pi\)
\(488\) −1.56207e6 −0.296929
\(489\) 0 0
\(490\) 485650. 0.0913761
\(491\) 3.53510e6 0.661756 0.330878 0.943674i \(-0.392655\pi\)
0.330878 + 0.943674i \(0.392655\pi\)
\(492\) 0 0
\(493\) 175868. 0.0325888
\(494\) −18956.8 −0.00349501
\(495\) 0 0
\(496\) −2.38091e6 −0.434549
\(497\) −2.47982e6 −0.450328
\(498\) 0 0
\(499\) 311968. 0.0560866 0.0280433 0.999607i \(-0.491072\pi\)
0.0280433 + 0.999607i \(0.491072\pi\)
\(500\) −471721. −0.0843841
\(501\) 0 0
\(502\) 1.24785e6 0.221006
\(503\) −6.52751e6 −1.15034 −0.575172 0.818032i \(-0.695065\pi\)
−0.575172 + 0.818032i \(0.695065\pi\)
\(504\) 0 0
\(505\) 4.43782e6 0.774357
\(506\) 737890. 0.128120
\(507\) 0 0
\(508\) −8.22391e6 −1.41390
\(509\) 6.28149e6 1.07465 0.537327 0.843374i \(-0.319434\pi\)
0.537327 + 0.843374i \(0.319434\pi\)
\(510\) 0 0
\(511\) 2.06264e6 0.349439
\(512\) −5.55033e6 −0.935716
\(513\) 0 0
\(514\) 1.63720e6 0.273334
\(515\) 3.73998e6 0.621371
\(516\) 0 0
\(517\) 5.03850e6 0.829038
\(518\) −547813. −0.0897031
\(519\) 0 0
\(520\) 353482. 0.0573270
\(521\) 7.39635e6 1.19378 0.596888 0.802324i \(-0.296404\pi\)
0.596888 + 0.802324i \(0.296404\pi\)
\(522\) 0 0
\(523\) 6.26869e6 1.00213 0.501063 0.865411i \(-0.332943\pi\)
0.501063 + 0.865411i \(0.332943\pi\)
\(524\) 1.26887e6 0.201878
\(525\) 0 0
\(526\) −254224. −0.0400638
\(527\) 2.20236e6 0.345431
\(528\) 0 0
\(529\) −2.69160e6 −0.418187
\(530\) 364388. 0.0563474
\(531\) 0 0
\(532\) −122471. −0.0187610
\(533\) −205928. −0.0313977
\(534\) 0 0
\(535\) 2.78664e6 0.420917
\(536\) 1.17005e6 0.175911
\(537\) 0 0
\(538\) −2.26857e6 −0.337907
\(539\) 4.09284e6 0.606810
\(540\) 0 0
\(541\) −2.81963e6 −0.414189 −0.207095 0.978321i \(-0.566401\pi\)
−0.207095 + 0.978321i \(0.566401\pi\)
\(542\) −2.30522e6 −0.337066
\(543\) 0 0
\(544\) 3.02033e6 0.437580
\(545\) −2.13001e6 −0.307178
\(546\) 0 0
\(547\) −9.17262e6 −1.31077 −0.655383 0.755297i \(-0.727493\pi\)
−0.655383 + 0.755297i \(0.727493\pi\)
\(548\) −1.71532e6 −0.244003
\(549\) 0 0
\(550\) 238320. 0.0335934
\(551\) −18572.9 −0.00260616
\(552\) 0 0
\(553\) 5.17079e6 0.719025
\(554\) −2.03995e6 −0.282388
\(555\) 0 0
\(556\) 4.11483e6 0.564501
\(557\) 4.27403e6 0.583713 0.291856 0.956462i \(-0.405727\pi\)
0.291856 + 0.956462i \(0.405727\pi\)
\(558\) 0 0
\(559\) 952973. 0.128989
\(560\) 1.03817e6 0.139894
\(561\) 0 0
\(562\) 2.70892e6 0.361789
\(563\) −9.29935e6 −1.23646 −0.618232 0.785995i \(-0.712151\pi\)
−0.618232 + 0.785995i \(0.712151\pi\)
\(564\) 0 0
\(565\) 5.10342e6 0.672574
\(566\) −606813. −0.0796185
