Properties

Label 585.6.a.m
Level $585$
Weight $6$
Character orbit 585.a
Self dual yes
Analytic conductor $93.825$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [585,6,Mod(1,585)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(585, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("585.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 585.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(93.8245345906\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 163x^{4} - 8x^{3} + 6120x^{2} + 6624x - 19440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{2} + 22) q^{4} + 25 q^{5} + ( - 3 \beta_{3} + 2 \beta_{2} + \cdots + 35) q^{7} + ( - \beta_{5} - 2 \beta_{4} - 2 \beta_{3} + \cdots - 6) q^{8} - 25 \beta_1 q^{10} + ( - \beta_{5} - \beta_{4} + 6 \beta_{3} + \cdots + 29) q^{11}+ \cdots + ( - 696 \beta_{5} - 768 \beta_{4} + \cdots + 648) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 134 q^{4} + 150 q^{5} + 220 q^{7} - 24 q^{8} + 170 q^{11} + 1014 q^{13} + 1440 q^{14} + 3506 q^{16} - 728 q^{17} + 1218 q^{19} + 3350 q^{20} + 5154 q^{22} - 8954 q^{23} + 3750 q^{25} + 13212 q^{28}+ \cdots + 4736 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 163x^{4} - 8x^{3} + 6120x^{2} + 6624x - 19440 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 54 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} + 2\nu^{4} - 103\nu^{3} + 10\nu^{2} + 596\nu - 5288 ) / 112 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -5\nu^{5} + 18\nu^{4} + 851\nu^{3} - 1814\nu^{2} - 30420\nu - 12984 ) / 672 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{5} - 30\nu^{4} + 103\nu^{3} + 3098\nu^{2} - 3060\nu - 29880 ) / 336 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 54 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + 2\beta_{4} + 2\beta_{3} - 4\beta_{2} + 89\beta _1 + 6 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -12\beta_{5} - 4\beta_{3} + 111\beta_{2} - 88\beta _1 + 4738 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 127\beta_{5} + 206\beta_{4} + 326\beta_{3} - 644\beta_{2} + 8747\beta _1 - 4110 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
9.61672
8.51599
1.34530
−2.75663
−5.93318
−10.7882
−9.61672 0 60.4813 25.0000 0 −189.995 −273.896 0 −240.418
1.2 −8.51599 0 40.5221 25.0000 0 229.647 −72.5738 0 −212.900
1.3 −1.34530 0 −30.1902 25.0000 0 48.6530 83.6645 0 −33.6325
1.4 2.75663 0 −24.4010 25.0000 0 85.7300 −155.477 0 68.9158
1.5 5.93318 0 3.20258 25.0000 0 −185.746 −170.860 0 148.329
1.6 10.7882 0 84.3852 25.0000 0 231.710 565.142 0 269.705
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 585.6.a.m 6
3.b odd 2 1 65.6.a.d 6
12.b even 2 1 1040.6.a.q 6
15.d odd 2 1 325.6.a.g 6
15.e even 4 2 325.6.b.g 12
39.d odd 2 1 845.6.a.h 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.6.a.d 6 3.b odd 2 1
325.6.a.g 6 15.d odd 2 1
325.6.b.g 12 15.e even 4 2
585.6.a.m 6 1.a even 1 1 trivial
845.6.a.h 6 39.d odd 2 1
1040.6.a.q 6 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} - 163T_{2}^{4} + 8T_{2}^{3} + 6120T_{2}^{2} - 6624T_{2} - 19440 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(585))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 163 T^{4} + \cdots - 19440 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( (T - 25)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots + 7832693511488 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots - 57\!\cdots\!56 \) Copy content Toggle raw display
$13$ \( (T - 169)^{6} \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 60\!\cdots\!68 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 60\!\cdots\!80 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 20\!\cdots\!16 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 38\!\cdots\!40 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 20\!\cdots\!64 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 19\!\cdots\!76 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 11\!\cdots\!12 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 18\!\cdots\!04 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 25\!\cdots\!80 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 86\!\cdots\!92 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 41\!\cdots\!80 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 91\!\cdots\!28 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 13\!\cdots\!44 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 10\!\cdots\!12 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 14\!\cdots\!04 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 66\!\cdots\!20 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 16\!\cdots\!16 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 51\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 13\!\cdots\!20 \) Copy content Toggle raw display
show more
show less