Properties

Label 585.2.j.f.451.2
Level $585$
Weight $2$
Character 585.451
Analytic conductor $4.671$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [585,2,Mod(406,585)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(585, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("585.406");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.1714608.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 12x^{4} - 19x^{3} + 30x^{2} - 21x + 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 451.2
Root \(0.500000 - 1.75780i\) of defining polynomial
Character \(\chi\) \(=\) 585.451
Dual form 585.2.j.f.406.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.169938 + 0.294342i) q^{2} +(0.942242 + 1.63201i) q^{4} -1.00000 q^{5} +(-0.330062 - 0.571683i) q^{7} -1.32025 q^{8} +O(q^{10})\) \(q+(-0.169938 + 0.294342i) q^{2} +(0.942242 + 1.63201i) q^{4} -1.00000 q^{5} +(-0.330062 - 0.571683i) q^{7} -1.32025 q^{8} +(0.169938 - 0.294342i) q^{10} +(0.339877 - 0.588684i) q^{11} +(1.93243 + 3.04397i) q^{13} +0.224361 q^{14} +(-1.66012 + 2.87542i) q^{16} +(3.71455 + 6.43378i) q^{17} +(-0.0577581 - 0.100040i) q^{19} +(-0.942242 - 1.63201i) q^{20} +(0.115516 + 0.200080i) q^{22} +(-3.88448 + 6.72812i) q^{23} +1.00000 q^{25} +(-1.22436 + 0.0515075i) q^{26} +(0.621996 - 1.07733i) q^{28} +(2.77230 - 4.80177i) q^{29} -9.97370 q^{31} +(-1.88448 - 3.26402i) q^{32} -2.52498 q^{34} +(0.330062 + 0.571683i) q^{35} +(-4.88448 + 8.46017i) q^{37} +0.0392613 q^{38} +1.32025 q^{40} +(2.11218 - 3.65840i) q^{41} +(0.272303 + 0.471643i) q^{43} +1.28098 q^{44} +(-1.32025 - 2.28673i) q^{46} +5.01963 q^{47} +(3.28212 - 5.68480i) q^{49} +(-0.169938 + 0.294342i) q^{50} +(-3.14697 + 6.02189i) q^{52} -0.679754 q^{53} +(-0.339877 + 0.588684i) q^{55} +(0.435763 + 0.754763i) q^{56} +(0.942242 + 1.63201i) q^{58} +(1.11218 + 1.92635i) q^{59} +(2.10236 + 3.64140i) q^{61} +(1.69491 - 2.93568i) q^{62} -5.35951 q^{64} +(-1.93243 - 3.04397i) q^{65} +(3.81691 - 6.61108i) q^{67} +(-7.00000 + 12.1244i) q^{68} -0.224361 q^{70} +(3.65679 + 6.33374i) q^{71} +8.01963 q^{73} +(-1.66012 - 2.87542i) q^{74} +(0.108844 - 0.188524i) q^{76} -0.448721 q^{77} +9.97370 q^{79} +(1.66012 - 2.87542i) q^{80} +(0.717881 + 1.24341i) q^{82} -1.76897 q^{83} +(-3.71455 - 6.43378i) q^{85} -0.185099 q^{86} +(-0.448721 + 0.777208i) q^{88} +(6.77230 - 11.7300i) q^{89} +(1.10236 - 2.10943i) q^{91} -14.6405 q^{92} +(-0.853028 + 1.47749i) q^{94} +(0.0577581 + 0.100040i) q^{95} +(-4.95206 - 8.57721i) q^{97} +(1.11552 + 1.93213i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} - 6 q^{5} - 3 q^{7} - 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{4} - 6 q^{5} - 3 q^{7} - 12 q^{8} + 3 q^{13} - 24 q^{14} - 12 q^{16} - 12 q^{19} + 6 q^{20} + 24 q^{22} + 6 q^{25} + 18 q^{26} - 12 q^{28} + 6 q^{29} + 6 q^{31} + 12 q^{32} + 3 q^{35} - 6 q^{37} - 12 q^{38} + 12 q^{40} - 9 q^{43} + 24 q^{44} - 12 q^{46} + 24 q^{47} + 6 q^{49} + 12 q^{52} + 30 q^{56} - 6 q^{58} - 6 q^{59} + 3 q^{61} - 6 q^{62} - 24 q^{64} - 3 q^{65} - 9 q^{67} - 42 q^{68} + 24 q^{70} - 12 q^{71} + 42 q^{73} - 12 q^{74} - 48 q^{76} + 48 q^{77} - 6 q^{79} + 12 q^{80} + 18 q^{82} + 36 q^{83} + 12 q^{86} + 48 q^{88} + 30 q^{89} - 3 q^{91} - 96 q^{92} - 36 q^{94} + 12 q^{95} - 15 q^{97} + 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.169938 + 0.294342i −0.120165 + 0.208131i −0.919832 0.392311i \(-0.871676\pi\)
0.799668 + 0.600443i \(0.205009\pi\)
\(3\) 0 0
\(4\) 0.942242 + 1.63201i 0.471121 + 0.816005i
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −0.330062 0.571683i −0.124752 0.216076i 0.796884 0.604132i \(-0.206480\pi\)
−0.921636 + 0.388056i \(0.873147\pi\)
\(8\) −1.32025 −0.466778
\(9\) 0 0
\(10\) 0.169938 0.294342i 0.0537393 0.0930791i
\(11\) 0.339877 0.588684i 0.102477 0.177495i −0.810228 0.586115i \(-0.800657\pi\)
0.912704 + 0.408620i \(0.133990\pi\)
\(12\) 0 0
\(13\) 1.93243 + 3.04397i 0.535959 + 0.844244i
\(14\) 0.224361 0.0599629
\(15\) 0 0
\(16\) −1.66012 + 2.87542i −0.415031 + 0.718854i
\(17\) 3.71455 + 6.43378i 0.900910 + 1.56042i 0.826316 + 0.563207i \(0.190433\pi\)
0.0745938 + 0.997214i \(0.476234\pi\)
\(18\) 0 0
\(19\) −0.0577581 0.100040i −0.0132506 0.0229508i 0.859324 0.511431i \(-0.170885\pi\)
−0.872575 + 0.488481i \(0.837551\pi\)
\(20\) −0.942242 1.63201i −0.210692 0.364929i
\(21\) 0 0
\(22\) 0.115516 + 0.200080i 0.0246282 + 0.0426572i
\(23\) −3.88448 + 6.72812i −0.809971 + 1.40291i 0.102913 + 0.994690i \(0.467184\pi\)
−0.912883 + 0.408220i \(0.866150\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −1.22436 + 0.0515075i −0.240117 + 0.0101015i
\(27\) 0 0
\(28\) 0.621996 1.07733i 0.117546 0.203596i
\(29\) 2.77230 4.80177i 0.514804 0.891666i −0.485049 0.874487i \(-0.661198\pi\)
0.999852 0.0171792i \(-0.00546857\pi\)
\(30\) 0 0