\(567\) 0 0
\(568\) −4.26433e6 −0.554601
\(569\) 4.10069e6 0.530977 0.265489 0.964114i \(-0.414467\pi\)
0.265489 + 0.964114i \(0.414467\pi\)
\(570\) 0 0
\(571\) −1.03048e7 −1.32267 −0.661334 0.750092i \(-0.730009\pi\)
−0.661334 + 0.750092i \(0.730009\pi\)
\(572\) 1.44615e6 0.184809
\(573\) 0 0
\(574\) 79755.0 0.0101036
\(575\) 1.20946e6 0.152553
\(576\) 0 0
\(577\) 2.17391e6 0.271833 0.135916 0.990720i \(-0.456602\pi\)
0.135916 + 0.990720i \(0.456602\pi\)
\(578\) 1.07155e6 0.133411
\(579\) 0 0
\(580\) 168123. 0.0207519
\(581\) −3.67396e6 −0.451538
\(582\) 0 0
\(583\) 3.07090e6 0.374191
\(584\) 3.54695e6 0.430351
\(585\) 0 0
\(586\) −2.15436e6 −0.259164
\(587\) 1.56597e7 1.87581 0.937905 0.346892i \(-0.112763\pi\)
0.937905 + 0.346892i \(0.112763\pi\)
\(588\) 0 0
\(589\) −232585. −0.0276245
\(590\) −180383. −0.0213337
\(591\) 0 0
\(592\) 7.14368e6 0.837757
\(593\) 5.51737e6 0.644310 0.322155 0.946687i \(-0.395593\pi\)
0.322155 + 0.946687i \(0.395593\pi\)
\(594\) 0 0
\(595\) −960317. −0.111204
\(596\) −1.20411e7 −1.38852
\(597\) 0 0
\(598\) −439964. −0.0503112
\(599\) 8.76025e6 0.997584 0.498792 0.866722i \(-0.333777\pi\)
0.498792 + 0.866722i \(0.333777\pi\)
\(600\) 0 0
\(601\) 1.21014e7 1.36662 0.683310 0.730128i \(-0.260540\pi\)
0.683310 + 0.730128i \(0.260540\pi\)
\(602\) −369082. −0.0415080
\(603\) 0 0
\(604\) 486997. 0.0543168
\(605\) −2.01782e6 −0.224127
\(606\) 0 0
\(607\) −1.29407e7 −1.42556 −0.712779 0.701388i \(-0.752564\pi\)
−0.712779 + 0.701388i \(0.752564\pi\)
\(608\) −318970. −0.0349938
\(609\) 0 0
\(610\) 627942. 0.0683274
\(611\) −3.00418e6 −0.325554
\(612\) 0 0
\(613\) 2.31350e6 0.248667 0.124333 0.992240i \(-0.460321\pi\)
0.124333 + 0.992240i \(0.460321\pi\)
\(614\) −4.08370e6 −0.437152
\(615\) 0 0
\(616\) −1.15375e6 −0.122507
\(617\) −8.53024e6 −0.902086 −0.451043 0.892502i \(-0.648948\pi\)
−0.451043 + 0.892502i \(0.648948\pi\)
\(618\) 0 0
\(619\) 8.89321e6 0.932893 0.466447 0.884549i \(-0.345534\pi\)
0.466447 + 0.884549i \(0.345534\pi\)
\(620\) 2.10537e6 0.219963
\(621\) 0 0
\(622\) 1.99679e6 0.206945
\(623\) −3.74715e6 −0.386795
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) −2.11840e6 −0.216059
\(627\) 0 0
\(628\) −286680. −0.0290067
\(629\) −6.60796e6 −0.665948
\(630\) 0 0
\(631\) 1.01842e7 1.01824 0.509122 0.860695i \(-0.329970\pi\)
0.509122 + 0.860695i \(0.329970\pi\)
\(632\) 8.89177e6 0.885514
\(633\) 0 0
\(634\) 3.88739e6 0.384091
\(635\) 6.81009e6 0.670222
\(636\) 0 0
\(637\) −2.44034e6 −0.238288
\(638\) −84938.0 −0.00826133
