Properties

Label 585.6.a.b.1.1
Level $585$
Weight $6$
Character 585.1
Self dual yes
Analytic conductor $93.825$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [585,6,Mod(1,585)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(585, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("585.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 585.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(93.8245345906\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 195)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 585.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -28.0000 q^{4} -25.0000 q^{5} -168.000 q^{7} +120.000 q^{8} +50.0000 q^{10} -52.0000 q^{11} +169.000 q^{13} +336.000 q^{14} +656.000 q^{16} -1322.00 q^{17} +1700.00 q^{19} +700.000 q^{20} +104.000 q^{22} -1856.00 q^{23} +625.000 q^{25} -338.000 q^{26} +4704.00 q^{28} +4250.00 q^{29} +7192.00 q^{31} -5152.00 q^{32} +2644.00 q^{34} +4200.00 q^{35} -2298.00 q^{37} -3400.00 q^{38} -3000.00 q^{40} +6438.00 q^{41} +18956.0 q^{43} +1456.00 q^{44} +3712.00 q^{46} +968.000 q^{47} +11417.0 q^{49} -1250.00 q^{50} -4732.00 q^{52} -15366.0 q^{53} +1300.00 q^{55} -20160.0 q^{56} -8500.00 q^{58} +2940.00 q^{59} +26542.0 q^{61} -14384.0 q^{62} -10688.0 q^{64} -4225.00 q^{65} -43588.0 q^{67} +37016.0 q^{68} -8400.00 q^{70} +20688.0 q^{71} +24786.0 q^{73} +4596.00 q^{74} -47600.0 q^{76} +8736.00 q^{77} +51760.0 q^{79} -16400.0 q^{80} -12876.0 q^{82} -31436.0 q^{83} +33050.0 q^{85} -37912.0 q^{86} -6240.00 q^{88} -115690. q^{89} -28392.0 q^{91} +51968.0 q^{92} -1936.00 q^{94} -42500.0 q^{95} -127638. q^{97} -22834.0 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.353553 −0.176777 0.984251i \(-0.556567\pi\)
−0.176777 + 0.984251i \(0.556567\pi\)
\(3\) 0 0
\(4\) −28.0000 −0.875000
\(5\) −25.0000 −0.447214
\(6\) 0 0
\(7\) −168.000 −1.29588 −0.647939 0.761692i \(-0.724369\pi\)
−0.647939 + 0.761692i \(0.724369\pi\)
\(8\) 120.000 0.662913
\(9\) 0 0
\(10\) 50.0000 0.158114
\(11\) −52.0000 −0.129575 −0.0647876 0.997899i \(-0.520637\pi\)
−0.0647876 + 0.997899i \(0.520637\pi\)
\(12\) 0 0
\(13\) 169.000 0.277350
\(14\) 336.000 0.458162
\(15\) 0 0
\(16\) 656.000 0.640625
\(17\) −1322.00 −1.10945 −0.554727 0.832033i \(-0.687177\pi\)
−0.554727 + 0.832033i \(0.687177\pi\)
\(18\) 0 0
\(19\) 1700.00 1.08035 0.540176 0.841552i \(-0.318358\pi\)
0.540176 + 0.841552i \(0.318358\pi\)
\(20\) 700.000 0.391312
\(21\) 0 0
\(22\) 104.000 0.0458117
\(23\) −1856.00 −0.731574 −0.365787 0.930699i \(-0.619200\pi\)
−0.365787 + 0.930699i \(0.619200\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) −338.000 −0.0980581
\(27\) 0 0
\(28\) 4704.00 1.13389
\(29\) 4250.00 0.938413 0.469206 0.883089i \(-0.344540\pi\)
0.469206 + 0.883089i \(0.344540\pi\)
\(30\) 0 0
\(31\) 7192.00 1.34414 0.672071 0.740486i \(-0.265405\pi\)
0.672071 + 0.740486i \(0.265405\pi\)
\(32\) −5152.00 −0.889408
\(33\) 0 0
\(34\) 2644.00 0.392251
\(35\) 4200.00 0.579534
\(36\) 0 0
\(37\) −2298.00 −0.275960 −0.137980 0.990435i \(-0.544061\pi\)
−0.137980 + 0.990435i \(0.544061\pi\)
\(38\) −3400.00 −0.381962
\(39\) 0 0
\(40\) −3000.00 −0.296464
\(41\) 6438.00 0.598124 0.299062 0.954234i \(-0.403326\pi\)
0.299062 + 0.954234i \(0.403326\pi\)
\(42\) 0 0
\(43\) 18956.0 1.56342 0.781710 0.623642i \(-0.214348\pi\)
0.781710 + 0.623642i \(0.214348\pi\)
\(44\) 1456.00 0.113378
\(45\) 0 0
\(46\) 3712.00 0.258651
\(47\) 968.000 0.0639191 0.0319596 0.999489i \(-0.489825\pi\)
0.0319596 + 0.999489i \(0.489825\pi\)
\(48\) 0 0
\(49\) 11417.0 0.679300
\(50\) −1250.00 −0.0707107
\(51\) 0 0
\(52\) −4732.00 −0.242681
\(53\) −15366.0 −0.751400 −0.375700 0.926741i \(-0.622598\pi\)
−0.375700 + 0.926741i \(0.622598\pi\)
\(54\) 0 0
\(55\) 1300.00 0.0579478
\(56\) −20160.0 −0.859054
\(57\) 0 0
\(58\) −8500.00 −0.331779
\(59\) 2940.00 0.109956 0.0549778 0.998488i \(-0.482491\pi\)
0.0549778 + 0.998488i \(0.482491\pi\)
\(60\) 0 0
\(61\) 26542.0 0.913291 0.456645 0.889649i \(-0.349051\pi\)
0.456645 + 0.889649i \(0.349051\pi\)
\(62\) −14384.0 −0.475226
\(63\) 0 0
\(64\) −10688.0 −0.326172
\(65\) −4225.00 −0.124035
\(66\) 0 0
\(67\) −43588.0 −1.18626 −0.593130 0.805107i \(-0.702108\pi\)
−0.593130 + 0.805107i \(0.702108\pi\)
\(68\) 37016.0 0.970772
\(69\) 0 0
\(70\) −8400.00 −0.204896
\(71\) 20688.0 0.487049 0.243524 0.969895i \(-0.421696\pi\)
0.243524 + 0.969895i \(0.421696\pi\)
\(72\) 0 0
\(73\) 24786.0 0.544376 0.272188 0.962244i \(-0.412253\pi\)
0.272188 + 0.962244i \(0.412253\pi\)
\(74\) 4596.00 0.0975665
\(75\) 0 0
\(76\) −47600.0 −0.945307
