Newspace parameters
Level: | \( N \) | \(=\) | \( 585 = 3^{2} \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 585.j (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.67124851824\) |
Analytic rank: | \(0\) |
Dimension: | \(6\) |
Relative dimension: | \(3\) over \(\Q(\zeta_{3})\) |
Coefficient field: | 6.0.1714608.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{6} - 3x^{5} + 12x^{4} - 19x^{3} + 30x^{2} - 21x + 7 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 195) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{6} - 3x^{5} + 12x^{4} - 19x^{3} + 30x^{2} - 21x + 7 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{5} + \nu^{4} + 2\nu^{3} + 10\nu^{2} - 7\nu ) / 7 \)
|
\(\beta_{3}\) | \(=\) |
\( \nu^{2} - \nu + 3 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -2\nu^{5} + 5\nu^{4} - 18\nu^{3} + 22\nu^{2} - 28\nu + 7 ) / 7 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 2\nu^{5} - 5\nu^{4} + 25\nu^{3} - 29\nu^{2} + 56\nu - 14 ) / 7 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{3} + \beta _1 - 3 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{5} + \beta_{4} + \beta_{3} - 3\beta _1 - 2 \)
|
\(\nu^{4}\) | \(=\) |
\( 2\beta_{5} + 3\beta_{4} - 4\beta_{3} + 2\beta_{2} - 6\beta _1 + 13 \)
|
\(\nu^{5}\) | \(=\) |
\( -4\beta_{5} - 5\beta_{4} - 8\beta_{3} + 5\beta_{2} + 9\beta _1 + 21 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).
\(n\) | \(326\) | \(352\) | \(496\) |
\(\chi(n)\) | \(1\) | \(1\) | \(\beta_{4}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
406.1 |
|
−1.13090 | − | 1.95878i | 0 | −1.55787 | + | 2.69832i | −1.00000 | 0 | 0.630901 | − | 1.09275i | 2.52360 | 0 | 1.13090 | + | 1.95878i | ||||||||||||||||||||||||||||
406.2 | −0.169938 | − | 0.294342i | 0 | 0.942242 | − | 1.63201i | −1.00000 | 0 | −0.330062 | + | 0.571683i | −1.32025 | 0 | 0.169938 | + | 0.294342i | |||||||||||||||||||||||||||||
406.3 | 1.30084 | + | 2.25312i | 0 | −2.38437 | + | 4.12985i | −1.00000 | 0 | −1.80084 | + | 3.11915i | −7.20336 | 0 | −1.30084 | − | 2.25312i | |||||||||||||||||||||||||||||
451.1 | −1.13090 | + | 1.95878i | 0 | −1.55787 | − | 2.69832i | −1.00000 | 0 | 0.630901 | + | 1.09275i | 2.52360 | 0 | 1.13090 | − | 1.95878i | |||||||||||||||||||||||||||||
451.2 | −0.169938 | + | 0.294342i | 0 | 0.942242 | + | 1.63201i | −1.00000 | 0 | −0.330062 | − | 0.571683i | −1.32025 | 0 | 0.169938 | − | 0.294342i | |||||||||||||||||||||||||||||
451.3 | 1.30084 | − | 2.25312i | 0 | −2.38437 | − | 4.12985i | −1.00000 | 0 | −1.80084 | − | 3.11915i | −7.20336 | 0 | −1.30084 | + | 2.25312i | |||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 585.2.j.f | 6 | |
