Properties

Label 585.2.j.a.451.1
Level $585$
Weight $2$
Character 585.451
Analytic conductor $4.671$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 451.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 585.451
Dual form 585.2.j.a.406.1

$q$-expansion

\(f(q)\) \(=\) \(q+(1.00000 + 1.73205i) q^{4} +1.00000 q^{5} +(0.500000 + 0.866025i) q^{7} +O(q^{10})\) \(q+(1.00000 + 1.73205i) q^{4} +1.00000 q^{5} +(0.500000 + 0.866025i) q^{7} +(3.00000 - 5.19615i) q^{11} +(2.50000 - 2.59808i) q^{13} +(-2.00000 + 3.46410i) q^{16} +(2.00000 + 3.46410i) q^{19} +(1.00000 + 1.73205i) q^{20} +(-3.00000 + 5.19615i) q^{23} +1.00000 q^{25} +(-1.00000 + 1.73205i) q^{28} +(-3.00000 + 5.19615i) q^{29} +5.00000 q^{31} +(0.500000 + 0.866025i) q^{35} +(-1.00000 + 1.73205i) q^{37} +(-5.50000 - 9.52628i) q^{43} +12.0000 q^{44} -6.00000 q^{47} +(3.00000 - 5.19615i) q^{49} +(7.00000 + 1.73205i) q^{52} +(3.00000 - 5.19615i) q^{55} +(3.00000 + 5.19615i) q^{59} +(0.500000 + 0.866025i) q^{61} -8.00000 q^{64} +(2.50000 - 2.59808i) q^{65} +(-5.50000 + 9.52628i) q^{67} +(-3.00000 - 5.19615i) q^{71} +5.00000 q^{73} +(-4.00000 + 6.92820i) q^{76} +6.00000 q^{77} +11.0000 q^{79} +(-2.00000 + 3.46410i) q^{80} -12.0000 q^{83} +(6.00000 - 10.3923i) q^{89} +(3.50000 + 0.866025i) q^{91} -12.0000 q^{92} +(2.00000 + 3.46410i) q^{95} +(-8.50000 - 14.7224i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} + 2 q^{5} + q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{4} + 2 q^{5} + q^{7} + 6 q^{11} + 5 q^{13} - 4 q^{16} + 4 q^{19} + 2 q^{20} - 6 q^{23} + 2 q^{25} - 2 q^{28} - 6 q^{29} + 10 q^{31} + q^{35} - 2 q^{37} - 11 q^{43} + 24 q^{44} - 12 q^{47} + 6 q^{49} + 14 q^{52} + 6 q^{55} + 6 q^{59} + q^{61} - 16 q^{64} + 5 q^{65} - 11 q^{67} - 6 q^{71} + 10 q^{73} - 8 q^{76} + 12 q^{77} + 22 q^{79} - 4 q^{80} - 24 q^{83} + 12 q^{89} + 7 q^{91} - 24 q^{92} + 4 q^{95} - 17 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(3\) 0 0
\(4\) 1.00000 + 1.73205i 0.500000 + 0.866025i
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0.500000 + 0.866025i 0.188982 + 0.327327i 0.944911 0.327327i \(-0.106148\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.00000 5.19615i 0.904534 1.56670i 0.0829925 0.996550i \(-0.473552\pi\)
0.821541 0.570149i \(-0.193114\pi\)
\(12\) 0 0
\(13\) 2.50000 2.59808i 0.693375 0.720577i
\(14\) 0 0
\(15\) 0 0
\(16\) −2.00000 + 3.46410i −0.500000 + 0.866025i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) 2.00000 + 3.46410i 0.458831 + 0.794719i 0.998899 0.0469020i \(-0.0149348\pi\)
−0.540068 + 0.841621i \(0.681602\pi\)
\(20\) 1.00000 + 1.73205i 0.223607 + 0.387298i
\(21\) 0 0
\(22\) 0 0
\(23\) −3.00000 + 5.19615i −0.625543 + 1.08347i 0.362892 + 0.931831i \(0.381789\pi\)
−0.988436 + 0.151642i \(0.951544\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) −1.00000 + 1.73205i −0.188982 + 0.327327i
\(29\) −3.00000 + 5.19615i −0.557086 + 0.964901i 0.440652 + 0.897678i \(0.354747\pi\)
−0.997738 + 0.0672232i \(0.978586\pi\)
\(30\) 0 0
\(31\) 5.00000 0.898027 0.449013 0.893525i \(-0.351776\pi\)