\(77\) 8736.00 0.167914
\(78\) 0 0
\(79\) 51760.0 0.933096 0.466548 0.884496i \(-0.345497\pi\)
0.466548 + 0.884496i \(0.345497\pi\)
\(80\) −16400.0 −0.286496
\(81\) 0 0
\(82\) −12876.0 −0.211469
\(83\) −31436.0 −0.500878 −0.250439 0.968132i \(-0.580575\pi\)
−0.250439 + 0.968132i \(0.580575\pi\)
\(84\) 0 0
\(85\) 33050.0 0.496163
\(86\) −37912.0 −0.552752
\(87\) 0 0
\(88\) −6240.00 −0.0858970
\(89\) −115690. −1.54818 −0.774089 0.633077i \(-0.781792\pi\)
−0.774089 + 0.633077i \(0.781792\pi\)
\(90\) 0 0
\(91\) −28392.0 −0.359412
\(92\) 51968.0 0.640127
\(93\) 0 0
\(94\) −1936.00 −0.0225988
\(95\) −42500.0 −0.483148
\(96\) 0 0
\(97\) −127638. −1.37737 −0.688685 0.725061i \(-0.741812\pi\)
−0.688685 + 0.725061i \(0.741812\pi\)
\(98\) −22834.0 −0.240169
\(99\) 0 0
\(100\) −17500.0 −0.175000
\(101\) −149982. −1.46297 −0.731485 0.681857i \(-0.761173\pi\)
−0.731485 + 0.681857i \(0.761173\pi\)
\(102\) 0 0
\(103\) 76216.0 0.707869 0.353935 0.935270i \(-0.384844\pi\)
0.353935 + 0.935270i \(0.384844\pi\)
\(104\) 20280.0 0.183859
\(105\) 0 0
\(106\) 30732.0 0.265660
\(107\) 27348.0 0.230922 0.115461 0.993312i \(-0.463165\pi\)
0.115461 + 0.993312i \(0.463165\pi\)
\(108\) 0 0
\(109\) 162070. 1.30658 0.653291 0.757107i \(-0.273388\pi\)
0.653291 + 0.757107i \(0.273388\pi\)
\(110\) −2600.00 −0.0204876
\(111\) 0 0
\(112\) −110208. −0.830172
\(113\) 127174. 0.936919 0.468460 0.883485i \(-0.344809\pi\)
0.468460 + 0.883485i \(0.344809\pi\)
\(114\) 0 0
\(115\) 46400.0 0.327170
\(116\) −119000. −0.821111
\(117\) 0 0
\(118\) −5880.00 −0.0388752
\(119\) 222096. 1.43772
\(120\) 0 0
\(121\) −158347. −0.983210
\(122\) −53084.0 −0.322897
\(123\) 0 0
\(124\) −201376. −1.17613
\(125\) −15625.0 −0.0894427
\(126\) 0 0
\(127\) −76528.0 −0.421028 −0.210514 0.977591i \(-0.567514\pi\)
−0.210514 + 0.977591i \(0.567514\pi\)
\(128\) 186240. 1.00473
\(129\) 0 0
\(130\) 8450.00 0.0438529
\(131\) 208308. 1.06054 0.530271 0.847828i \(-0.322090\pi\)
0.530271 + 0.847828i \(0.322090\pi\)
\(132\) 0 0
\(133\) −285600. −1.40000
\(134\) 87176.0 0.419406
\(135\) 0 0
\(136\) −158640. −0.735471
\(137\) −145962. −0.664413 −0.332207 0.943207i \(-0.607793\pi\)
−0.332207 + 0.943207i \(0.607793\pi\)
\(138\) 0 0
\(139\) −236420. −1.03788 −0.518940 0.854811i \(-0.673673\pi\)
−0.518940 + 0.854811i \(0.673673\pi\)
\(140\) −117600. −0.507093
\(141\) 0 0
\(142\) −41376.0 −0.172198
\(143\) −8788.00 −0.0359377
\(144\) 0 0
\(145\) −106250. −0.419671
\(146\) −49572.0 −0.192466
\(147\) 0 0
\(148\) 64344.0 0.241465
\(149\) 155530. 0.573916 0.286958 0.957943i \(-0.407356\pi\)
0.286958 + 0.957943i \(0.407356\pi\)
\(150\) 0 0
\(151\) −516768. −1.84439 −0.922196 0.386723i \(-0.873607\pi\)
−0.922196 + 0.386723i \(0.873607\pi\)
\(152\) 204000. 0.716178
\(153\) 0 0
\(154\) −17472.0 −0.0593664
\(155\) −179800. −0.601119
\(156\) 0 0
\(157\) 394702. 1.27797 0.638984 0.769220i \(-0.279355\pi\)
0.638984 + 0.769220i \(0.279355\pi\)
\(158\) −103520. −0.329899
\(159\) 0 0
\(160\) 128800. 0.397755
\(161\) 311808. 0.948031
\(162\) 0 0
\(163\) −125444. −0.369812 −0.184906 0.982756i \(-0.559198\pi\)
−0.184906 + 0.982756i \(0.559198\pi\)
\(164\) −180264. −0.523359
\(165\) 0 0
\(166\) 62872.0 0.177087
\(167\) 9728.00 0.0269918 0.0134959 0.999909i \(-0.495704\pi\)
0.0134959 + 0.999909i \(0.495704\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) −66100.0 −0.175420
\(171\) 0 0
\(172\) −530768. −1.36799
\(173\) −107326. −0.272640 −0.136320 0.990665i \(-0.543528\pi\)
−0.136320 + 0.990665i \(0.543528\pi\)
\(174\) 0 0
\(175\) −105000. −0.259176
\(176\) −34112.0 −0.0830091
\(177\) 0 0
\(178\) 231380. 0.547363
\(179\) −14940.0 −0.0348512 −0.0174256 0.999848i \(-0.505547\pi\)
−0.0174256 + 0.999848i \(0.505547\pi\)
\(180\) 0 0
\(181\) −224618. −0.509622 −0.254811 0.966991i \(-0.582013\pi\)
−0.254811 + 0.966991i \(0.582013\pi\)
\(182\) 56784.0 0.127071
\(183\) 0 0
\(184\) −222720. −0.484970
\(185\) 57450.0 0.123413
\(186\) 0 0
\(187\) 68744.0 0.143758
\(188\) −27104.0 −0.0559292
\(189\) 0 0
\(190\) 85000.0 0.170819
\(191\) −147952. −0.293452 −0.146726 0.989177i \(-0.546874\pi\)
−0.146726 + 0.989177i \(0.546874\pi\)
\(192\) 0 0
\(193\) 139546. 0.269665 0.134832 0.990868i \(-0.456950\pi\)
0.134832 + 0.990868i \(0.456950\pi\)
\(194\) 255276. 0.486974
\(195\) 0 0
\(196\) −319676. −0.594388
\(197\) −915702. −1.68108 −0.840540 0.541749i \(-0.817762\pi\)
−0.840540 + 0.541749i \(0.817762\pi\)
\(198\) 0 0
\(199\) −171560. −0.307102 −0.153551 0.988141i \(-0.549071\pi\)
−0.153551 + 0.988141i \(0.549071\pi\)
\(200\) 75000.0 0.132583
\(201\) 0 0