\(639\) 0 0
\(640\) 3.80593e6 0.367292
\(641\) 1.30240e7 1.25198 0.625991 0.779830i \(-0.284694\pi\)
0.625991 + 0.779830i \(0.284694\pi\)
\(642\) 0 0
\(643\) −4.52103e6 −0.431231 −0.215616 0.976478i \(-0.569176\pi\)
−0.215616 + 0.976478i \(0.569176\pi\)
\(644\) −2.84241e6 −0.270067
\(645\) 0 0
\(646\) 88561.1 0.00834952
\(647\) −2.72009e6 −0.255459 −0.127730 0.991809i \(-0.540769\pi\)
−0.127730 + 0.991809i \(0.540769\pi\)
\(648\) 0 0
\(649\) −1.52019e6 −0.141673
\(650\) −142097. −0.0131918
\(651\) 0 0
\(652\) −1.32612e7 −1.22170
\(653\) −1.83786e7 −1.68667 −0.843334 0.537389i \(-0.819411\pi\)
−0.843334 + 0.537389i \(0.819411\pi\)
\(654\) 0 0
\(655\) −1.05073e6 −0.0956949
\(656\) −1.04004e6 −0.0943601
\(657\) 0 0
\(658\) 1.16351e6 0.104762
\(659\) 1.39753e7 1.25357 0.626786 0.779192i \(-0.284370\pi\)
0.626786 + 0.779192i \(0.284370\pi\)
\(660\) 0 0
\(661\) 9.05787e6 0.806348 0.403174 0.915123i \(-0.367907\pi\)
0.403174 + 0.915123i \(0.367907\pi\)
\(662\) −3.95195e6 −0.350483
\(663\) 0 0
\(664\) −6.31780e6 −0.556091
\(665\) 101417. 0.00889314
\(666\) 0 0
\(667\) −431055. −0.0375161
\(668\) −7.04689e6 −0.611021
\(669\) 0 0
\(670\) −470353. −0.0404796
\(671\) 5.29202e6 0.453748
\(672\) 0 0
\(673\) 1.68758e7 1.43624 0.718121 0.695919i \(-0.245003\pi\)
0.718121 + 0.695919i \(0.245003\pi\)
\(674\) 1.13356e6 0.0961162
\(675\) 0 0
\(676\) −862261. −0.0725725
\(677\) −7.96769e6 −0.668129 −0.334065 0.942550i \(-0.608420\pi\)
−0.334065 + 0.942550i \(0.608420\pi\)
\(678\) 0 0
\(679\) 6.16446e6 0.513122
\(680\) −1.65137e6 −0.136954
\(681\) 0 0
\(682\) −1.06366e6 −0.0875674
\(683\) 1.29108e7 1.05901 0.529507 0.848306i \(-0.322377\pi\)
0.529507 + 0.848306i \(0.322377\pi\)
\(684\) 0 0
\(685\) 1.42043e6 0.115663
\(686\) 2.04520e6 0.165930
\(687\) 0 0
\(688\) 4.81297e6 0.387652
\(689\) −1.83101e6 −0.146941
\(690\) 0 0
\(691\) −1.37987e7 −1.09936 −0.549682 0.835374i \(-0.685251\pi\)
−0.549682 + 0.835374i \(0.685251\pi\)
\(692\) 3.67402e6 0.291660
\(693\) 0 0
\(694\) −968344. −0.0763187
\(695\) −3.40743e6 −0.267587
\(696\) 0 0
\(697\) 962040. 0.0750086
\(698\) 3.06915e6 0.238440
\(699\) 0 0
\(700\) −918027. −0.0708126
\(701\) 1.54955e6 0.119099 0.0595497 0.998225i \(-0.481034\pi\)
0.0595497 + 0.998225i \(0.481034\pi\)
\(702\) 0 0
\(703\) 697849. 0.0532566
\(704\) 6.28288e6 0.477779
\(705\) 0 0
\(706\) 10451.7 0.000789175 0
\(707\) 8.63653e6 0.649817
\(708\) 0 0
\(709\) −1.43383e7 −1.07123 −0.535614 0.844463i \(-0.679920\pi\)
−0.535614 + 0.844463i \(0.679920\pi\)
\(710\) 1.71423e6 0.127621