\(31\) −9.97370 −1.79133 −0.895664 0.444730i \(-0.853299\pi\)
−0.895664 + 0.444730i \(0.853299\pi\)
\(32\) −1.88448 3.26402i −0.333133 0.577003i
\(33\) 0 0
\(34\) −2.52498 −0.433030
\(35\) 0.330062 + 0.571683i 0.0557906 + 0.0966321i
\(36\) 0 0
\(37\) −4.88448 + 8.46017i −0.803004 + 1.39084i 0.114626 + 0.993409i \(0.463433\pi\)
−0.917630 + 0.397435i \(0.869900\pi\)
\(38\) 0.0392613 0.00636903
\(39\) 0 0
\(40\) 1.32025 0.208749
\(41\) 2.11218 3.65840i 0.329867 0.571347i −0.652618 0.757687i \(-0.726329\pi\)
0.982485 + 0.186340i \(0.0596627\pi\)
\(42\) 0 0
\(43\) 0.272303 + 0.471643i 0.0415259 + 0.0719249i 0.886041 0.463606i \(-0.153445\pi\)
−0.844515 + 0.535531i \(0.820111\pi\)
\(44\) 1.28098 0.193116
\(45\) 0 0
\(46\) −1.32025 2.28673i −0.194660 0.337160i
\(47\) 5.01963 0.732188 0.366094 0.930578i \(-0.380695\pi\)
0.366094 + 0.930578i \(0.380695\pi\)
\(48\) 0 0
\(49\) 3.28212 5.68480i 0.468874 0.812114i
\(50\) −0.169938 + 0.294342i −0.0240329 + 0.0416262i
\(51\) 0 0
\(52\) −3.14697 + 6.02189i −0.436406 + 0.835086i
\(53\) −0.679754 −0.0933714 −0.0466857 0.998910i \(-0.514866\pi\)
−0.0466857 + 0.998910i \(0.514866\pi\)
\(54\) 0 0
\(55\) −0.339877 + 0.588684i −0.0458290 + 0.0793781i
\(56\) 0.435763 + 0.754763i 0.0582312 + 0.100859i
\(57\) 0 0
\(58\) 0.942242 + 1.63201i 0.123722 + 0.214294i
\(59\) 1.11218 + 1.92635i 0.144794 + 0.250790i 0.929296 0.369336i \(-0.120415\pi\)
−0.784502 + 0.620126i \(0.787082\pi\)
\(60\) 0 0
\(61\) 2.10236 + 3.64140i 0.269180 + 0.466234i 0.968650 0.248428i \(-0.0799139\pi\)
−0.699470 + 0.714662i \(0.746581\pi\)
\(62\) 1.69491 2.93568i 0.215254 0.372832i
\(63\) 0 0
\(64\) −5.35951 −0.669938
\(65\) −1.93243 3.04397i −0.239688 0.377557i
\(66\) 0 0
\(67\) 3.81691 6.61108i 0.466310 0.807672i −0.532950 0.846147i \(-0.678917\pi\)
0.999260 + 0.0384746i \(0.0122499\pi\)
\(68\) −7.00000 + 12.1244i −0.848875 + 1.47029i
\(69\) 0 0
\(70\) −0.224361 −0.0268162
\(71\) 3.65679 + 6.33374i 0.433981 + 0.751677i 0.997212 0.0746227i \(-0.0237752\pi\)
−0.563231 + 0.826299i \(0.690442\pi\)
\(72\) 0 0
\(73\) 8.01963 0.938627 0.469313 0.883032i \(-0.344501\pi\)
0.469313 + 0.883032i \(0.344501\pi\)
\(74\) −1.66012 2.87542i −0.192985 0.334261i
\(75\) 0 0
\(76\) 0.108844 0.188524i 0.0124853 0.0216252i
\(77\) −0.448721 −0.0511365
\(78\) 0 0
\(79\) 9.97370 1.12213 0.561064 0.827772i \(-0.310392\pi\)
0.561064 + 0.827772i \(0.310392\pi\)
\(80\) 1.66012 2.87542i 0.185607 0.321481i
\(81\) 0 0
\(82\) 0.717881 + 1.24341i 0.0792767 + 0.137311i
\(83\) −1.76897 −0.194169 −0.0970847 0.995276i \(-0.530952\pi\)
−0.0970847 + 0.995276i \(0.530952\pi\)
\(84\) 0 0
\(85\) −3.71455 6.43378i −0.402899 0.697842i
\(86\) −0.185099 −0.0199598
\(87\) 0 0
\(88\) −0.448721 + 0.777208i −0.0478338 + 0.0828506i
\(89\) 6.77230 11.7300i 0.717863 1.24337i −0.243982 0.969780i \(-0.578454\pi\)
0.961845 0.273595i \(-0.0882128\pi\)
\(90\) 0 0
\(91\) 1.10236 2.10943i 0.115559 0.221129i
\(92\) −14.6405 −1.52638
\(93\) 0 0
\(94\) −0.853028 + 1.47749i −0.0879831 + 0.152391i
\(95\) 0.0577581 + 0.100040i 0.00592586 + 0.0102639i
\(96\) 0 0
\(97\) −4.95206 8.57721i −0.502805 0.870884i −0.999995 0.00324223i \(-0.998968\pi\)
0.497190 0.867642i \(-0.334365\pi\)
\(98\) 1.11552 + 1.93213i 0.112684 + 0.195175i
\(99\) 0 0
\(100\) 0.942242 + 1.63201i 0.0942242 + 0.163201i
\(101\) −4.67975 + 8.10557i −0.465653 + 0.806534i −0.999231 0.0392165i \(-0.987514\pi\)
0.533578 + 0.845751i \(0.320847\pi\)
\(102\) 0 0
\(103\) 4.50535 0.443925 0.221962 0.975055i \(-0.428754\pi\)
0.221962 + 0.975055i \(0.428754\pi\)
\(104\) −2.55128 4.01878i −0.250173 0.394074i
\(105\) 0 0
\(106\) 0.115516 0.200080i 0.0112199 0.0194335i
\(107\) 0.285455 0.494422i 0.0275960 0.0477976i −0.851898 0.523708i \(-0.824548\pi\)
0.879494 + 0.475911i \(0.157881\pi\)
\(108\) 0 0
\(109\) 15.4095 1.47596 0.737979 0.674823i \(-0.235780\pi\)
0.737979 + 0.674823i \(0.235780\pi\)
\(110\) −0.115516 0.200080i −0.0110140 0.0190769i
\(111\) 0 0
\(112\) 2.19177 0.207103
\(113\) −2.66012 4.60747i −0.250243 0.433434i 0.713349 0.700809i \(-0.247177\pi\)
−0.963593 + 0.267374i \(0.913844\pi\)
\(114\) 0 0
\(115\) 3.88448 6.72812i 0.362230 0.627401i
\(116\) 10.4487 0.970139
\(117\) 0 0
\(118\) −0.756009 −0.0695962
\(119\) 2.45206 4.24709i 0.224780 0.389330i
\(120\) 0 0
\(121\) 5.26897 + 9.12612i 0.478997 + 0.829647i
\(122\) −1.42909 −0.129384
\(123\) 0 0
\(124\) −9.39764 16.2772i −0.843933 1.46173i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 6.00982 10.4093i 0.533285 0.923676i −0.465959 0.884806i \(-0.654291\pi\)
0.999244 0.0388704i \(-0.0123759\pi\)
\(128\) 4.67975 8.10557i 0.413636 0.716438i
\(129\) 0 0
\(130\) 1.22436 0.0515075i 0.107384 0.00451751i
\(131\) −10.9041 −0.952697 −0.476348 0.879257i \(-0.658040\pi\)
−0.476348 + 0.879257i \(0.658040\pi\)
\(132\) 0 0