\(202\) 299964. 0.517238
\(203\) −714000. −1.21607
\(204\) 0 0
\(205\) −160950. −0.267489
\(206\) −152432. −0.250270
\(207\) 0 0
\(208\) 110864. 0.177677
\(209\) −88400.0 −0.139987
\(210\) 0 0
\(211\) −615148. −0.951204 −0.475602 0.879661i \(-0.657770\pi\)
−0.475602 + 0.879661i \(0.657770\pi\)
\(212\) 430248. 0.657475
\(213\) 0 0
\(214\) −54696.0 −0.0816434
\(215\) −473900. −0.699183
\(216\) 0 0
\(217\) −1.20826e6 −1.74185
\(218\) −324140. −0.461946
\(219\) 0 0
\(220\) −36400.0 −0.0507043
\(221\) −223418. −0.307707
\(222\) 0 0
\(223\) 317616. 0.427701 0.213850 0.976866i \(-0.431399\pi\)
0.213850 + 0.976866i \(0.431399\pi\)
\(224\) 865536. 1.15256
\(225\) 0 0
\(226\) −254348. −0.331251
\(227\) −207852. −0.267725 −0.133863 0.991000i \(-0.542738\pi\)
−0.133863 + 0.991000i \(0.542738\pi\)
\(228\) 0 0
\(229\) 1.50283e6 1.89374 0.946872 0.321611i \(-0.104224\pi\)
0.946872 + 0.321611i \(0.104224\pi\)
\(230\) −92800.0 −0.115672
\(231\) 0 0
\(232\) 510000. 0.622086
\(233\) −1.51047e6 −1.82273 −0.911363 0.411605i \(-0.864968\pi\)
−0.911363 + 0.411605i \(0.864968\pi\)
\(234\) 0 0
\(235\) −24200.0 −0.0285855
\(236\) −82320.0 −0.0962111
\(237\) 0 0
\(238\) −444192. −0.508310
\(239\) 402840. 0.456182 0.228091 0.973640i \(-0.426752\pi\)
0.228091 + 0.973640i \(0.426752\pi\)
\(240\) 0 0
\(241\) 214162. 0.237520 0.118760 0.992923i \(-0.462108\pi\)
0.118760 + 0.992923i \(0.462108\pi\)
\(242\) 316694. 0.347617
\(243\) 0 0
\(244\) −743176. −0.799129
\(245\) −285425. −0.303792
\(246\) 0 0
\(247\) 287300. 0.299635
\(248\) 863040. 0.891049
\(249\) 0 0
\(250\) 31250.0 0.0316228
\(251\) 709948. 0.711283 0.355641 0.934623i \(-0.384262\pi\)
0.355641 + 0.934623i \(0.384262\pi\)
\(252\) 0 0
\(253\) 96512.0 0.0947938
\(254\) 153056. 0.148856
\(255\) 0 0
\(256\) −30464.0 −0.0290527
\(257\) 1.29692e6 1.22484 0.612420 0.790532i \(-0.290196\pi\)
0.612420 + 0.790532i \(0.290196\pi\)
\(258\) 0 0
\(259\) 386064. 0.357610
\(260\) 118300. 0.108530
\(261\) 0 0
\(262\) −416616. −0.374958
\(263\) −2.15218e6 −1.91862 −0.959309 0.282359i \(-0.908883\pi\)
−0.959309 + 0.282359i \(0.908883\pi\)
\(264\) 0 0
\(265\) 384150. 0.336036
\(266\) 571200. 0.494976
\(267\) 0 0
\(268\) 1.22046e6 1.03798
\(269\) −2.30567e6 −1.94275 −0.971374 0.237556i \(-0.923654\pi\)
−0.971374 + 0.237556i \(0.923654\pi\)
\(270\) 0 0
\(271\) −297608. −0.246162 −0.123081 0.992397i \(-0.539278\pi\)
−0.123081 + 0.992397i \(0.539278\pi\)
\(272\) −867232. −0.710744
\(273\) 0 0
\(274\) 291924. 0.234906
\(275\) −32500.0 −0.0259150
\(276\) 0 0
\(277\) −223258. −0.174827 −0.0874133 0.996172i \(-0.527860\pi\)
−0.0874133 + 0.996172i \(0.527860\pi\)
\(278\) 472840. 0.366946
\(279\) 0 0
\(280\) 504000. 0.384181
\(281\) −493802. −0.373067 −0.186534 0.982449i \(-0.559725\pi\)
−0.186534 + 0.982449i \(0.559725\pi\)
\(282\) 0 0
\(283\) −430244. −0.319337 −0.159668 0.987171i \(-0.551042\pi\)
−0.159668 + 0.987171i \(0.551042\pi\)
\(284\) −579264. −0.426168
\(285\) 0 0
\(286\) 17576.0 0.0127059
\(287\) −1.08158e6 −0.775096
\(288\) 0 0
\(289\) 327827. 0.230887
\(290\) 212500. 0.148376
\(291\) 0 0
\(292\) −694008. −0.476329
\(293\) −869046. −0.591390 −0.295695 0.955282i \(-0.595551\pi\)
−0.295695 + 0.955282i \(0.595551\pi\)
\(294\) 0 0
\(295\) −73500.0 −0.0491736
\(296\) −275760. −0.182937
\(297\) 0 0
\(298\) −311060. −0.202910
\(299\) −313664. −0.202902
\(300\) 0 0
\(301\) −3.18461e6 −2.02600
\(302\) 1.03354e6 0.652091
\(303\) 0 0
\(304\) 1.11520e6 0.692100
\(305\) −663550. −0.408436
\(306\) 0 0
\(307\) −282148. −0.170856 −0.0854282 0.996344i \(-0.527226\pi\)
−0.0854282 + 0.996344i \(0.527226\pi\)
\(308\) −244608. −0.146924
\(309\) 0 0
\(310\) 359600. 0.212528
\(311\) −2.41519e6 −1.41596 −0.707980 0.706233i \(-0.750393\pi\)
−0.707980 + 0.706233i \(0.750393\pi\)
\(312\) 0 0
\(313\) 1.26315e6 0.728774 0.364387 0.931248i \(-0.381279\pi\)
0.364387 + 0.931248i \(0.381279\pi\)
\(314\) −789404. −0.451830
\(315\) 0 0
\(316\) −1.44928e6 −0.816459
\(317\) 3.12146e6 1.74465 0.872327 0.488923i \(-0.162610\pi\)
0.872327 + 0.488923i \(0.162610\pi\)
\(318\) 0 0
\(319\) −221000. −0.121595
\(320\) 267200. 0.145868
\(321\) 0 0
\(322\) −623616. −0.335180
\(323\) −2.24740e6 −1.19860
\(324\) 0 0
\(325\) 105625. 0.0554700
\(326\) 250888. 0.130748
\(327\) 0 0
\(328\) 772560. 0.396504
\(329\) −162624. −0.0828314
\(330\) 0 0
\(331\) 1.12521e6 0.564501 0.282250 0.959341i \(-0.408919\pi\)
0.282250 + 0.959341i \(0.408919\pi\)
\(332\) 880208. 0.438268
\(333\) 0 0
\(334\) −19456.0 −0.00954305
\(335\) 1.08970e6 0.530512
\(336\) 0 0
