Properties

Label 585.6.a.k
Level $585$
Weight $6$
Character orbit 585.a
Self dual yes
Analytic conductor $93.825$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [585,6,Mod(1,585)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(585, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("585.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 585.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(93.8245345906\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 161x^{4} + 328x^{3} + 6584x^{2} - 10688x - 47440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{3} + 22) q^{4} - 25 q^{5} + (\beta_{5} + 6 \beta_1 + 27) q^{7} + ( - \beta_{5} - 2 \beta_{4} + \cdots + 27) q^{8} + 25 \beta_1 q^{10} + (2 \beta_{5} + \beta_{4} + 6 \beta_{3} + \cdots - 126) q^{11}+ \cdots + ( - 200 \beta_{5} + 176 \beta_{4} + \cdots + 18296) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} + 134 q^{4} - 150 q^{5} + 172 q^{7} + 138 q^{8} + 50 q^{10} - 800 q^{11} - 1014 q^{13} - 2108 q^{14} + 322 q^{16} - 4396 q^{17} + 5304 q^{19} - 3350 q^{20} + 8008 q^{22} + 1140 q^{23} + 3750 q^{25}+ \cdots + 113942 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 161x^{4} + 328x^{3} + 6584x^{2} - 10688x - 47440 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} + 2\nu^{4} - 125\nu^{3} - 132\nu^{2} + 3036\nu + 320 ) / 80 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - 54 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} + 10\nu^{3} - 105\nu^{2} - 752\nu + 1720 ) / 20 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{4} + 105\nu^{2} - 38\nu - 1450 ) / 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 54 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + 2\beta_{4} + 79\beta _1 - 27 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -10\beta_{5} + 105\beta_{3} - 38\beta _1 + 4220 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 145\beta_{5} + 250\beta_{4} - 78\beta_{3} + 80\beta_{2} + 6915\beta _1 - 5007 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
9.62003
7.62628
4.15349
−2.16876
−7.05260
−10.1784
−9.62003 0 60.5450 −25.0000 0 18.4289 −274.604 0 240.501
1.2 −7.62628 0 26.1601 −25.0000 0 171.199 44.5366 0 190.657
1.3 −4.15349 0 −14.7485 −25.0000 0 42.5171 194.170 0 103.837
1.4 2.16876 0 −27.2965 −25.0000 0 −75.5966 −128.600 0 −54.2190
1.5 7.05260 0 17.7392 −25.0000 0 141.347 −100.576 0 −176.315
1.6 10.1784 0 71.6007 −25.0000 0 −125.896 403.073 0 −254.461
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 585.6.a.k 6
3.b odd 2 1 65.6.a.e 6
12.b even 2 1 1040.6.a.r 6
15.d odd 2 1 325.6.a.f 6
15.e even 4 2 325.6.b.f 12
39.d odd 2 1 845.6.a.g 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.6.a.e 6 3.b odd 2 1
325.6.a.f 6 15.d odd 2 1
325.6.b.f 12 15.e even 4 2
585.6.a.k 6 1.a even 1 1 trivial
845.6.a.g 6 39.d odd 2 1
1040.6.a.r 6 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} + 2T_{2}^{5} - 161T_{2}^{4} - 328T_{2}^{3} + 6584T_{2}^{2} + 10688T_{2} - 47440 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(585))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 2 T^{5} + \cdots - 47440 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( (T + 25)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots + 180452981952 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots - 674919089487832 \) Copy content Toggle raw display
$13$ \( (T + 169)^{6} \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 12\!\cdots\!24 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 58\!\cdots\!40 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 84\!\cdots\!48 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 24\!\cdots\!20 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 47\!\cdots\!84 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 39\!\cdots\!12 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 78\!\cdots\!32 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 34\!\cdots\!28 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 51\!\cdots\!36 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 29\!\cdots\!80 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 11\!\cdots\!68 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 31\!\cdots\!72 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 14\!\cdots\!12 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 20\!\cdots\!08 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 22\!\cdots\!80 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 22\!\cdots\!12 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 21\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 10\!\cdots\!20 \) Copy content Toggle raw display
show more
show less