\(133\) −0.0381275 + 0.0660387i −0.00330607 + 0.00572629i
\(134\) 1.29728 + 2.24695i 0.112068 + 0.194107i
\(135\) 0 0
\(136\) −4.90411 8.49418i −0.420524 0.728370i
\(137\) 1.69491 + 2.93568i 0.144806 + 0.250812i 0.929301 0.369324i \(-0.120411\pi\)
−0.784494 + 0.620136i \(0.787077\pi\)
\(138\) 0 0
\(139\) −7.40411 12.8243i −0.628009 1.08774i −0.987951 0.154768i \(-0.950537\pi\)
0.359942 0.932975i \(-0.382796\pi\)
\(140\) −0.621996 + 1.07733i −0.0525682 + 0.0910508i
\(141\) 0 0
\(142\) −2.48571 −0.208597
\(143\) 2.44872 0.103015i 0.204772 0.00861455i
\(144\) 0 0
\(145\) −2.77230 + 4.80177i −0.230227 + 0.398765i
\(146\) −1.36284 + 2.36051i −0.112790 + 0.195358i
\(147\) 0 0
\(148\) −18.4095 −1.51325
\(149\) −8.54461 14.7997i −0.700001 1.21244i −0.968465 0.249148i \(-0.919849\pi\)
0.268464 0.963290i \(-0.413484\pi\)
\(150\) 0 0
\(151\) 13.0130 1.05898 0.529490 0.848316i \(-0.322383\pi\)
0.529490 + 0.848316i \(0.322383\pi\)
\(152\) 0.0762550 + 0.132077i 0.00618510 + 0.0107129i
\(153\) 0 0
\(154\) 0.0762550 0.132077i 0.00614480 0.0106431i
\(155\) 9.97370 0.801107
\(156\) 0 0
\(157\) −0.775639 −0.0619028 −0.0309514 0.999521i \(-0.509854\pi\)
−0.0309514 + 0.999521i \(0.509854\pi\)
\(158\) −1.69491 + 2.93568i −0.134840 + 0.233550i
\(159\) 0 0
\(160\) 1.88448 + 3.26402i 0.148982 + 0.258044i
\(161\) 5.12847 0.404180
\(162\) 0 0
\(163\) −6.09903 10.5638i −0.477713 0.827423i 0.521961 0.852969i \(-0.325201\pi\)
−0.999674 + 0.0255466i \(0.991867\pi\)
\(164\) 7.96074 0.621629
\(165\) 0 0
\(166\) 0.300616 0.520681i 0.0233323 0.0404127i
\(167\) −0.795270 + 1.37745i −0.0615398 + 0.106590i −0.895154 0.445757i \(-0.852934\pi\)
0.833614 + 0.552347i \(0.186268\pi\)
\(168\) 0 0
\(169\) −5.53146 + 11.7645i −0.425497 + 0.904960i
\(170\) 2.52498 0.193657
\(171\) 0 0
\(172\) −0.513151 + 0.888804i −0.0391274 + 0.0677707i
\(173\) 6.37467 + 11.0412i 0.484657 + 0.839451i 0.999845 0.0176268i \(-0.00561108\pi\)
−0.515188 + 0.857077i \(0.672278\pi\)
\(174\) 0 0
\(175\) −0.330062 0.571683i −0.0249503 0.0432152i
\(176\) 1.12847 + 1.95458i 0.0850620 + 0.147332i
\(177\) 0 0
\(178\) 2.30175 + 3.98675i 0.172523 + 0.298819i
\(179\) 8.88115 15.3826i 0.663808 1.14975i −0.315799 0.948826i \(-0.602272\pi\)
0.979607 0.200923i \(-0.0643942\pi\)
\(180\) 0 0
\(181\) 7.02630 0.522261 0.261130 0.965304i \(-0.415905\pi\)
0.261130 + 0.965304i \(0.415905\pi\)
\(182\) 0.433560 + 0.682946i 0.0321376 + 0.0506233i
\(183\) 0 0
\(184\) 5.12847 8.88278i 0.378076 0.654847i
\(185\) 4.88448 8.46017i 0.359114 0.622004i
\(186\) 0 0
\(187\) 5.04995 0.369289
\(188\) 4.72971 + 8.19209i 0.344949 + 0.597470i
\(189\) 0 0
\(190\) −0.0392613 −0.00284832
\(191\) −6.97703 12.0846i −0.504840 0.874409i −0.999984 0.00559828i \(-0.998218\pi\)
0.495144 0.868811i \(-0.335115\pi\)
\(192\) 0 0
\(193\) −11.8747 + 20.5675i −0.854757 + 1.48048i 0.0221126 + 0.999755i \(0.492961\pi\)
−0.876870 + 0.480728i \(0.840373\pi\)
\(194\) 3.36618 0.241678
\(195\) 0 0
\(196\) 12.3702 0.883586
\(197\) 7.90411 13.6903i 0.563145 0.975395i −0.434075 0.900877i \(-0.642925\pi\)
0.997220 0.0745186i \(-0.0237420\pi\)
\(198\) 0 0
\(199\) −4.38448 7.59415i −0.310808 0.538335i 0.667730 0.744404i \(-0.267266\pi\)
−0.978537 + 0.206069i \(0.933933\pi\)
\(200\) −1.32025 −0.0933555
\(201\) 0 0
\(202\) −1.59054 2.75490i −0.111910 0.193834i
\(203\) −3.66012 −0.256890
\(204\) 0 0
\(205\) −2.11218 + 3.65840i −0.147521 + 0.255514i
\(206\) −0.765631 + 1.32611i −0.0533441 + 0.0923946i
\(207\) 0 0
\(208\) −11.9607 + 0.503175i −0.829328 + 0.0348889i
\(209\) −0.0785226 −0.00543152
\(210\) 0 0
\(211\) −4.40411 + 7.62815i −0.303192 + 0.525143i −0.976857 0.213893i \(-0.931386\pi\)
0.673665 + 0.739037i \(0.264719\pi\)
\(212\) −0.640492 1.10937i −0.0439892 0.0761915i
\(213\) 0 0
\(214\) 0.0970195 + 0.168043i 0.00663211 + 0.0114872i
\(215\) −0.272303 0.471643i −0.0185709 0.0321658i
\(216\) 0 0
\(217\) 3.29193 + 5.70180i 0.223471 + 0.387063i
\(218\) −2.61866 + 4.53565i −0.177358 + 0.307193i
\(219\) 0 0
\(220\) −1.28098 −0.0863640
\(221\) −12.4061 + 23.7398i −0.834526 + 1.59691i
\(222\) 0 0
\(223\) −5.01963 + 8.69426i −0.336139 + 0.582210i −0.983703 0.179801i \(-0.942455\pi\)
0.647564 + 0.762011i \(0.275788\pi\)
\(224\) −1.24399 + 2.15466i −0.0831177 + 0.143964i
\(225\) 0 0
\(226\) 1.80823 0.120282
\(227\) 0.605701 + 1.04910i 0.0402018 + 0.0696315i 0.885426 0.464780i \(-0.153867\pi\)
−0.845224 + 0.534412i \(0.820533\pi\)
\(228\) 0 0
\(229\) 19.2440 1.27168 0.635839 0.771821i \(-0.280654\pi\)
0.635839 + 0.771821i \(0.280654\pi\)
\(230\) 1.32025 + 2.28673i 0.0870545 + 0.150783i
\(231\) 0 0
\(232\) −3.66012 + 6.33952i −0.240299 + 0.416210i
\(233\) 23.9081 1.56627 0.783137 0.621849i \(-0.213618\pi\)
0.783137 + 0.621849i \(0.213618\pi\)
\(234\) 0 0
\(235\) −5.01963 −0.327445