3.b | odd | 2 | 1 | 195.2.i.d | ✓ | 6 | |
13.c | even | 3 | 1 | inner | 585.2.j.f | 6 | |
13.c | even | 3 | 1 | 7605.2.a.bv | 3 | ||
13.e | even | 6 | 1 | 7605.2.a.bw | 3 | ||
15.d | odd | 2 | 1 | 975.2.i.l | 6 | ||
15.e | even | 4 | 2 | 975.2.bb.k | 12 | ||
39.h | odd | 6 | 1 | 2535.2.a.ba | 3 | ||
39.i | odd | 6 | 1 | 195.2.i.d | ✓ | 6 | |
39.i | odd | 6 | 1 | 2535.2.a.bb | 3 | ||
195.x | odd | 6 | 1 | 975.2.i.l | 6 | ||
195.bl | even | 12 | 2 | 975.2.bb.k | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
195.2.i.d | ✓ | 6 | 3.b | odd | 2 | 1 | |
195.2.i.d | ✓ | 6 | 39.i | odd | 6 | 1 | |
585.2.j.f | 6 | 1.a | even | 1 | 1 | trivial | |
585.2.j.f | 6 | 13.c | even | 3 | 1 | inner | |
975.2.i.l | 6 | 15.d | odd | 2 | 1 | ||
975.2.i.l | 6 | 195.x | odd | 6 | 1 | ||
975.2.bb.k | 12 | 15.e | even | 4 | 2 | ||
975.2.bb.k | 12 | 195.bl | even | 12 | 2 | ||
2535.2.a.ba | 3 | 39.h | odd | 6 | 1 | ||
2535.2.a.bb | 3 | 39.i | odd | 6 | 1 | ||
7605.2.a.bv | 3 | 13.c | even | 3 | 1 | ||
7605.2.a.bw | 3 | 13.e | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{6} + 6T_{2}^{4} + 4T_{2}^{3} + 36T_{2}^{2} + 12T_{2} + 4 \)
acting on \(S_{2}^{\mathrm{new}}(585, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{6} + 6 T^{4} + 4 T^{3} + 36 T^{2} + \cdots + 4 \)
$3$
\( T^{6} \)
$5$
\( (T + 1)^{6} \)
$7$
\( T^{6} + 3 T^{5} + 12 T^{4} - 3 T^{3} + \cdots + 9 \)
$11$
\( T^{6} + 24 T^{4} - 32 T^{3} + \cdots + 256 \)
$13$
\( T^{6} - 3 T^{5} - 6 T^{4} + 83 T^{3} + \cdots + 2197 \)
$17$
\( T^{6} + 42 T^{4} + 196 T^{3} + \cdots + 9604 \)
$19$
\( T^{6} + 12 T^{5} + 108 T^{4} + \cdots + 16 \)
$23$
\( T^{6} + 48 T^{4} - 192 T^{3} + \cdots + 9216 \)
$29$
\( T^{6} - 6 T^{5} + 36 T^{4} - 28 T^{3} + \cdots + 196 \)
$31$
\( (T^{3} - 3 T^{2} - 93 T + 363)^{2} \)
$37$
\( T^{6} + 6 T^{5} + 72 T^{4} - 232 T^{3} + \cdots + 64 \)
$41$
\( T^{6} + 24 T^{4} - 52 T^{3} + \cdots + 676 \)
$43$
\( T^{6} + 9 T^{5} + 66 T^{4} + 157 T^{3} + \cdots + 121 \)
$47$
\( (T^{3} - 12 T^{2} - 6 T + 206)^{2} \)
$53$
\( (T^{3} - 24 T - 16)^{2} \)
$59$
\( T^{6} + 6 T^{5} + 48 T^{4} - 44 T^{3} + \cdots + 196 \)
$61$
\( T^{6} - 3 T^{5} + 30 T^{4} + \cdots + 4489 \)
$67$
\( T^{6} + 9 T^{5} + 162 T^{4} + \cdots + 123201 \)
$71$
\( T^{6} + 12 T^{5} + 192 T^{4} + \cdots + 465124 \)
$73$
\( (T^{3} - 21 T^{2} + 93 T + 89)^{2} \)
$79$
\( (T^{3} + 3 T^{2} - 93 T - 363)^{2} \)
$83$
\( (T^{3} - 18 T^{2} + 60 T + 168)^{2} \)
$89$
\( T^{6} - 30 T^{5} + 612 T^{4} + \cdots + 777924 \)
$97$
\( T^{6} + 15 T^{5} + 234 T^{4} + \cdots + 346921 \)
show more
show less