0.449013 + 0.893525i \(0.351776\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.500000 + 0.866025i 0.0845154 + 0.146385i
\(36\) 0 0
\(37\) −1.00000 + 1.73205i −0.164399 + 0.284747i −0.936442 0.350823i \(-0.885902\pi\)
0.772043 + 0.635571i \(0.219235\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(42\) 0 0
\(43\) −5.50000 9.52628i −0.838742 1.45274i −0.890947 0.454108i \(-0.849958\pi\)
0.0522047 0.998636i \(-0.483375\pi\)
\(44\) 12.0000 1.80907
\(45\) 0 0
\(46\) 0 0
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 0 0
\(49\) 3.00000 5.19615i 0.428571 0.742307i
\(50\) 0 0
\(51\) 0 0
\(52\) 7.00000 + 1.73205i 0.970725 + 0.240192i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 3.00000 5.19615i 0.404520 0.700649i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.00000 + 5.19615i 0.390567 + 0.676481i 0.992524 0.122047i \(-0.0389457\pi\)
−0.601958 + 0.798528i \(0.705612\pi\)
\(60\) 0 0
\(61\) 0.500000 + 0.866025i 0.0640184 + 0.110883i 0.896258 0.443533i \(-0.146275\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 2.50000 2.59808i 0.310087 0.322252i
\(66\) 0 0
\(67\) −5.50000 + 9.52628i −0.671932 + 1.16382i 0.305424 + 0.952217i \(0.401202\pi\)
−0.977356 + 0.211604i \(0.932131\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.00000 5.19615i −0.356034 0.616670i 0.631260 0.775571i \(-0.282538\pi\)
−0.987294 + 0.158901i \(0.949205\pi\)
\(72\) 0 0
\(73\) 5.00000 0.585206 0.292603 0.956234i \(-0.405479\pi\)
0.292603 + 0.956234i \(0.405479\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −4.00000 + 6.92820i −0.458831 + 0.794719i
\(77\) 6.00000 0.683763
\(78\) 0 0
\(79\) 11.0000 1.23760 0.618798 0.785550i \(-0.287620\pi\)
0.618798 + 0.785550i \(0.287620\pi\)
\(80\) −2.00000 + 3.46410i −0.223607 + 0.387298i
\(81\) 0 0
\(82\) 0 0
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.00000 10.3923i 0.635999 1.10158i −0.350304 0.936636i \(-0.613922\pi\)
0.986303 0.164946i \(-0.0527450\pi\)
\(90\) 0 0
\(91\) 3.50000 + 0.866025i 0.366900 + 0.0907841i
\(92\) −12.0000 −1.25109
\(93\) 0 0
\(94\) 0 0
\(95\) 2.00000 + 3.46410i 0.205196 + 0.355409i
\(96\) 0 0
\(97\) −8.50000 14.7224i −0.863044 1.49484i −0.868976 0.494854i \(-0.835222\pi\)
0.00593185 0.999982i \(-0.498112\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 1.00000 + 1.73205i 0.100000 + 0.173205i
\(101\) 3.00000 5.19615i 0.298511 0.517036i −0.677284 0.735721i \(-0.736843\pi\)
0.975796 + 0.218685i \(0.0701767\pi\)
\(102\) 0 0
\(103\) −13.0000 −1.28093 −0.640464 0.767988i \(-0.721258\pi\)
−0.640464 + 0.767988i \(0.721258\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.00000 15.5885i 0.870063 1.50699i 0.00813215 0.999967i \(-0.497411\pi\)
0.861931 0.507026i \(-0.169255\pi\)
\(108\) 0 0
\(109\) −7.00000 −0.670478 −0.335239 0.942133i \(-0.608817\pi\)
−0.335239 + 0.942133i \(0.608817\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −4.00000 −0.377964
\(113\) −3.00000 5.19615i −0.282216 0.488813i 0.689714 0.724082i \(-0.257736\pi\)
−0.971930 + 0.235269i \(0.924403\pi\)