\(236\) −2.09589 + 3.63018i −0.136431 + 0.236305i
\(237\) 0 0
\(238\) 0.833398 + 1.44349i 0.0540211 + 0.0935674i
\(239\) −18.6798 −1.20829 −0.604146 0.796873i \(-0.706486\pi\)
−0.604146 + 0.796873i \(0.706486\pi\)
\(240\) 0 0
\(241\) −3.05776 5.29619i −0.196968 0.341158i 0.750576 0.660784i \(-0.229776\pi\)
−0.947544 + 0.319626i \(0.896443\pi\)
\(242\) −3.58160 −0.230234
\(243\) 0 0
\(244\) −3.96187 + 6.86216i −0.253633 + 0.439305i
\(245\) −3.28212 + 5.68480i −0.209687 + 0.363188i
\(246\) 0 0
\(247\) 0.192905 0.369134i 0.0122743 0.0234874i
\(248\) 13.1677 0.836152
\(249\) 0 0
\(250\) 0.169938 0.294342i 0.0107479 0.0186158i
\(251\) 1.67975 + 2.90942i 0.106025 + 0.183641i 0.914157 0.405361i \(-0.132854\pi\)
−0.808131 + 0.589002i \(0.799521\pi\)
\(252\) 0 0
\(253\) 2.64049 + 4.57347i 0.166006 + 0.287531i
\(254\) 2.04260 + 3.53788i 0.128164 + 0.221986i
\(255\) 0 0
\(256\) −3.76897 6.52804i −0.235560 0.408003i
\(257\) −5.05442 + 8.75452i −0.315286 + 0.546092i −0.979498 0.201452i \(-0.935434\pi\)
0.664212 + 0.747544i \(0.268767\pi\)
\(258\) 0 0
\(259\) 6.44872 0.400704
\(260\) 3.14697 6.02189i 0.195167 0.373462i
\(261\) 0 0
\(262\) 1.85303 3.20954i 0.114480 0.198286i
\(263\) −11.2592 + 19.5014i −0.694269 + 1.20251i 0.276157 + 0.961112i \(0.410939\pi\)
−0.970426 + 0.241397i \(0.922394\pi\)
\(264\) 0 0
\(265\) 0.679754 0.0417569
\(266\) −0.0129587 0.0224450i −0.000794546 0.00137619i
\(267\) 0 0
\(268\) 14.3858 0.878753
\(269\) 4.24733 + 7.35659i 0.258964 + 0.448539i 0.965965 0.258674i \(-0.0832855\pi\)
−0.707001 + 0.707213i \(0.749952\pi\)
\(270\) 0 0
\(271\) −4.68510 + 8.11483i −0.284600 + 0.492941i −0.972512 0.232853i \(-0.925194\pi\)
0.687912 + 0.725794i \(0.258527\pi\)
\(272\) −24.6664 −1.49562
\(273\) 0 0
\(274\) −1.15212 −0.0696024
\(275\) 0.339877 0.588684i 0.0204953 0.0354990i
\(276\) 0 0
\(277\) −0.359508 0.622685i −0.0216007 0.0374135i 0.855023 0.518590i \(-0.173543\pi\)
−0.876624 + 0.481177i \(0.840210\pi\)
\(278\) 5.03297 0.301858
\(279\) 0 0
\(280\) −0.435763 0.754763i −0.0260418 0.0451057i
\(281\) −1.54461 −0.0921435 −0.0460718 0.998938i \(-0.514670\pi\)
−0.0460718 + 0.998938i \(0.514670\pi\)
\(282\) 0 0
\(283\) 9.05977 15.6920i 0.538547 0.932791i −0.460435 0.887693i \(-0.652307\pi\)
0.998983 0.0450980i \(-0.0143600\pi\)
\(284\) −6.89116 + 11.9358i −0.408915 + 0.708261i
\(285\) 0 0
\(286\) −0.385810 + 0.738268i −0.0228134 + 0.0436547i
\(287\) −2.78860 −0.164606
\(288\) 0 0
\(289\) −19.0957 + 33.0747i −1.12328 + 1.94557i
\(290\) −0.942242 1.63201i −0.0553303 0.0958350i
\(291\) 0 0
\(292\) 7.55643 + 13.0881i 0.442207 + 0.765924i
\(293\) −15.2525 26.4181i −0.891059 1.54336i −0.838607 0.544737i \(-0.816630\pi\)
−0.0524523 0.998623i \(-0.516704\pi\)
\(294\) 0 0
\(295\) −1.11218 1.92635i −0.0647536 0.112157i
\(296\) 6.44872 11.1695i 0.374824 0.649215i
\(297\) 0 0
\(298\) 5.80823 0.336462
\(299\) −27.9867 + 1.17737i −1.61851 + 0.0680890i
\(300\) 0 0
\(301\) 0.179754 0.311343i 0.0103608 0.0179455i
\(302\) −2.21140 + 3.83026i −0.127252 + 0.220407i
\(303\) 0 0
\(304\) 0.383543 0.0219977
\(305\) −2.10236 3.64140i −0.120381 0.208506i
\(306\) 0 0
\(307\) −4.77564 −0.272560 −0.136280 0.990670i \(-0.543515\pi\)
−0.136280 + 0.990670i \(0.543515\pi\)
\(308\) −0.422804 0.732318i −0.0240915 0.0417277i
\(309\) 0 0
\(310\) −1.69491 + 2.93568i −0.0962647 + 0.166735i
\(311\) −30.5812 −1.73410 −0.867051 0.498220i \(-0.833987\pi\)
−0.867051 + 0.498220i \(0.833987\pi\)
\(312\) 0 0
\(313\) −26.7230 −1.51048 −0.755238 0.655451i \(-0.772479\pi\)
−0.755238 + 0.655451i \(0.772479\pi\)
\(314\) 0.131811 0.228303i 0.00743852 0.0128839i
\(315\) 0 0
\(316\) 9.39764 + 16.2772i 0.528658 + 0.915663i
\(317\) 20.6271 1.15854 0.579268 0.815137i \(-0.303338\pi\)
0.579268 + 0.815137i \(0.303338\pi\)
\(318\) 0 0
\(319\) −1.88448 3.26402i −0.105511 0.182750i
\(320\) 5.35951 0.299606
\(321\) 0 0
\(322\) −0.871525 + 1.50953i −0.0485682 + 0.0841226i
\(323\) 0.429091 0.743207i 0.0238752 0.0413531i
\(324\) 0 0
\(325\) 1.93243 + 3.04397i 0.107192 + 0.168849i
\(326\) 4.14584 0.229617
\(327\) 0 0
\(328\) −2.78860 + 4.82999i −0.153975 + 0.266692i
\(329\) −1.65679 2.86964i −0.0913416 0.158208i
\(330\) 0 0
\(331\) −2.68510 4.65073i −0.147586 0.255627i 0.782749 0.622338i \(-0.213817\pi\)
−0.930335 + 0.366711i \(0.880484\pi\)
\(332\) −1.66680 2.88697i −0.0914773 0.158443i
\(333\) 0 0
\(334\) −0.270294 0.468163i −0.0147898 0.0256167i
\(335\) −3.81691 + 6.61108i −0.208540 + 0.361202i
\(336\) 0 0
\(337\) 28.7623 1.56678 0.783391 0.621529i \(-0.213488\pi\)
0.783391 + 0.621529i \(0.213488\pi\)
\(338\) −2.52277 3.62738i −0.137221 0.197303i
\(339\) 0 0
\(340\) 7.00000 12.1244i 0.379628 0.657536i
\(341\) −3.38983 + 5.87136i −0.183570 + 0.317952i
\(342\) 0 0
\(343\) −8.95407 −0.483474
\(344\) −0.359508 0.622685i −0.0193833 0.0335729i