\(711\) 0 0
\(712\) −6.44366e6 −0.476357
\(713\) −5.39802e6 −0.397659
\(714\) 0 0
\(715\) −1.19753e6 −0.0876037
\(716\) −8.48046e6 −0.618211
\(717\) 0 0
\(718\) 415893. 0.0301072
\(719\) 1.37368e7 0.990980 0.495490 0.868614i \(-0.334989\pi\)
0.495490 + 0.868614i \(0.334989\pi\)
\(720\) 0 0
\(721\) 7.27845e6 0.521436
\(722\) 3.32175e6 0.237150
\(723\) 0 0
\(724\) −9.79543e6 −0.694508
\(725\) −139220. −0.00983686
\(726\) 0 0
\(727\) −1.61824e6 −0.113555 −0.0567776 0.998387i \(-0.518083\pi\)
−0.0567776 + 0.998387i \(0.518083\pi\)
\(728\) 687920. 0.0481071
\(729\) 0 0
\(730\) −1.42585e6 −0.0990298
\(731\) −4.45203e6 −0.308152
\(732\) 0 0
\(733\) −1.57329e7 −1.08156 −0.540779 0.841165i \(-0.681870\pi\)
−0.540779 + 0.841165i \(0.681870\pi\)
\(734\) 3.13160e6 0.214549
\(735\) 0 0
\(736\) −7.40290e6 −0.503741
\(737\) −3.96392e6 −0.268817
\(738\) 0 0
\(739\) −1.62586e6 −0.109515 −0.0547574 0.998500i \(-0.517439\pi\)
−0.0547574 + 0.998500i \(0.517439\pi\)
\(740\) −6.31696e6 −0.424062
\(741\) 0 0
\(742\) 709142. 0.0472850
\(743\) −1.87162e7 −1.24379 −0.621894 0.783101i \(-0.713637\pi\)
−0.621894 + 0.783101i \(0.713637\pi\)
\(744\) 0 0
\(745\) 9.97108e6 0.658190
\(746\) 2.16378e6 0.142353
\(747\) 0 0
\(748\) −6.75602e6 −0.441506
\(749\) 5.42314e6 0.353221
\(750\) 0 0
\(751\) 7.16867e6 0.463809 0.231904 0.972739i \(-0.425504\pi\)
0.231904 + 0.972739i \(0.425504\pi\)
\(752\) −1.51726e7 −0.978396
\(753\) 0 0
\(754\) 50644.0 0.00324414
\(755\) −403275. −0.0257474
\(756\) 0 0
\(757\) 2.67712e7 1.69796 0.848982 0.528422i \(-0.177216\pi\)
0.848982 + 0.528422i \(0.177216\pi\)
\(758\) 636979. 0.0402673
\(759\) 0 0
\(760\) 174397. 0.0109523
\(761\) 708017. 0.0443182 0.0221591 0.999754i \(-0.492946\pi\)
0.0221591 + 0.999754i \(0.492946\pi\)
\(762\) 0 0
\(763\) −4.14526e6 −0.257775
\(764\) 2.42562e7 1.50345
\(765\) 0 0
\(766\) 488832. 0.0301014
\(767\) 906409. 0.0556334
\(768\) 0 0
\(769\) 1.72011e7 1.04891 0.524456 0.851437i \(-0.324269\pi\)
0.524456 + 0.851437i \(0.324269\pi\)
\(770\) 463799. 0.0281905
\(771\) 0 0
\(772\) 1.89313e6 0.114324
\(773\) −7.85325e6 −0.472716 −0.236358 0.971666i \(-0.575954\pi\)
−0.236358 + 0.971666i \(0.575954\pi\)
\(774\) 0 0
\(775\) −1.74343e6 −0.104268
\(776\) 1.06005e7 0.631934
\(777\) 0 0
\(778\) −1.21224e6 −0.0718024
\(779\) −101599. −0.00599852
\(780\) 0 0
\(781\) 1.44468e7 0.847507
\(782\) 2.05539e6 0.120193
\(783\) 0 0
\(784\) −1.23249e7 −0.716132
\(785\) 237395. 0.0137498
\(786\) 0 0
\(787\) 2.05200e7 1.18097 0.590487 0.807047i \(-0.298936\pi\)