\(114\) 0 0
\(115\) −3.00000 + 5.19615i −0.279751 + 0.484544i
\(116\) −12.0000 −1.11417
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −12.5000 21.6506i −1.13636 1.96824i
\(122\) 0 0
\(123\) 0 0
\(124\) 5.00000 + 8.66025i 0.449013 + 0.777714i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 0.500000 0.866025i 0.0443678 0.0768473i −0.842989 0.537931i \(-0.819206\pi\)
0.887357 + 0.461084i \(0.152539\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −18.0000 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) −2.00000 + 3.46410i −0.173422 + 0.300376i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.00000 + 10.3923i 0.512615 + 0.887875i 0.999893 + 0.0146279i \(0.00465636\pi\)
−0.487278 + 0.873247i \(0.662010\pi\)
\(138\) 0 0
\(139\) 9.50000 + 16.4545i 0.805779 + 1.39565i 0.915764 + 0.401718i \(0.131587\pi\)
−0.109984 + 0.993933i \(0.535080\pi\)
\(140\) −1.00000 + 1.73205i −0.0845154 + 0.146385i
\(141\) 0 0
\(142\) 0 0
\(143\) −6.00000 20.7846i −0.501745 1.73810i
\(144\) 0 0
\(145\) −3.00000 + 5.19615i −0.249136 + 0.431517i
\(146\) 0 0
\(147\) 0 0
\(148\) −4.00000 −0.328798
\(149\) 12.0000 + 20.7846i 0.983078 + 1.70274i 0.650183 + 0.759778i \(0.274692\pi\)
0.332896 + 0.942964i \(0.391974\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.00000 0.401610
\(156\) 0 0
\(157\) −1.00000 −0.0798087 −0.0399043 0.999204i \(-0.512705\pi\)
−0.0399043 + 0.999204i \(0.512705\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −6.00000 −0.472866
\(162\) 0 0
\(163\) −5.50000 9.52628i −0.430793 0.746156i 0.566149 0.824303i \(-0.308433\pi\)
−0.996942 + 0.0781474i \(0.975100\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.00000 + 10.3923i −0.464294 + 0.804181i −0.999169 0.0407502i \(-0.987025\pi\)
0.534875 + 0.844931i \(0.320359\pi\)
\(168\) 0 0
\(169\) −0.500000 12.9904i −0.0384615 0.999260i
\(170\) 0 0
\(171\) 0 0
\(172\) 11.0000 19.0526i 0.838742 1.45274i
\(173\) −3.00000 5.19615i −0.228086 0.395056i 0.729155 0.684349i \(-0.239913\pi\)
−0.957241 + 0.289292i \(0.906580\pi\)
\(174\) 0 0
\(175\) 0.500000 + 0.866025i 0.0377964 + 0.0654654i
\(176\) 12.0000 + 20.7846i 0.904534 + 1.56670i
\(177\) 0 0
\(178\) 0 0
\(179\) −6.00000 + 10.3923i −0.448461 + 0.776757i −0.998286 0.0585225i \(-0.981361\pi\)
0.549825 + 0.835280i \(0.314694\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.00000 + 1.73205i −0.0735215 + 0.127343i
\(186\) 0 0
\(187\) 0 0
\(188\) −6.00000 10.3923i −0.437595 0.757937i
\(189\) 0 0
\(190\) 0 0
\(191\) 3.00000 + 5.19615i 0.217072 + 0.375980i 0.953912 0.300088i \(-0.0970159\pi\)
−0.736839 + 0.676068i \(0.763683\pi\)
\(192\) 0 0
\(193\) 6.50000 11.2583i 0.467880 0.810392i −0.531446 0.847092i \(-0.678351\pi\)
0.999326 + 0.0366998i \(0.0116845\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 12.0000 0.857143
\(197\) 6.00000 10.3923i 0.427482 0.740421i −0.569166 0.822222i \(-0.692734\pi\)
0.996649 + 0.0818013i \(0.0260673\pi\)
\(198\) 0 0
\(199\) −8.50000 14.7224i −0.602549 1.04365i −0.992434 0.122782i \(-0.960818\pi\)