\(345\) 0 0
\(346\) −4.33320 −0.232955
\(347\) 11.1981 + 19.3956i 0.601143 + 1.04121i 0.992648 + 0.121035i \(0.0386212\pi\)
−0.391505 + 0.920176i \(0.628045\pi\)
\(348\) 0 0
\(349\) 5.98685 10.3695i 0.320469 0.555068i −0.660116 0.751164i \(-0.729493\pi\)
0.980585 + 0.196096i \(0.0628263\pi\)
\(350\) 0.224361 0.0119926
\(351\) 0 0
\(352\) −2.56197 −0.136553
\(353\) −8.51830 + 14.7541i −0.453384 + 0.785283i −0.998594 0.0530161i \(-0.983117\pi\)
0.545210 + 0.838299i \(0.316450\pi\)
\(354\) 0 0
\(355\) −3.65679 6.33374i −0.194082 0.336160i
\(356\) 25.5246 1.35280
\(357\) 0 0
\(358\) 3.01850 + 5.22819i 0.159533 + 0.276318i
\(359\) 35.0825 1.85159 0.925793 0.378031i \(-0.123399\pi\)
0.925793 + 0.378031i \(0.123399\pi\)
\(360\) 0 0
\(361\) 9.49333 16.4429i 0.499649 0.865417i
\(362\) −1.19404 + 2.06814i −0.0627573 + 0.108699i
\(363\) 0 0
\(364\) 4.48131 0.188524i 0.234884 0.00988133i
\(365\) −8.01963 −0.419767
\(366\) 0 0
\(367\) −10.0413 + 17.3920i −0.524150 + 0.907855i 0.475455 + 0.879740i \(0.342284\pi\)
−0.999605 + 0.0281143i \(0.991050\pi\)
\(368\) −12.8974 22.3390i −0.672326 1.16450i
\(369\) 0 0
\(370\) 1.66012 + 2.87542i 0.0863057 + 0.149486i
\(371\) 0.224361 + 0.388604i 0.0116482 + 0.0201753i
\(372\) 0 0
\(373\) 11.7395 + 20.3334i 0.607849 + 1.05283i 0.991594 + 0.129387i \(0.0413009\pi\)
−0.383745 + 0.923439i \(0.625366\pi\)
\(374\) −0.858181 + 1.48641i −0.0443755 + 0.0768606i
\(375\) 0 0
\(376\) −6.62715 −0.341769
\(377\) 19.9737 0.840272i 1.02870 0.0432762i
\(378\) 0 0
\(379\) −10.5707 + 18.3090i −0.542981 + 0.940471i 0.455750 + 0.890108i \(0.349371\pi\)
−0.998731 + 0.0503631i \(0.983962\pi\)
\(380\) −0.108844 + 0.188524i −0.00558359 + 0.00967107i
\(381\) 0 0
\(382\) 4.74266 0.242656
\(383\) 0.869323 + 1.50571i 0.0444203 + 0.0769383i 0.887381 0.461037i \(-0.152523\pi\)
−0.842960 + 0.537976i \(0.819189\pi\)
\(384\) 0 0
\(385\) 0.448721 0.0228689
\(386\) −4.03593 6.99043i −0.205423 0.355803i
\(387\) 0 0
\(388\) 9.33207 16.1636i 0.473764 0.820584i
\(389\) 26.6664 1.35204 0.676020 0.736883i \(-0.263703\pi\)
0.676020 + 0.736883i \(0.263703\pi\)
\(390\) 0 0
\(391\) −57.7164 −2.91884
\(392\) −4.33320 + 7.50533i −0.218860 + 0.379076i
\(393\) 0 0
\(394\) 2.68643 + 4.65303i 0.135340 + 0.234416i
\(395\) −9.97370 −0.501831
\(396\) 0 0
\(397\) −7.27230 12.5960i −0.364986 0.632175i 0.623788 0.781594i \(-0.285593\pi\)
−0.988774 + 0.149419i \(0.952260\pi\)
\(398\) 2.98037 0.149392
\(399\) 0 0
\(400\) −1.66012 + 2.87542i −0.0830062 + 0.143771i
\(401\) −4.18510 + 7.24880i −0.208994 + 0.361988i −0.951398 0.307964i \(-0.900352\pi\)
0.742404 + 0.669952i \(0.233686\pi\)
\(402\) 0 0
\(403\) −19.2734 30.3596i −0.960078 1.51232i
\(404\) −17.6378 −0.877515
\(405\) 0 0
\(406\) 0.621996 1.07733i 0.0308691 0.0534669i
\(407\) 3.32025 + 5.75084i 0.164578 + 0.285058i
\(408\) 0 0
\(409\) −8.62734 14.9430i −0.426595 0.738883i 0.569973 0.821663i \(-0.306954\pi\)
−0.996568 + 0.0827798i \(0.973620\pi\)
\(410\) −0.717881 1.24341i −0.0354536 0.0614075i
\(411\) 0 0
\(412\) 4.24513 + 7.35277i 0.209142 + 0.362245i
\(413\) 0.734176 1.27163i 0.0361264 0.0625728i
\(414\) 0 0
\(415\) 1.76897 0.0868352
\(416\) 6.29394 12.0438i 0.308586 0.590495i
\(417\) 0 0
\(418\) 0.0133440 0.0231125i 0.000652677 0.00113047i
\(419\) 6.43243 11.1413i 0.314245 0.544288i −0.665032 0.746815i \(-0.731582\pi\)
0.979277 + 0.202527i \(0.0649155\pi\)
\(420\) 0 0
\(421\) 24.5616 1.19706 0.598529 0.801101i \(-0.295752\pi\)
0.598529 + 0.801101i \(0.295752\pi\)
\(422\) −1.49686 2.59263i −0.0728658 0.126207i
\(423\) 0 0
\(424\) 0.897442 0.0435837
\(425\) 3.71455 + 6.43378i 0.180182 + 0.312084i
\(426\) 0 0
\(427\) 1.38782 2.40377i 0.0671613 0.116327i
\(428\) 1.07587 0.0520041
\(429\) 0 0
\(430\) 0.185099 0.00892628
\(431\) 12.3898 21.4598i 0.596797 1.03368i −0.396493 0.918038i \(-0.629773\pi\)
0.993291 0.115645i \(-0.0368936\pi\)
\(432\) 0 0
\(433\) 7.02945 + 12.1754i 0.337814 + 0.585110i 0.984021 0.178051i \(-0.0569793\pi\)
−0.646208 + 0.763162i \(0.723646\pi\)
\(434\) −2.23770 −0.107413
\(435\) 0 0
\(436\) 14.5194 + 25.1484i 0.695355 + 1.20439i
\(437\) 0.897442 0.0429305
\(438\) 0 0
\(439\) −10.4226 + 18.0525i −0.497444 + 0.861598i −0.999996 0.00294880i \(-0.999061\pi\)
0.502552 + 0.864547i \(0.332395\pi\)
\(440\) 0.448721 0.777208i 0.0213919 0.0370519i
\(441\) 0 0
\(442\) −4.87933 7.68594i −0.232086 0.365583i
\(443\) 11.4291 0.543012 0.271506 0.962437i \(-0.412478\pi\)
0.271506 + 0.962437i \(0.412478\pi\)
\(444\) 0 0
\(445\) −6.77230 + 11.7300i −0.321038 + 0.556054i
\(446\) −1.70606 2.95498i −0.0807841 0.139922i
\(447\) 0 0
\(448\) 1.76897 + 3.06394i 0.0835759 + 0.144758i
\(449\) 12.9541 + 22.4371i 0.611340 + 1.05887i 0.991015 + 0.133752i \(0.0427026\pi\)
−0.379675 + 0.925120i \(0.623964\pi\)
\(450\) 0 0