\(337\) 2.51216e6 1.20496 0.602480 0.798134i \(-0.294179\pi\)
0.602480 + 0.798134i \(0.294179\pi\)
\(338\) −57122.0 −0.0271964
\(339\) 0 0
\(340\) −925400. −0.434142
\(341\) −373984. −0.174167
\(342\) 0 0
\(343\) 905520. 0.415588
\(344\) 2.27472e6 1.03641
\(345\) 0 0
\(346\) 214652. 0.0963928
\(347\) 3.97887e6 1.77393 0.886964 0.461839i \(-0.152810\pi\)
0.886964 + 0.461839i \(0.152810\pi\)
\(348\) 0 0
\(349\) −3.60697e6 −1.58518 −0.792591 0.609754i \(-0.791268\pi\)
−0.792591 + 0.609754i \(0.791268\pi\)
\(350\) 210000. 0.0916324
\(351\) 0 0
\(352\) 267904. 0.115245
\(353\) 2.70889e6 1.15706 0.578529 0.815662i \(-0.303627\pi\)
0.578529 + 0.815662i \(0.303627\pi\)
\(354\) 0 0
\(355\) −517200. −0.217815
\(356\) 3.23932e6 1.35466
\(357\) 0 0
\(358\) 29880.0 0.0123218
\(359\) 1.68176e6 0.688697 0.344348 0.938842i \(-0.388100\pi\)
0.344348 + 0.938842i \(0.388100\pi\)
\(360\) 0 0
\(361\) 413901. 0.167159
\(362\) 449236. 0.180179
\(363\) 0 0
\(364\) 794976. 0.314485
\(365\) −619650. −0.243453
\(366\) 0 0
\(367\) −251728. −0.0975588 −0.0487794 0.998810i \(-0.515533\pi\)
−0.0487794 + 0.998810i \(0.515533\pi\)
\(368\) −1.21754e6 −0.468665
\(369\) 0 0
\(370\) −114900. −0.0436331
\(371\) 2.58149e6 0.973723
\(372\) 0 0
\(373\) −1.31263e6 −0.488508 −0.244254 0.969711i \(-0.578543\pi\)
−0.244254 + 0.969711i \(0.578543\pi\)
\(374\) −137488. −0.0508260
\(375\) 0 0
\(376\) 116160. 0.0423728
\(377\) 718250. 0.260269
\(378\) 0 0
\(379\) −3.42618e6 −1.22521 −0.612607 0.790387i \(-0.709879\pi\)
−0.612607 + 0.790387i \(0.709879\pi\)
\(380\) 1.19000e6 0.422754
\(381\) 0 0
\(382\) 295904. 0.103751
\(383\) −4.70734e6 −1.63975 −0.819876 0.572541i \(-0.805958\pi\)
−0.819876 + 0.572541i \(0.805958\pi\)
\(384\) 0 0
\(385\) −218400. −0.0750932
\(386\) −279092. −0.0953409
\(387\) 0 0
\(388\) 3.57386e6 1.20520
\(389\) 4.48605e6 1.50311 0.751554 0.659672i \(-0.229305\pi\)
0.751554 + 0.659672i \(0.229305\pi\)
\(390\) 0 0
\(391\) 2.45363e6 0.811648
\(392\) 1.37004e6 0.450317
\(393\) 0 0
\(394\) 1.83140e6 0.594352
\(395\) −1.29400e6 −0.417293
\(396\) 0 0
\(397\) 2.99646e6 0.954185 0.477092 0.878853i \(-0.341691\pi\)
0.477092 + 0.878853i \(0.341691\pi\)
\(398\) 343120. 0.108577
\(399\) 0 0
\(400\) 410000. 0.128125
\(401\) 5.57072e6 1.73002 0.865008 0.501758i \(-0.167313\pi\)
0.865008 + 0.501758i \(0.167313\pi\)
\(402\) 0 0
\(403\) 1.21545e6 0.372798
\(404\) 4.19950e6 1.28010
\(405\) 0 0
\(406\) 1.42800e6 0.429945
\(407\) 119496. 0.0357575
\(408\) 0 0
\(409\) 3.67345e6 1.08584 0.542920 0.839784i \(-0.317319\pi\)
0.542920 + 0.839784i \(0.317319\pi\)
\(410\) 321900. 0.0945717
\(411\) 0 0
\(412\) −2.13405e6 −0.619386
\(413\) −493920. −0.142489
\(414\) 0 0
\(415\) 785900. 0.223999
\(416\) −870688. −0.246677
\(417\) 0 0
\(418\) 176800. 0.0494927
\(419\) −4.29470e6 −1.19508 −0.597541 0.801838i \(-0.703856\pi\)
−0.597541 + 0.801838i \(0.703856\pi\)
\(420\) 0 0
\(421\) 2.52870e6 0.695332 0.347666 0.937618i \(-0.386974\pi\)
0.347666 + 0.937618i \(0.386974\pi\)
\(422\) 1.23030e6 0.336301
\(423\) 0 0
\(424\) −1.84392e6 −0.498112
\(425\) −826250. −0.221891
\(426\) 0 0
\(427\) −4.45906e6 −1.18351
\(428\) −765744. −0.202057
\(429\) 0 0
\(430\) 947800. 0.247198
\(431\) 981688. 0.254554 0.127277 0.991867i \(-0.459376\pi\)
0.127277 + 0.991867i \(0.459376\pi\)
\(432\) 0 0
\(433\) 7.11511e6 1.82373 0.911867 0.410485i \(-0.134641\pi\)
0.911867 + 0.410485i \(0.134641\pi\)
\(434\) 2.41651e6 0.615835
\(435\) 0 0
\(436\) −4.53796e6 −1.14326
\(437\) −3.15520e6 −0.790357
\(438\) 0 0
\(439\) 4.17900e6 1.03493 0.517465 0.855704i \(-0.326876\pi\)
0.517465 + 0.855704i \(0.326876\pi\)
\(440\) 156000. 0.0384143
\(441\) 0 0
\(442\) 446836. 0.108791
\(443\) 1.21128e6 0.293249 0.146625 0.989192i \(-0.453159\pi\)
0.146625 + 0.989192i \(0.453159\pi\)
\(444\) 0 0
\(445\) 2.89225e6 0.692366
\(446\) −635232. −0.151215
\(447\) 0 0
\(448\) 1.79558e6 0.422679
\(449\) 5.20971e6 1.21954 0.609772 0.792577i \(-0.291261\pi\)
0.609772 + 0.792577i \(0.291261\pi\)
\(450\) 0 0
\(451\) −334776. −0.0775020
\(452\) −3.56087e6 −0.819804
\(453\) 0 0
\(454\) 415704. 0.0946552
\(455\) 709800. 0.160734
\(456\) 0 0
\(457\) −4.49688e6 −1.00721 −0.503606 0.863934i \(-0.667994\pi\)
−0.503606 + 0.863934i \(0.667994\pi\)
\(458\) −3.00566e6 −0.669539
\(459\) 0 0
\(460\) −1.29920e6 −0.286274
\(461\) −600702. −0.131646 −0.0658229 0.997831i \(-0.520967\pi\)
−0.0658229 + 0.997831i \(0.520967\pi\)
\(462\) 0 0
\(463\) 1.70658e6 0.369976 0.184988 0.982741i \(-0.440775\pi\)
0.184988 + 0.982741i \(0.440775\pi\)
\(464\) 2.78800e6 0.601171
\(465\) 0 0