0.590487 + 0.807047i \(0.298936\pi\)
\(788\) −1.10981e7 −0.636695
\(789\) 0 0
\(790\) −3.57443e6 −0.203769
\(791\) 9.93187e6 0.564404
\(792\) 0 0
\(793\) −3.15535e6 −0.178182
\(794\) 4.52942e6 0.254971
\(795\) 0 0
\(796\) −2.59793e7 −1.45327
\(797\) 2.57349e7 1.43508 0.717540 0.696517i \(-0.245268\pi\)
0.717540 + 0.696517i \(0.245268\pi\)
\(798\) 0 0
\(799\) 1.40347e7 0.777745
\(800\) −2.39095e6 −0.132083
\(801\) 0 0
\(802\) 2.01274e6 0.110497
\(803\) −1.20164e7 −0.657636
\(804\) 0 0
\(805\) 2.35375e6 0.128018
\(806\) 634205. 0.0343868
\(807\) 0 0
\(808\) 1.48515e7 0.800280
\(809\) 1.45330e7 0.780699 0.390350 0.920667i \(-0.372354\pi\)
0.390350 + 0.920667i \(0.372354\pi\)
\(810\) 0 0
\(811\) 1.60281e6 0.0855717 0.0427858 0.999084i \(-0.486377\pi\)
0.0427858 + 0.999084i \(0.486377\pi\)
\(812\) 327188. 0.0174143
\(813\) 0 0
\(814\) 3.19141e6 0.168819
\(815\) 1.09814e7 0.579114
\(816\) 0 0
\(817\) 470168. 0.0246432
\(818\) −2.40652e6 −0.125750
\(819\) 0 0
\(820\) 919674. 0.0477639
\(821\) −1.22945e6 −0.0636579 −0.0318289 0.999493i \(-0.510133\pi\)
−0.0318289 + 0.999493i \(0.510133\pi\)
\(822\) 0 0
\(823\) −260323. −0.0133972 −0.00669859 0.999978i \(-0.502132\pi\)
−0.00669859 + 0.999978i \(0.502132\pi\)
\(824\) 1.25161e7 0.642173
\(825\) 0 0
\(826\) −351048. −0.0179026
\(827\) −1.33246e7 −0.677471 −0.338736 0.940882i \(-0.609999\pi\)
−0.338736 + 0.940882i \(0.609999\pi\)
\(828\) 0 0
\(829\) 3.52026e7 1.77905 0.889526 0.456885i \(-0.151035\pi\)
0.889526 + 0.456885i \(0.151035\pi\)
\(830\) 2.53971e6 0.127964
\(831\) 0 0
\(832\) −3.74614e6 −0.187619
\(833\) 1.14006e7 0.569267
\(834\) 0 0
\(835\) 5.83542e6 0.289638
\(836\) 713486. 0.0353077
\(837\) 0 0
\(838\) 4.11881e6 0.202610
\(839\) 3.45100e7 1.69255 0.846273 0.532750i \(-0.178841\pi\)
0.846273 + 0.532750i \(0.178841\pi\)
\(840\) 0 0
\(841\) −2.04615e7 −0.997581
\(842\) 8.51186e6 0.413756
\(843\) 0 0
\(844\) 1.38177e7 0.667696
\(845\) 714025. 0.0344010
\(846\) 0 0
\(847\) −3.92692e6 −0.188081
\(848\) −9.24749e6 −0.441605
\(849\) 0 0
\(850\) 663841. 0.0315149
\(851\) 1.61962e7 0.766637
\(852\) 0 0
\(853\) −1.67507e7 −0.788245 −0.394122 0.919058i \(-0.628951\pi\)
−0.394122 + 0.919058i \(0.628951\pi\)
\(854\) 1.22205e6 0.0573383
\(855\) 0 0
\(856\) 9.32571e6 0.435008
\(857\) 2.15120e6 0.100053 0.0500264 0.998748i \(-0.484069\pi\)
0.0500264 + 0.998748i \(0.484069\pi\)
\(858\) 0 0
\(859\) 1.66088e7 0.767991 0.383996 0.923335i \(-0.374548\pi\)
0.383996 + 0.923335i \(0.374548\pi\)
\(860\) −4.25598e6 −0.196225
\(861\) 0 0