\(451\) −1.43576 2.48681i −0.0676074 0.117099i
\(452\) 5.01296 8.68270i 0.235790 0.408400i
\(453\) 0 0
\(454\) −0.411728 −0.0193233
\(455\) −1.10236 + 2.10943i −0.0516797 + 0.0988917i
\(456\) 0 0
\(457\) −2.95206 + 5.11311i −0.138091 + 0.239181i −0.926774 0.375619i \(-0.877430\pi\)
0.788683 + 0.614800i \(0.210763\pi\)
\(458\) −3.27029 + 5.66432i −0.152811 + 0.264676i
\(459\) 0 0
\(460\) 14.6405 0.682616
\(461\) −7.74600 13.4165i −0.360767 0.624867i 0.627320 0.778762i \(-0.284152\pi\)
−0.988087 + 0.153894i \(0.950818\pi\)
\(462\) 0 0
\(463\) 17.4420 0.810601 0.405300 0.914184i \(-0.367167\pi\)
0.405300 + 0.914184i \(0.367167\pi\)
\(464\) 9.20473 + 15.9431i 0.427319 + 0.740138i
\(465\) 0 0
\(466\) −4.06291 + 7.03717i −0.188211 + 0.325991i
\(467\) 20.4790 0.947657 0.473829 0.880617i \(-0.342872\pi\)
0.473829 + 0.880617i \(0.342872\pi\)
\(468\) 0 0
\(469\) −5.03926 −0.232691
\(470\) 0.853028 1.47749i 0.0393473 0.0681514i
\(471\) 0 0
\(472\) −1.46835 2.54326i −0.0675864 0.117063i
\(473\) 0.370199 0.0170217
\(474\) 0 0
\(475\) −0.0577581 0.100040i −0.00265013 0.00459015i
\(476\) 9.24172 0.423594
\(477\) 0 0
\(478\) 3.17441 5.49824i 0.145194 0.251483i
\(479\) −20.4953 + 35.4990i −0.936456 + 1.62199i −0.164439 + 0.986387i \(0.552581\pi\)
−0.772017 + 0.635602i \(0.780752\pi\)
\(480\) 0 0
\(481\) −35.1914 + 1.48046i −1.60459 + 0.0675033i
\(482\) 2.07852 0.0946741
\(483\) 0 0
\(484\) −9.92928 + 17.1980i −0.451331 + 0.781728i
\(485\) 4.95206 + 8.57721i 0.224861 + 0.389471i
\(486\) 0 0
\(487\) −12.0315 20.8391i −0.545197 0.944309i −0.998594 0.0530008i \(-0.983121\pi\)
0.453397 0.891309i \(-0.350212\pi\)
\(488\) −2.77564 4.80755i −0.125647 0.217627i
\(489\) 0 0
\(490\) −1.11552 1.93213i −0.0503939 0.0872848i
\(491\) 18.3865 31.8463i 0.829771 1.43721i −0.0684471 0.997655i \(-0.521804\pi\)
0.898218 0.439550i \(-0.144862\pi\)
\(492\) 0 0
\(493\) 41.1914 1.85517
\(494\) 0.0758696 + 0.119510i 0.00341354 + 0.00537701i
\(495\) 0 0
\(496\) 16.5576 28.6785i 0.743457 1.28770i
\(497\) 2.41393 4.18105i 0.108280 0.187546i
\(498\) 0 0
\(499\) 34.8212 1.55881 0.779405 0.626520i \(-0.215521\pi\)
0.779405 + 0.626520i \(0.215521\pi\)
\(500\) −0.942242 1.63201i −0.0421383 0.0729857i
\(501\) 0 0
\(502\) −1.14182 −0.0509619
\(503\) −16.0130 27.7353i −0.713983 1.23665i −0.963351 0.268245i \(-0.913556\pi\)
0.249368 0.968409i \(-0.419777\pi\)
\(504\) 0 0
\(505\) 4.67975 8.10557i 0.208246 0.360693i
\(506\) −1.79488 −0.0797924
\(507\) 0 0
\(508\) 22.6508 1.00497
\(509\) −20.6731 + 35.8068i −0.916318 + 1.58711i −0.111359 + 0.993780i \(0.535520\pi\)
−0.804960 + 0.593329i \(0.797813\pi\)
\(510\) 0 0
\(511\) −2.64697 4.58469i −0.117095 0.202815i
\(512\) 21.2810 0.940496
\(513\) 0 0
\(514\) −1.71788 2.97546i −0.0757725 0.131242i
\(515\) −4.50535 −0.198529
\(516\) 0 0
\(517\) 1.70606 2.95498i 0.0750323 0.129960i
\(518\) −1.09589 + 1.89813i −0.0481505 + 0.0833990i
\(519\) 0 0
\(520\) 2.55128 + 4.01878i 0.111881 + 0.176235i
\(521\) −4.40279 −0.192890 −0.0964448 0.995338i \(-0.530747\pi\)
−0.0964448 + 0.995338i \(0.530747\pi\)
\(522\) 0 0
\(523\) 16.2244 28.1014i 0.709442 1.22879i −0.255623 0.966777i \(-0.582280\pi\)
0.965064 0.262013i \(-0.0843862\pi\)
\(524\) −10.2743 17.7956i −0.448835 0.777406i
\(525\) 0 0
\(526\) −3.82673 6.62808i −0.166853 0.288998i
\(527\) −37.0478 64.1686i −1.61383 2.79523i
\(528\) 0 0
\(529\) −18.6784 32.3520i −0.812106 1.40661i
\(530\) −0.115516 + 0.200080i −0.00501771 + 0.00869092i
\(531\) 0 0
\(532\) −0.143701 −0.00623024
\(533\) 15.2177 0.640192i 0.659151 0.0277298i
\(534\) 0 0
\(535\) −0.285455 + 0.494422i −0.0123413 + 0.0213757i
\(536\) −5.03926 + 8.72826i −0.217663 + 0.377003i
\(537\) 0 0
\(538\) −2.88714 −0.124473
\(539\) −2.23103 3.86426i −0.0960974 0.166446i
\(540\) 0 0
\(541\) −8.57720 −0.368762 −0.184381 0.982855i \(-0.559028\pi\)
−0.184381 + 0.982855i \(0.559028\pi\)
\(542\) −1.59236 2.75804i −0.0683976 0.118468i
\(543\) 0 0
\(544\) 14.0000 24.2487i 0.600245 1.03965i
\(545\) −15.4095 −0.660069
\(546\) 0 0
\(547\) −32.4920 −1.38926 −0.694629 0.719368i \(-0.744431\pi\)
−0.694629 + 0.719368i \(0.744431\pi\)
\(548\) −3.19404 + 5.53224i −0.136443 + 0.236325i
\(549\) 0 0
\(550\) 0.115516 + 0.200080i 0.00492563 + 0.00853144i
\(551\) −0.640492 −0.0272859
\(552\) 0 0
\(553\) −3.29193 5.70180i −0.139987 0.242465i
\(554\) 0.244377 0.0103826
\(555\) 0 0
\(556\) 13.9529 24.1672i 0.591736 1.02492i
\(557\) −20.6075 + 35.6933i −0.873169 + 1.51237i −0.0144676 + 0.999895i \(0.504605\pi\)
−0.858701 + 0.512477i \(0.828728\pi\)
\(558\) 0 0
\(559\) −0.909460 + 1.74030i −0.0384661 + 0.0736068i
\(560\) −2.19177 −0.0926192
\(561\) 0 0
\(562\) 0.262488 0.454643i 0.0110724 0.0191779i
\(563\) −6.08921 10.5468i −0.256630 0.444496i 0.708707 0.705503i \(-0.249279\pi\)
−0.965337 + 0.261007i \(0.915945\pi\)