\(466\) 3.02093e6 0.644431
\(467\) −4.03181e6 −0.855476 −0.427738 0.903903i \(-0.640689\pi\)
−0.427738 + 0.903903i \(0.640689\pi\)
\(468\) 0 0
\(469\) 7.32278e6 1.53725
\(470\) 48400.0 0.0101065
\(471\) 0 0
\(472\) 352800. 0.0728909
\(473\) −985712. −0.202580
\(474\) 0 0
\(475\) 1.06250e6 0.216070
\(476\) −6.21869e6 −1.25800
\(477\) 0 0
\(478\) −805680. −0.161285
\(479\) 7.41484e6 1.47660 0.738300 0.674472i \(-0.235629\pi\)
0.738300 + 0.674472i \(0.235629\pi\)
\(480\) 0 0
\(481\) −388362. −0.0765375
\(482\) −428324. −0.0839759
\(483\) 0 0
\(484\) 4.43372e6 0.860309
\(485\) 3.19095e6 0.615979
\(486\) 0 0
\(487\) −4.94041e6 −0.943931 −0.471966 0.881617i \(-0.656455\pi\)
−0.471966 + 0.881617i \(0.656455\pi\)
\(488\) 3.18504e6 0.605432
\(489\) 0 0
\(490\) 570850. 0.107407
\(491\) 2.75587e6 0.515887 0.257944 0.966160i \(-0.416955\pi\)
0.257944 + 0.966160i \(0.416955\pi\)
\(492\) 0 0
\(493\) −5.61850e6 −1.04113
\(494\) −574600. −0.105937
\(495\) 0 0
\(496\) 4.71795e6 0.861092
\(497\) −3.47558e6 −0.631156
\(498\) 0 0
\(499\) −2.60558e6 −0.468439 −0.234220 0.972184i \(-0.575253\pi\)
−0.234220 + 0.972184i \(0.575253\pi\)
\(500\) 437500. 0.0782624
\(501\) 0 0
\(502\) −1.41990e6 −0.251476
\(503\) 4.90406e6 0.864244 0.432122 0.901815i \(-0.357765\pi\)
0.432122 + 0.901815i \(0.357765\pi\)
\(504\) 0 0
\(505\) 3.74955e6 0.654261
\(506\) −193024. −0.0335147
\(507\) 0 0
\(508\) 2.14278e6 0.368400
\(509\) 1.53429e6 0.262490 0.131245 0.991350i \(-0.458103\pi\)
0.131245 + 0.991350i \(0.458103\pi\)
\(510\) 0 0
\(511\) −4.16405e6 −0.705446
\(512\) −5.89875e6 −0.994455
\(513\) 0 0
\(514\) −2.59384e6 −0.433047
\(515\) −1.90540e6 −0.316569
\(516\) 0 0
\(517\) −50336.0 −0.00828233
\(518\) −772128. −0.126434
\(519\) 0 0
\(520\) −507000. −0.0822242
\(521\) −4.06380e6 −0.655901 −0.327950 0.944695i \(-0.606358\pi\)
−0.327950 + 0.944695i \(0.606358\pi\)
\(522\) 0 0
\(523\) −6.45208e6 −1.03144 −0.515722 0.856756i \(-0.672476\pi\)
−0.515722 + 0.856756i \(0.672476\pi\)
\(524\) −5.83262e6 −0.927974
\(525\) 0 0
\(526\) 4.30435e6 0.678334
\(527\) −9.50782e6 −1.49126
\(528\) 0 0
\(529\) −2.99161e6 −0.464799
\(530\) −768300. −0.118807
\(531\) 0 0
\(532\) 7.99680e6 1.22500
\(533\) 1.08802e6 0.165890
\(534\) 0 0
\(535\) −683700. −0.103272
\(536\) −5.23056e6 −0.786387
\(537\) 0 0
\(538\) 4.61134e6 0.686865
\(539\) −593684. −0.0880204
\(540\) 0 0
\(541\) −1.20603e7 −1.77160 −0.885798 0.464070i \(-0.846389\pi\)
−0.885798 + 0.464070i \(0.846389\pi\)
\(542\) 595216. 0.0870315
\(543\) 0 0
\(544\) 6.81094e6 0.986757
\(545\) −4.05175e6 −0.584321
\(546\) 0 0
\(547\) −5.95523e6 −0.851001 −0.425501 0.904958i \(-0.639902\pi\)
−0.425501 + 0.904958i \(0.639902\pi\)
\(548\) 4.08694e6 0.581362
\(549\) 0 0
\(550\) 65000.0 0.00916234
\(551\) 7.22500e6 1.01382
\(552\) 0 0
\(553\) −8.69568e6 −1.20918
\(554\) 446516. 0.0618106
\(555\) 0 0
\(556\) 6.61976e6 0.908145
\(557\) −1.12188e7 −1.53217 −0.766086 0.642738i \(-0.777799\pi\)
−0.766086 + 0.642738i \(0.777799\pi\)
\(558\) 0 0
\(559\) 3.20356e6 0.433615
\(560\) 2.75520e6 0.371264
\(561\) 0 0
\(562\) 987604. 0.131899
\(563\) −5.29628e6 −0.704206 −0.352103 0.935961i \(-0.614533\pi\)
−0.352103 + 0.935961i \(0.614533\pi\)
\(564\) 0 0
\(565\) −3.17935e6 −0.419003
\(566\) 860488. 0.112903
\(567\) 0 0
\(568\) 2.48256e6 0.322871
\(569\) −3.66337e6 −0.474351 −0.237176 0.971467i \(-0.576222\pi\)
−0.237176 + 0.971467i \(0.576222\pi\)
\(570\) 0 0
\(571\) −505348. −0.0648635 −0.0324317 0.999474i \(-0.510325\pi\)
−0.0324317 + 0.999474i \(0.510325\pi\)
\(572\) 246064. 0.0314455
\(573\) 0 0
\(574\) 2.16317e6 0.274038
\(575\) −1.16000e6 −0.146315
\(576\) 0 0
\(577\) 1.18889e7 1.48663 0.743315 0.668941i \(-0.233252\pi\)
0.743315 + 0.668941i \(0.233252\pi\)
\(578\) −655654. −0.0816310
\(579\) 0 0
\(580\) 2.97500e6 0.367212
\(581\) 5.28125e6 0.649077
\(582\) 0 0
\(583\) 799032. 0.0973627
\(584\) 2.97432e6 0.360874
\(585\) 0 0
\(586\) 1.73809e6 0.209088
\(587\) 3.79787e6 0.454930 0.227465 0.973786i \(-0.426956\pi\)
0.227465 + 0.973786i \(0.426956\pi\)
\(588\) 0 0
\(589\) 1.22264e7 1.45215
\(590\) 147000. 0.0173855
\(591\) 0 0
\(592\) −1.50749e6 −0.176787
\(593\) −7.78759e6 −0.909423 −0.454712 0.890639i \(-0.650258\pi\)
−0.454712 + 0.890639i \(0.650258\pi\)
\(594\) 0 0
\(595\) −5.55240e6 −0.642966
\(596\) −4.35484e6 −0.502177
\(597\) 0 0
\(598\) 627328. 0.0717368
\(599\) 1.10798e7 1.26173 0.630863 0.775894i \(-0.282701\pi\)
0.630863 + 0.775894i \(0.282701\pi\)
\(600\) 0 0
\(601\) 1.23129e7 1.39051 0.695256 0.718762i \(-0.255291\pi\)
0.695256 + 0.718762i \(0.255291\pi\)