\(862\) −3.61612e6 −0.165758
\(863\) 2.71816e7 1.24236 0.621181 0.783667i \(-0.286653\pi\)
0.621181 + 0.783667i \(0.286653\pi\)
\(864\) 0 0
\(865\) −3.04240e6 −0.138253
\(866\) −2.18261e6 −0.0988965
\(867\) 0 0
\(868\) 4.09731e6 0.184586
\(869\) −3.01237e7 −1.35319
\(870\) 0 0
\(871\) 2.36347e6 0.105562
\(872\) −7.12825e6 −0.317462
\(873\) 0 0
\(874\) −217065. −0.00961194
\(875\) 760204. 0.0335668
\(876\) 0 0
\(877\) 1.52455e6 0.0669333 0.0334667 0.999440i \(-0.489345\pi\)
0.0334667 + 0.999440i \(0.489345\pi\)
\(878\) −8.36075e6 −0.366023
\(879\) 0 0
\(880\) −6.04812e6 −0.263278
\(881\) −2.77728e7 −1.20554 −0.602769 0.797916i \(-0.705936\pi\)
−0.602769 + 0.797916i \(0.705936\pi\)
\(882\) 0 0
\(883\) 3.15964e7 1.36376 0.681878 0.731466i \(-0.261164\pi\)
0.681878 + 0.731466i \(0.261164\pi\)
\(884\) 4.02825e6 0.173375
\(885\) 0 0
\(886\) −695665. −0.0297725
\(887\) −9.17500e6 −0.391559 −0.195780 0.980648i \(-0.562724\pi\)
−0.195780 + 0.980648i \(0.562724\pi\)
\(888\) 0 0
\(889\) 1.32533e7 0.562430
\(890\) 2.59030e6 0.109616
\(891\) 0 0
\(892\) 2.79430e7 1.17588
\(893\) −1.48217e6 −0.0621971
\(894\) 0 0
\(895\) 7.02253e6 0.293046
\(896\) 7.40681e6 0.308220
\(897\) 0 0
\(898\) −9.53226e6 −0.394462
\(899\) 621362. 0.0256416
\(900\) 0 0
\(901\) 8.55399e6 0.351040
\(902\) −464632. −0.0190148
\(903\) 0 0
\(904\) 1.70790e7 0.695090
\(905\) 8.11144e6 0.329213
\(906\) 0 0
\(907\) −1.42674e7 −0.575874 −0.287937 0.957649i \(-0.592969\pi\)
−0.287937 + 0.957649i \(0.592969\pi\)
\(908\) −4.65678e7 −1.87444
\(909\) 0 0
\(910\) −276539. −0.0110701
\(911\) −3.34037e7 −1.33352 −0.666759 0.745273i \(-0.732319\pi\)
−0.666759 + 0.745273i \(0.732319\pi\)
\(912\) 0 0
\(913\) 2.14036e7 0.849785
\(914\) 1.25024e6 0.0495024
\(915\) 0 0
\(916\) −3.29628e7 −1.29803
\(917\) −2.04485e6 −0.0803042
\(918\) 0 0
\(919\) 4.52117e7 1.76588 0.882942 0.469482i \(-0.155559\pi\)
0.882942 + 0.469482i \(0.155559\pi\)
\(920\) 4.04755e6 0.157660
\(921\) 0 0
\(922\) 1.06455e7 0.412419
\(923\) −8.61384e6 −0.332807
\(924\) 0 0
\(925\) 5.23098e6 0.201015
\(926\) 2.16128e6 0.0828292
\(927\) 0 0
\(928\) 852142. 0.0324819
\(929\) 517735. 0.0196820 0.00984098 0.999952i \(-0.496867\pi\)
0.00984098 + 0.999952i \(0.496867\pi\)
\(930\) 0 0
\(931\) −1.20399e6 −0.0455249
\(932\) 4.27481e6 0.161204
\(933\) 0 0
\(934\) 3.46965e6 0.130142
\(935\) 5.59455e6 0.209284
\(936\) 0 0
\(937\) −2.58406e7 −0.961508 −0.480754 0.876856i \(-0.659637\pi\)
−0.480754 + 0.876856i \(0.659637\pi\)
\(938\) −915363. −0.0339693
\(939\) 0 0