\(564\) 0 0
\(565\) 2.66012 + 4.60747i 0.111912 + 0.193838i
\(566\) 3.07921 + 5.33334i 0.129429 + 0.224177i
\(567\) 0 0
\(568\) −4.82786 8.36210i −0.202572 0.350866i
\(569\) 3.47169 6.01314i 0.145541 0.252084i −0.784034 0.620718i \(-0.786841\pi\)
0.929575 + 0.368634i \(0.120174\pi\)
\(570\) 0 0
\(571\) 3.51429 0.147068 0.0735341 0.997293i \(-0.476572\pi\)
0.0735341 + 0.997293i \(0.476572\pi\)
\(572\) 2.47541 + 3.89927i 0.103502 + 0.163037i
\(573\) 0 0
\(574\) 0.473890 0.820802i 0.0197798 0.0342596i
\(575\) −3.88448 + 6.72812i −0.161994 + 0.280582i
\(576\) 0 0
\(577\) 3.14182 0.130796 0.0653978 0.997859i \(-0.479168\pi\)
0.0653978 + 0.997859i \(0.479168\pi\)
\(578\) −6.49018 11.2413i −0.269956 0.467578i
\(579\) 0 0
\(580\) −10.4487 −0.433860
\(581\) 0.583868 + 1.01129i 0.0242229 + 0.0419553i
\(582\) 0 0
\(583\) −0.231033 + 0.400160i −0.00956839 + 0.0165729i
\(584\) −10.5879 −0.438130
\(585\) 0 0
\(586\) 10.3679 0.428295
\(587\) 18.9889 32.8897i 0.783754 1.35750i −0.145987 0.989287i \(-0.546636\pi\)
0.929741 0.368215i \(-0.120031\pi\)
\(588\) 0 0
\(589\) 0.576062 + 0.997769i 0.0237362 + 0.0411124i
\(590\) 0.756009 0.0311244
\(591\) 0 0
\(592\) −16.2177 28.0899i −0.666543 1.15449i
\(593\) −10.4487 −0.429078 −0.214539 0.976715i \(-0.568825\pi\)
−0.214539 + 0.976715i \(0.568825\pi\)
\(594\) 0 0
\(595\) −2.45206 + 4.24709i −0.100525 + 0.174114i
\(596\) 16.1022 27.8898i 0.659571 1.14241i
\(597\) 0 0
\(598\) 4.40946 8.43773i 0.180316 0.345044i
\(599\) 45.5705 1.86196 0.930981 0.365069i \(-0.118955\pi\)
0.930981 + 0.365069i \(0.118955\pi\)
\(600\) 0 0
\(601\) 7.39096 12.8015i 0.301484 0.522185i −0.674989 0.737828i \(-0.735851\pi\)
0.976472 + 0.215643i \(0.0691848\pi\)
\(602\) 0.0610942 + 0.105818i 0.00249001 + 0.00431283i
\(603\) 0 0
\(604\) 12.2614 + 21.2373i 0.498907 + 0.864133i
\(605\) −5.26897 9.12612i −0.214214 0.371030i
\(606\) 0 0
\(607\) 9.46722 + 16.3977i 0.384263 + 0.665562i 0.991667 0.128831i \(-0.0411224\pi\)
−0.607404 + 0.794393i \(0.707789\pi\)
\(608\) −0.217689 + 0.377048i −0.00882844 + 0.0152913i
\(609\) 0 0
\(610\) 1.42909 0.0578622
\(611\) 9.70007 + 15.2796i 0.392423 + 0.618146i
\(612\) 0 0
\(613\) 1.29193 2.23770i 0.0521807 0.0903797i −0.838755 0.544509i \(-0.816716\pi\)
0.890936 + 0.454129i \(0.150049\pi\)
\(614\) 0.811565 1.40567i 0.0327521 0.0567283i
\(615\) 0 0
\(616\) 0.592422 0.0238694
\(617\) 7.01963 + 12.1584i 0.282600 + 0.489477i 0.972024 0.234880i \(-0.0754699\pi\)
−0.689425 + 0.724357i \(0.742137\pi\)
\(618\) 0 0
\(619\) −17.8582 −0.717781 −0.358890 0.933380i \(-0.616845\pi\)
−0.358890 + 0.933380i \(0.616845\pi\)
\(620\) 9.39764 + 16.2772i 0.377418 + 0.653707i
\(621\) 0 0
\(622\) 5.19692 9.00134i 0.208378 0.360921i
\(623\) −8.94111 −0.358218
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 4.54127 7.86571i 0.181506 0.314377i
\(627\) 0 0
\(628\) −0.730840 1.26585i −0.0291637 0.0505130i
\(629\) −72.5745 −2.89374
\(630\) 0 0
\(631\) 12.4815 + 21.6186i 0.496881 + 0.860623i 0.999994 0.00359801i \(-0.00114528\pi\)
−0.503113 + 0.864221i \(0.667812\pi\)
\(632\) −13.1677 −0.523784
\(633\) 0 0
\(634\) −3.50535 + 6.07144i −0.139215 + 0.241128i
\(635\) −6.00982 + 10.4093i −0.238492 + 0.413081i
\(636\) 0 0
\(637\) 23.6468 0.994794i 0.936920 0.0394152i
\(638\) 1.28098 0.0507147
\(639\) 0 0
\(640\) −4.67975 + 8.10557i −0.184984 + 0.320401i
\(641\) 11.6535 + 20.1844i 0.460284 + 0.797235i 0.998975 0.0452686i \(-0.0144144\pi\)
−0.538691 + 0.842503i \(0.681081\pi\)
\(642\) 0 0
\(643\) −22.7395 39.3860i −0.896759 1.55323i −0.831612 0.555357i \(-0.812582\pi\)
−0.0651470 0.997876i \(-0.520752\pi\)
\(644\) 4.83226 + 8.36973i 0.190418 + 0.329813i
\(645\) 0 0
\(646\) 0.145838 + 0.252599i 0.00573792 + 0.00993836i
\(647\) 3.20473 5.55076i 0.125991 0.218223i −0.796129 0.605127i \(-0.793122\pi\)
0.922120 + 0.386904i \(0.126456\pi\)
\(648\) 0 0
\(649\) 1.51202 0.0593519
\(650\) −1.22436 + 0.0515075i −0.0480234 + 0.00202029i
\(651\) 0 0
\(652\) 11.4935 19.9074i 0.450121 0.779632i
\(653\) 0.740848 1.28319i 0.0289916 0.0502150i −0.851166 0.524897i \(-0.824104\pi\)
0.880157 + 0.474682i \(0.157437\pi\)
\(654\) 0 0
\(655\) 10.9041 0.426059
\(656\) 7.01296 + 12.1468i 0.273810 + 0.474253i
\(657\) 0 0
\(658\) 1.12621 0.0439041
\(659\) −3.54461 6.13944i −0.138078 0.239159i 0.788691 0.614790i \(-0.210759\pi\)
−0.926769 + 0.375631i \(0.877426\pi\)
\(660\) 0 0
\(661\) −0.589214 + 1.02055i −0.0229178 + 0.0396947i −0.877257 0.480021i \(-0.840629\pi\)
0.854339 + 0.519716i \(0.173962\pi\)
\(662\) 1.82521 0.0709387
\(663\) 0 0
\(664\) 2.33547 0.0906339
\(665\) 0.0381275 0.0660387i 0.00147852 0.00256087i
\(666\) 0 0
\(667\) 21.5379 + 37.3048i 0.833952 + 1.44445i
\(668\) −2.99735 −0.115971
\(669\) 0 0
\(670\) −1.29728 2.24695i −0.0501183 0.0868074i
\(671\) 2.85818 0.110339