\(602\) 6.36922e6 0.716300
\(603\) 0 0
\(604\) 1.44695e7 1.61384
\(605\) 3.95868e6 0.439705
\(606\) 0 0
\(607\) −1.25030e7 −1.37735 −0.688673 0.725072i \(-0.741806\pi\)
−0.688673 + 0.725072i \(0.741806\pi\)
\(608\) −8.75840e6 −0.960873
\(609\) 0 0
\(610\) 1.32710e6 0.144404
\(611\) 163592. 0.0177280
\(612\) 0 0
\(613\) −9.93839e6 −1.06823 −0.534115 0.845412i \(-0.679355\pi\)
−0.534115 + 0.845412i \(0.679355\pi\)
\(614\) 564296. 0.0604068
\(615\) 0 0
\(616\) 1.04832e6 0.111312
\(617\) −3.07364e6 −0.325043 −0.162521 0.986705i \(-0.551963\pi\)
−0.162521 + 0.986705i \(0.551963\pi\)
\(618\) 0 0
\(619\) −1.36164e7 −1.42836 −0.714178 0.699964i \(-0.753199\pi\)
−0.714178 + 0.699964i \(0.753199\pi\)
\(620\) 5.03440e6 0.525979
\(621\) 0 0
\(622\) 4.83038e6 0.500617
\(623\) 1.94359e7 2.00625
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) −2.52629e6 −0.257660
\(627\) 0 0
\(628\) −1.10517e7 −1.11822
\(629\) 3.03796e6 0.306165
\(630\) 0 0
\(631\) −1.24109e7 −1.24088 −0.620442 0.784253i \(-0.713047\pi\)
−0.620442 + 0.784253i \(0.713047\pi\)
\(632\) 6.21120e6 0.618561
\(633\) 0 0
\(634\) −6.24292e6 −0.616828
\(635\) 1.91320e6 0.188289
\(636\) 0 0
\(637\) 1.92947e6 0.188404
\(638\) 442000. 0.0429903
\(639\) 0 0
\(640\) −4.65600e6 −0.449328
\(641\) 2.43440e6 0.234017 0.117008 0.993131i \(-0.462670\pi\)
0.117008 + 0.993131i \(0.462670\pi\)
\(642\) 0 0
\(643\) 2.81648e6 0.268645 0.134322 0.990938i \(-0.457114\pi\)
0.134322 + 0.990938i \(0.457114\pi\)
\(644\) −8.73062e6 −0.829527
\(645\) 0 0
\(646\) 4.49480e6 0.423769
\(647\) −2.01122e7 −1.88886 −0.944428 0.328719i \(-0.893383\pi\)
−0.944428 + 0.328719i \(0.893383\pi\)
\(648\) 0 0
\(649\) −152880. −0.0142475
\(650\) −211250. −0.0196116
\(651\) 0 0
\(652\) 3.51243e6 0.323585
\(653\) −1.57962e7 −1.44967 −0.724836 0.688921i \(-0.758085\pi\)
−0.724836 + 0.688921i \(0.758085\pi\)
\(654\) 0 0
\(655\) −5.20770e6 −0.474289
\(656\) 4.22333e6 0.383173
\(657\) 0 0
\(658\) 325248. 0.0292853
\(659\) 1.45108e7 1.30160 0.650801 0.759248i \(-0.274433\pi\)
0.650801 + 0.759248i \(0.274433\pi\)
\(660\) 0 0
\(661\) 1.16326e7 1.03556 0.517778 0.855515i \(-0.326759\pi\)
0.517778 + 0.855515i \(0.326759\pi\)
\(662\) −2.25042e6 −0.199581
\(663\) 0 0
\(664\) −3.77232e6 −0.332038
\(665\) 7.14000e6 0.626101
\(666\) 0 0
\(667\) −7.88800e6 −0.686519
\(668\) −272384. −0.0236179
\(669\) 0 0
\(670\) −2.17940e6 −0.187564
\(671\) −1.38018e6 −0.118340
\(672\) 0 0
\(673\) −2.12566e7 −1.80907 −0.904535 0.426398i \(-0.859782\pi\)
−0.904535 + 0.426398i \(0.859782\pi\)
\(674\) −5.02432e6 −0.426018
\(675\) 0 0
\(676\) −799708. −0.0673077
\(677\) −1.57430e7 −1.32013 −0.660063 0.751210i \(-0.729470\pi\)
−0.660063 + 0.751210i \(0.729470\pi\)
\(678\) 0 0
\(679\) 2.14432e7 1.78490
\(680\) 3.96600e6 0.328913
\(681\) 0 0
\(682\) 747968. 0.0615775
\(683\) −5.96924e6 −0.489629 −0.244814 0.969570i \(-0.578727\pi\)
−0.244814 + 0.969570i \(0.578727\pi\)
\(684\) 0 0
\(685\) 3.64905e6 0.297135
\(686\) −1.81104e6 −0.146932
\(687\) 0 0
\(688\) 1.24351e7 1.00157
\(689\) −2.59685e6 −0.208401
\(690\) 0 0
\(691\) −4.73795e6 −0.377481 −0.188741 0.982027i \(-0.560441\pi\)
−0.188741 + 0.982027i \(0.560441\pi\)
\(692\) 3.00513e6 0.238560
\(693\) 0 0
\(694\) −7.95774e6 −0.627178
\(695\) 5.91050e6 0.464154
\(696\) 0 0
\(697\) −8.51104e6 −0.663591
\(698\) 7.21394e6 0.560446
\(699\) 0 0
\(700\) 2.94000e6 0.226779
\(701\) −1.50578e7 −1.15735 −0.578677 0.815557i \(-0.696431\pi\)
−0.578677 + 0.815557i \(0.696431\pi\)
\(702\) 0 0
\(703\) −3.90660e6 −0.298133
\(704\) 555776. 0.0422638
\(705\) 0 0
\(706\) −5.41779e6 −0.409082
\(707\) 2.51970e7 1.89583
\(708\) 0 0
\(709\) −9.80053e6 −0.732207 −0.366104 0.930574i \(-0.619308\pi\)
−0.366104 + 0.930574i \(0.619308\pi\)
\(710\) 1.03440e6 0.0770092
\(711\) 0 0
\(712\) −1.38828e7 −1.02631
\(713\) −1.33484e7 −0.983340
\(714\) 0 0
\(715\) 219700. 0.0160718
\(716\) 418320. 0.0304948
\(717\) 0 0
\(718\) −3.36352e6 −0.243491
\(719\) 2.26512e6 0.163406 0.0817032 0.996657i \(-0.473964\pi\)
0.0817032 + 0.996657i \(0.473964\pi\)
\(720\) 0 0
\(721\) −1.28043e7 −0.917312
\(722\) −827802. −0.0590995
\(723\) 0 0
\(724\) 6.28930e6 0.445919
\(725\) 2.65625e6 0.187683
\(726\) 0 0
\(727\) 2.14597e7 1.50587 0.752934 0.658096i \(-0.228638\pi\)
0.752934 + 0.658096i \(0.228638\pi\)
\(728\) −3.40704e6 −0.238259
\(729\) 0 0
\(730\) 1.23930e6 0.0860735
\(731\) −2.50598e7 −1.73454
\(732\) 0 0
\(733\) −2.22056e7 −1.52652 −0.763261 0.646090i \(-0.776403\pi\)
−0.763261 + 0.646090i \(0.776403\pi\)
\(734\) 503456. 0.0344922
\(735\) 0 0