\(940\) 1.34167e7 0.495251
\(941\) −4.58537e7 −1.68811 −0.844053 0.536259i \(-0.819837\pi\)
−0.844053 + 0.536259i \(0.819837\pi\)
\(942\) 0 0
\(943\) −2.35798e6 −0.0863496
\(944\) 4.57780e6 0.167196
\(945\) 0 0
\(946\) 2.15018e6 0.0781172
\(947\) −604846. −0.0219164 −0.0109582 0.999940i \(-0.503488\pi\)
−0.0109582 + 0.999940i \(0.503488\pi\)
\(948\) 0 0
\(949\) 7.16474e6 0.258247
\(950\) −70106.5 −0.00252028
\(951\) 0 0
\(952\) −3.21378e6 −0.114927
\(953\) −3.20607e7 −1.14351 −0.571755 0.820424i \(-0.693737\pi\)
−0.571755 + 0.820424i \(0.693737\pi\)
\(954\) 0 0
\(955\) −2.00862e7 −0.712671
\(956\) −2.39009e7 −0.845803
\(957\) 0 0
\(958\) 2.11947e6 0.0746127
\(959\) 2.76434e6 0.0970609
\(960\) 0 0
\(961\) −2.08480e7 −0.728207
\(962\) −1.90287e6 −0.0662935
\(963\) 0 0
\(964\) −4.21614e7 −1.46124
\(965\) −1.56767e6 −0.0541920
\(966\) 0 0
\(967\) −3.19660e7 −1.09931 −0.549657 0.835391i \(-0.685242\pi\)
−0.549657 + 0.835391i \(0.685242\pi\)
\(968\) −6.75280e6 −0.231630
\(969\) 0 0
\(970\) −4.26132e6 −0.145417
\(971\) 5.47040e7 1.86196 0.930982 0.365066i \(-0.118954\pi\)
0.930982 + 0.365066i \(0.118954\pi\)
\(972\) 0 0
\(973\) −6.63126e6 −0.224551
\(974\) 4.74243e6 0.160178
\(975\) 0 0
\(976\) −1.59360e7 −0.535495
\(977\) 3.12938e7 1.04887 0.524436 0.851450i \(-0.324276\pi\)
0.524436 + 0.851450i \(0.324276\pi\)
\(978\) 0 0
\(979\) 2.18299e7 0.727940
\(980\) 1.08986e7 0.362497
\(981\) 0 0
\(982\) −4.75577e6 −0.157377
\(983\) −1.21142e7 −0.399863 −0.199932 0.979810i \(-0.564072\pi\)
−0.199932 + 0.979810i \(0.564072\pi\)
\(984\) 0 0
\(985\) 9.19013e6 0.301808
\(986\) −236595. −0.00775020
\(987\) 0 0
\(988\) −425414. −0.0138650
\(989\) 1.09120e7 0.354744
\(990\) 0 0
\(991\) −2.58041e7 −0.834650 −0.417325 0.908757i \(-0.637032\pi\)
−0.417325 + 0.908757i \(0.637032\pi\)
\(992\) 1.06712e7 0.344298
\(993\) 0 0
\(994\) 3.33610e6 0.107096
\(995\) 2.15131e7 0.688882
\(996\) 0 0
\(997\) 4.21820e7 1.34397 0.671984 0.740566i \(-0.265442\pi\)
0.671984 + 0.740566i \(0.265442\pi\)
\(998\) −419691. −0.0133384
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.6.a.m.1.3 6
3.2 odd 2 65.6.a.d.1.4 6
12.11 even 2 1040.6.a.q.1.6 6
15.2 even 4 325.6.b.g.274.7 12
15.8 even 4 325.6.b.g.274.6 12
15.14 odd 2 325.6.a.g.1.3 6
39.38 odd 2 845.6.a.h.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.d.1.4 6 3.2 odd 2
325.6.a.g.1.3 6 15.14 odd 2
325.6.b.g.274.6 12 15.8 even 4
325.6.b.g.274.7 12 15.2 even 4
585.6.a.m.1.3 6 1.1 even 1 trivial
845.6.a.h.1.3 6 39.38 odd 2
1040.6.a.q.1.6 6 12.11 even 2