\(672\) 0 0
\(673\) −6.77878 + 11.7412i −0.261303 + 0.452590i −0.966588 0.256334i \(-0.917485\pi\)
0.705286 + 0.708923i \(0.250819\pi\)
\(674\) −4.88782 + 8.46595i −0.188272 + 0.326096i
\(675\) 0 0
\(676\) −24.4117 + 2.05759i −0.938913 + 0.0791381i
\(677\) −9.53793 −0.366573 −0.183286 0.983060i \(-0.558674\pi\)
−0.183286 + 0.983060i \(0.558674\pi\)
\(678\) 0 0
\(679\) −3.26897 + 5.66202i −0.125451 + 0.217288i
\(680\) 4.90411 + 8.49418i 0.188064 + 0.325737i
\(681\) 0 0
\(682\) −1.15212 1.99554i −0.0441171 0.0764131i
\(683\) −22.2592 38.5540i −0.851723 1.47523i −0.879652 0.475617i \(-0.842225\pi\)
0.0279296 0.999610i \(-0.491109\pi\)
\(684\) 0 0
\(685\) −1.69491 2.93568i −0.0647594 0.112166i
\(686\) 1.52164 2.63556i 0.0580965 0.100626i
\(687\) 0 0
\(688\) −1.80823 −0.0689381
\(689\) −1.31357 2.06915i −0.0500432 0.0788282i
\(690\) 0 0
\(691\) 2.64030 4.57313i 0.100442 0.173970i −0.811425 0.584457i \(-0.801308\pi\)
0.911867 + 0.410486i \(0.134641\pi\)
\(692\) −12.0130 + 20.8071i −0.456664 + 0.790966i
\(693\) 0 0
\(694\) −7.61192 −0.288945
\(695\) 7.40411 + 12.8243i 0.280854 + 0.486454i
\(696\) 0 0
\(697\) 31.3832 1.18872
\(698\) 2.03479 + 3.52436i 0.0770180 + 0.133399i
\(699\) 0 0
\(700\) 0.621996 1.07733i 0.0235092 0.0407192i
\(701\) −20.1392 −0.760646 −0.380323 0.924854i \(-0.624187\pi\)
−0.380323 + 0.924854i \(0.624187\pi\)
\(702\) 0 0
\(703\) 1.12847 0.0425612
\(704\) −1.82157 + 3.15506i −0.0686531 + 0.118911i
\(705\) 0 0
\(706\) −2.89517 5.01459i −0.108961 0.188727i
\(707\) 6.17843 0.232364
\(708\) 0 0
\(709\) −0.770294 1.33419i −0.0289290 0.0501065i 0.851198 0.524844i \(-0.175876\pi\)
−0.880127 + 0.474737i \(0.842543\pi\)
\(710\) 2.48571 0.0932872
\(711\) 0 0
\(712\) −8.94111 + 15.4865i −0.335082 + 0.580379i
\(713\) 38.7427 67.1043i 1.45092 2.51307i
\(714\) 0 0
\(715\) −2.44872 + 0.103015i −0.0915770 + 0.00385254i
\(716\) 33.4728 1.25094
\(717\) 0 0
\(718\) −5.96187 + 10.3263i −0.222495 + 0.385373i
\(719\) 18.5020 + 32.0464i 0.690009 + 1.19513i 0.971835 + 0.235664i \(0.0757266\pi\)
−0.281826 + 0.959466i \(0.590940\pi\)
\(720\) 0 0
\(721\) −1.48704 2.57563i −0.0553803 0.0959215i
\(722\) 3.22656 + 5.58857i 0.120080 + 0.207985i
\(723\) 0 0
\(724\) 6.62048 + 11.4670i 0.246048 + 0.426168i
\(725\) 2.77230 4.80177i 0.102961 0.178333i
\(726\) 0 0
\(727\) −44.9015 −1.66530 −0.832652 0.553797i \(-0.813178\pi\)
−0.832652 + 0.553797i \(0.813178\pi\)
\(728\) −1.45539 + 2.78497i −0.0539405 + 0.103218i
\(729\) 0 0
\(730\) 1.36284 2.36051i 0.0504411 0.0873666i
\(731\) −2.02297 + 3.50388i −0.0748221 + 0.129596i
\(732\) 0 0
\(733\) −4.94072 −0.182490 −0.0912449 0.995828i \(-0.529085\pi\)
−0.0912449 + 0.995828i \(0.529085\pi\)
\(734\) −3.41280 5.91114i −0.125969 0.218184i
\(735\) 0 0
\(736\) 29.2810 1.07931
\(737\) −2.59456 4.49391i −0.0955718 0.165535i
\(738\) 0 0
\(739\) −3.01963 + 5.23015i −0.111079 + 0.192394i −0.916206 0.400709i \(-0.868764\pi\)
0.805127 + 0.593103i \(0.202097\pi\)
\(740\) 18.4095 0.676745
\(741\) 0 0
\(742\) −0.152510 −0.00559882
\(743\) −6.52945 + 11.3093i −0.239542 + 0.414899i −0.960583 0.277993i \(-0.910331\pi\)
0.721041 + 0.692893i \(0.243664\pi\)
\(744\) 0 0
\(745\) 8.54461 + 14.7997i 0.313050 + 0.542219i
\(746\) −7.97998 −0.292168
\(747\) 0 0
\(748\) 4.75828 + 8.24158i 0.173980 + 0.301342i
\(749\) −0.376871 −0.0137706
\(750\) 0 0
\(751\) −24.0118 + 41.5897i −0.876204 + 1.51763i −0.0207292 + 0.999785i \(0.506599\pi\)
−0.855475 + 0.517845i \(0.826735\pi\)
\(752\) −8.33320 + 14.4335i −0.303881 + 0.526337i
\(753\) 0 0
\(754\) −3.14697 + 6.02189i −0.114606 + 0.219304i
\(755\) −13.0130 −0.473590
\(756\) 0 0
\(757\) 2.28212 3.95275i 0.0829450 0.143665i −0.821569 0.570110i \(-0.806901\pi\)
0.904514 + 0.426445i \(0.140234\pi\)
\(758\) −3.59274 6.22281i −0.130494 0.226023i
\(759\) 0 0
\(760\) −0.0762550 0.132077i −0.00276606 0.00479095i
\(761\) 10.5446 + 18.2638i 0.382242 + 0.662062i 0.991382 0.131000i \(-0.0418188\pi\)
−0.609141 + 0.793062i \(0.708486\pi\)
\(762\) 0 0
\(763\) −5.08607 8.80933i −0.184128 0.318919i
\(764\) 13.1481 22.7732i 0.475682 0.823905i
\(765\) 0 0
\(766\) −0.590926 −0.0213510
\(767\) −3.71455 + 7.10797i −0.134124 + 0.256654i
\(768\) 0 0
\(769\) −21.1666 + 36.6616i −0.763287 + 1.32205i 0.177860 + 0.984056i \(0.443083\pi\)
−0.941147 + 0.337996i \(0.890251\pi\)
\(770\) −0.0762550 + 0.132077i −0.00274804 + 0.00475974i
\(771\) 0 0
\(772\) −44.7552 −1.61078
\(773\) 25.1218 + 43.5122i 0.903568 + 1.56503i 0.822827 + 0.568291i \(0.192395\pi\)
0.0807410 + 0.996735i \(0.474271\pi\)
\(774\) 0 0
\(775\) −9.97370 −0.358266
\(776\) 6.53793 + 11.3240i 0.234698 + 0.406509i
\(777\) 0 0
\(778\) −4.53165 + 7.84904i −0.162467 + 0.281402i
\(779\) −0.487982 −0.0174838
\(780\) 0 0
\(781\) 4.97143 0.177892
\(782\) 9.80823 16.9884i 0.350742 0.607502i