\(736\) 9.56211e6 0.650668
\(737\) 2.26658e6 0.153710
\(738\) 0 0
\(739\) −7.73326e6 −0.520897 −0.260448 0.965488i \(-0.583870\pi\)
−0.260448 + 0.965488i \(0.583870\pi\)
\(740\) −1.60860e6 −0.107986
\(741\) 0 0
\(742\) −5.16298e6 −0.344263
\(743\) 1.76469e7 1.17272 0.586362 0.810049i \(-0.300560\pi\)
0.586362 + 0.810049i \(0.300560\pi\)
\(744\) 0 0
\(745\) −3.88825e6 −0.256663
\(746\) 2.62527e6 0.172714
\(747\) 0 0
\(748\) −1.92483e6 −0.125788
\(749\) −4.59446e6 −0.299247
\(750\) 0 0
\(751\) 4.28731e6 0.277386 0.138693 0.990335i \(-0.455710\pi\)
0.138693 + 0.990335i \(0.455710\pi\)
\(752\) 635008. 0.0409482
\(753\) 0 0
\(754\) −1.43650e6 −0.0920189
\(755\) 1.29192e7 0.824837
\(756\) 0 0
\(757\) −1.32561e7 −0.840765 −0.420383 0.907347i \(-0.638104\pi\)
−0.420383 + 0.907347i \(0.638104\pi\)
\(758\) 6.85236e6 0.433179
\(759\) 0 0
\(760\) −5.10000e6 −0.320285
\(761\) 9.95020e6 0.622831 0.311415 0.950274i \(-0.399197\pi\)
0.311415 + 0.950274i \(0.399197\pi\)
\(762\) 0 0
\(763\) −2.72278e7 −1.69317
\(764\) 4.14266e6 0.256771
\(765\) 0 0
\(766\) 9.41467e6 0.579740
\(767\) 496860. 0.0304962
\(768\) 0 0
\(769\) −915870. −0.0558493 −0.0279247 0.999610i \(-0.508890\pi\)
−0.0279247 + 0.999610i \(0.508890\pi\)
\(770\) 436800. 0.0265495
\(771\) 0 0
\(772\) −3.90729e6 −0.235957
\(773\) −8.80201e6 −0.529826 −0.264913 0.964272i \(-0.585343\pi\)
−0.264913 + 0.964272i \(0.585343\pi\)
\(774\) 0 0
\(775\) 4.49500e6 0.268829
\(776\) −1.53166e7 −0.913076
\(777\) 0 0
\(778\) −8.97210e6 −0.531429
\(779\) 1.09446e7 0.646184
\(780\) 0 0
\(781\) −1.07578e6 −0.0631094
\(782\) −4.90726e6 −0.286961
\(783\) 0 0
\(784\) 7.48955e6 0.435177
\(785\) −9.86755e6 −0.571525
\(786\) 0 0
\(787\) −1.25325e7 −0.721273 −0.360637 0.932706i \(-0.617441\pi\)
−0.360637 + 0.932706i \(0.617441\pi\)
\(788\) 2.56397e7 1.47095
\(789\) 0 0
\(790\) 2.58800e6 0.147536
\(791\) −2.13652e7 −1.21413
\(792\) 0 0
\(793\) 4.48560e6 0.253301
\(794\) −5.99292e6 −0.337355
\(795\) 0 0
\(796\) 4.80368e6 0.268715
\(797\) −8.76926e6 −0.489009 −0.244505 0.969648i \(-0.578625\pi\)
−0.244505 + 0.969648i \(0.578625\pi\)
\(798\) 0 0
\(799\) −1.27970e6 −0.0709153
\(800\) −3.22000e6 −0.177882
\(801\) 0 0
\(802\) −1.11414e7 −0.611653
\(803\) −1.28887e6 −0.0705376
\(804\) 0 0
\(805\) −7.79520e6 −0.423972
\(806\) −2.43090e6 −0.131804
\(807\) 0 0
\(808\) −1.79978e7 −0.969822
\(809\) −2.62017e6 −0.140753 −0.0703766 0.997520i \(-0.522420\pi\)
−0.0703766 + 0.997520i \(0.522420\pi\)
\(810\) 0 0
\(811\) −2.82690e7 −1.50924 −0.754621 0.656161i \(-0.772179\pi\)
−0.754621 + 0.656161i \(0.772179\pi\)
\(812\) 1.99920e7 1.06406
\(813\) 0 0
\(814\) −238992. −0.0126422
\(815\) 3.13610e6 0.165385
\(816\) 0 0
\(817\) 3.22252e7 1.68904
\(818\) −7.34690e6 −0.383902
\(819\) 0 0
\(820\) 4.50660e6 0.234053
\(821\) 3.17889e7 1.64596 0.822978 0.568074i \(-0.192311\pi\)
0.822978 + 0.568074i \(0.192311\pi\)
\(822\) 0 0
\(823\) −2.90669e7 −1.49589 −0.747944 0.663762i \(-0.768959\pi\)
−0.747944 + 0.663762i \(0.768959\pi\)
\(824\) 9.14592e6 0.469255
\(825\) 0 0
\(826\) 987840. 0.0503775
\(827\) 1.46154e7 0.743099 0.371549 0.928413i \(-0.378827\pi\)
0.371549 + 0.928413i \(0.378827\pi\)
\(828\) 0 0
\(829\) 208430. 0.0105335 0.00526676 0.999986i \(-0.498324\pi\)
0.00526676 + 0.999986i \(0.498324\pi\)
\(830\) −1.57180e6 −0.0791958
\(831\) 0 0
\(832\) −1.80627e6 −0.0904638
\(833\) −1.50933e7 −0.753652
\(834\) 0 0
\(835\) −243200. −0.0120711
\(836\) 2.47520e6 0.122488
\(837\) 0 0
\(838\) 8.58940e6 0.422525
\(839\) 8.12168e6 0.398328 0.199164 0.979966i \(-0.436177\pi\)
0.199164 + 0.979966i \(0.436177\pi\)
\(840\) 0 0
\(841\) −2.44865e6 −0.119381
\(842\) −5.05740e6 −0.245837
\(843\) 0 0
\(844\) 1.72241e7 0.832303
\(845\) −714025. −0.0344010
\(846\) 0 0
\(847\) 2.66023e7 1.27412
\(848\) −1.00801e7 −0.481366
\(849\) 0 0
\(850\) 1.65250e6 0.0784502
\(851\) 4.26509e6 0.201885
\(852\) 0 0
\(853\) −3.71033e7 −1.74598 −0.872991 0.487737i \(-0.837823\pi\)
−0.872991 + 0.487737i \(0.837823\pi\)
\(854\) 8.91811e6 0.418435
\(855\) 0 0
\(856\) 3.28176e6 0.153081
\(857\) −3.11758e7 −1.44999 −0.724997 0.688752i \(-0.758159\pi\)
−0.724997 + 0.688752i \(0.758159\pi\)
\(858\) 0 0
\(859\) −1.70113e7 −0.786601 −0.393301 0.919410i \(-0.628667\pi\)
−0.393301 + 0.919410i \(0.628667\pi\)
\(860\) 1.32692e7 0.611785
\(861\) 0 0
\(862\) −1.96338e6 −0.0899985
\(863\) −2.89381e7 −1.32264 −0.661321 0.750103i \(-0.730004\pi\)
−0.661321 + 0.750103i \(0.730004\pi\)
\(864\) 0 0
\(865\) 2.68315e6 0.121928
\(866\) −1.42302e7 −0.644788
\(867\) 0 0
\(868\) 3.38312e7 1.52411
\(869\) −2.69152e6 −0.120906
\(870\) 0 0
\(871\) −7.36637e6 −0.329009
\(872\) 1.94484e7 0.866149
\(873\) 0 0
\(874\) 6.31040e6 0.279433
\(875\) 2.62500e6 0.115907
\(876\) 0 0
\(877\) 3.89173e7 1.70861 0.854307 0.519768i \(-0.173982\pi\)
0.854307 + 0.519768i \(0.173982\pi\)
\(878\) −8.35800e6 −0.365903
\(879\) 0 0
\(880\) 852800. 0.0371228
\(881\) −2.68616e7 −1.16598 −0.582991 0.812478i \(-0.698118\pi\)
−0.582991 + 0.812478i \(0.698118\pi\)
\(882\) 0 0
\(883\) 2.64941e7 1.14353 0.571765 0.820417i \(-0.306259\pi\)
0.571765 + 0.820417i \(0.306259\pi\)
\(884\) 6.25570e6 0.269244
\(885\) 0 0
\(886\) −2.42257e6 −0.103679
\(887\) 3.19935e7 1.36538 0.682688 0.730710i \(-0.260811\pi\)
0.682688 + 0.730710i \(0.260811\pi\)
\(888\) 0 0
\(889\) 1.28567e7 0.545601
\(890\) −5.78450e6 −0.244788
\(891\) 0 0
\(892\) −8.89325e6 −0.374238
\(893\) 1.64560e6 0.0690551
\(894\) 0 0
\(895\) 373500. 0.0155859
\(896\) −3.12883e7 −1.30200
\(897\) 0 0
\(898\) −1.04194e7 −0.431174
\(899\) 3.05660e7 1.26136
\(900\) 0 0
\(901\) 2.03139e7 0.833643
\(902\) 669552. 0.0274011
\(903\) 0 0
\(904\) 1.52609e7 0.621096
\(905\) 5.61545e6 0.227910
\(906\) 0 0
\(907\) −2.12847e6 −0.0859110 −0.0429555 0.999077i \(-0.513677\pi\)
−0.0429555 + 0.999077i \(0.513677\pi\)
\(908\) 5.81986e6 0.234260
\(909\) 0 0
\(910\) −1.41960e6 −0.0568280
\(911\) −2.76348e7 −1.10322 −0.551608 0.834103i \(-0.685986\pi\)
−0.551608 + 0.834103i \(0.685986\pi\)
\(912\) 0 0
\(913\) 1.63467e6 0.0649013
\(914\) 8.99376e6 0.356103
\(915\) 0 0
\(916\) −4.20792e7 −1.65703
\(917\) −3.49957e7 −1.37433
\(918\) 0 0
\(919\) −3.14009e7 −1.22646 −0.613230 0.789904i \(-0.710130\pi\)
−0.613230 + 0.789904i \(0.710130\pi\)
\(920\) 5.56800e6 0.216885
\(921\) 0 0
\(922\) 1.20140e6 0.0465438
\(923\) 3.49627e6 0.135083
\(924\) 0 0
\(925\) −1.43625e6 −0.0551919
\(926\) −3.41315e6 −0.130806
\(927\) 0 0
\(928\) −2.18960e7 −0.834632
\(929\) 2.55910e7 0.972854 0.486427 0.873721i \(-0.338300\pi\)
0.486427 + 0.873721i \(0.338300\pi\)
\(930\) 0 0
\(931\) 1.94089e7 0.733883
\(932\) 4.22930e7 1.59488
\(933\) 0 0
\(934\) 8.06362e6 0.302457
\(935\) −1.71860e6 −0.0642903
\(936\) 0 0
\(937\) 2.29463e7 0.853814 0.426907 0.904295i \(-0.359603\pi\)
0.426907 + 0.904295i \(0.359603\pi\)
\(938\) −1.46456e7 −0.543499
\(939\) 0 0
\(940\) 677600. 0.0250123
\(941\) −3.49096e7 −1.28520 −0.642600 0.766202i \(-0.722144\pi\)
−0.642600 + 0.766202i \(0.722144\pi\)
\(942\) 0 0
\(943\) −1.19489e7 −0.437572
\(944\) 1.92864e6 0.0704403
\(945\) 0 0
\(946\) 1.97142e6 0.0716229
\(947\) −5.00377e6 −0.181310 −0.0906552 0.995882i \(-0.528896\pi\)
−0.0906552 + 0.995882i \(0.528896\pi\)
\(948\) 0 0
\(949\) 4.18883e6 0.150983
\(950\) −2.12500e6 −0.0763924
\(951\) 0 0
\(952\) 2.66515e7 0.953081
\(953\) −1.50869e7 −0.538105 −0.269052 0.963126i \(-0.586710\pi\)
−0.269052 + 0.963126i \(0.586710\pi\)
\(954\) 0 0
\(955\) 3.69880e6 0.131236
\(956\) −1.12795e7 −0.399159
\(957\) 0 0
\(958\) −1.48297e7 −0.522057
\(959\) 2.45216e7 0.860999
\(960\) 0 0
\(961\) 2.30957e7 0.806720
\(962\) 776724. 0.0270601
\(963\) 0 0
\(964\) −5.99654e6 −0.207830
\(965\) −3.48865e6 −0.120598
\(966\) 0 0
\(967\) −1.30422e7 −0.448522 −0.224261 0.974529i \(-0.571997\pi\)
−0.224261 + 0.974529i \(0.571997\pi\)
\(968\) −1.90016e7 −0.651782
\(969\) 0 0
\(970\) −6.38190e6 −0.217781
\(971\) −3.60683e7 −1.22766 −0.613829 0.789439i \(-0.710372\pi\)
−0.613829 + 0.789439i \(0.710372\pi\)
\(972\) 0 0
\(973\) 3.97186e7 1.34497
\(974\) 9.88082e6 0.333730
\(975\) 0 0
\(976\) 1.74116e7 0.585077
\(977\) 8.89616e6 0.298171 0.149086 0.988824i \(-0.452367\pi\)
0.149086 + 0.988824i \(0.452367\pi\)
\(978\) 0 0
\(979\) 6.01588e6 0.200605
\(980\) 7.99190e6 0.265818
\(981\) 0 0
\(982\) −5.51174e6 −0.182394
\(983\) −4.07101e7 −1.34375 −0.671875 0.740665i \(-0.734511\pi\)
−0.671875 + 0.740665i \(0.734511\pi\)
\(984\) 0 0
\(985\) 2.28926e7 0.751802
\(986\) 1.12370e7 0.368093
\(987\) 0 0
\(988\) −8.04440e6 −0.262181
\(989\) −3.51823e7 −1.14376
\(990\) 0 0
\(991\) 1.37772e7 0.445631 0.222815 0.974861i \(-0.428475\pi\)
0.222815 + 0.974861i \(0.428475\pi\)
\(992\) −3.70532e7 −1.19549
\(993\) 0 0
\(994\) 6.95117e6 0.223147
\(995\) 4.28900e6 0.137340
\(996\) 0 0
\(997\) −5.76579e7 −1.83705 −0.918525 0.395363i \(-0.870619\pi\)
−0.918525 + 0.395363i \(0.870619\pi\)
\(998\) 5.21116e6 0.165618
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.6.a.b.1.1 1
3.2 odd 2 195.6.a.a.1.1 1
15.14 odd 2 975.6.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.6.a.a.1.1 1 3.2 odd 2
585.6.a.b.1.1 1 1.1 even 1 trivial
975.6.a.b.1.1 1 15.14 odd 2