0.389885 0.920864i \(-0.372515\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −6.00000 −0.421117
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 4.00000 + 13.8564i 0.277350 + 0.960769i
\(209\) 24.0000 1.66011
\(210\) 0 0
\(211\) 6.50000 11.2583i 0.447478 0.775055i −0.550743 0.834675i \(-0.685655\pi\)
0.998221 + 0.0596196i \(0.0189888\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −5.50000 9.52628i −0.375097 0.649687i
\(216\) 0 0
\(217\) 2.50000 + 4.33013i 0.169711 + 0.293948i
\(218\) 0 0
\(219\) 0 0
\(220\) 12.0000 0.809040
\(221\) 0 0
\(222\) 0 0
\(223\) −4.00000 + 6.92820i −0.267860 + 0.463947i −0.968309 0.249756i \(-0.919650\pi\)
0.700449 + 0.713702i \(0.252983\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(228\) 0 0
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) −6.00000 −0.391397
\(236\) −6.00000 + 10.3923i −0.390567 + 0.676481i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 11.0000 + 19.0526i 0.708572 + 1.22728i 0.965387 + 0.260822i \(0.0839937\pi\)
−0.256814 + 0.966461i \(0.582673\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −1.00000 + 1.73205i −0.0640184 + 0.110883i
\(245\) 3.00000 5.19615i 0.191663 0.331970i
\(246\) 0 0
\(247\) 14.0000 + 3.46410i 0.890799 + 0.220416i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(252\) 0 0
\(253\) 18.0000 + 31.1769i 1.13165 + 1.96008i
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) −6.00000 + 10.3923i −0.374270 + 0.648254i −0.990217 0.139533i \(-0.955440\pi\)
0.615948 + 0.787787i \(0.288773\pi\)
\(258\) 0 0
\(259\) −2.00000 −0.124274
\(260\) 7.00000 + 1.73205i 0.434122 + 0.107417i
\(261\) 0 0
\(262\) 0 0
\(263\) 6.00000 10.3923i 0.369976 0.640817i −0.619586 0.784929i \(-0.712699\pi\)
0.989561 + 0.144112i \(0.0460326\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −22.0000 −1.34386
\(269\) −12.0000 20.7846i −0.731653 1.26726i −0.956176 0.292791i \(-0.905416\pi\)
0.224523 0.974469i \(-0.427917\pi\)
\(270\) 0 0
\(271\) 3.50000 6.06218i 0.212610 0.368251i −0.739921 0.672694i \(-0.765137\pi\)
0.952531 + 0.304443i \(0.0984703\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.00000 5.19615i 0.180907 0.313340i
\(276\) 0 0
\(277\) 5.00000 + 8.66025i 0.300421 + 0.520344i 0.976231 0.216731i \(-0.0695395\pi\)
−0.675810 + 0.737075i \(0.736206\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) −11.5000 + 19.9186i −0.683604 + 1.18404i 0.290269 + 0.956945i \(0.406255\pi\)
−0.973873 + 0.227092i \(0.927078\pi\)
\(284\) 6.00000 10.3923i 0.356034 0.616670i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 5.00000 + 8.66025i 0.292603 + 0.506803i
\(293\) 3.00000 + 5.19615i 0.175262 + 0.303562i 0.940252 0.340480i \(-0.110589\pi\)
−0.764990 + 0.644042i \(0.777256\pi\)
\(294\) 0 0
\(295\) 3.00000 + 5.19615i 0.174667 + 0.302532i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.00000 + 20.7846i 0.346989 + 1.20201i
\(300\) 0 0
\(301\) 5.50000 9.52628i 0.317015 0.549086i
\(302\) 0 0
\(303\) 0 0
\(304\) −16.0000 −0.917663
\(305\) 0.500000 + 0.866025i 0.0286299 + 0.0495885i
\(306\) 0 0
\(307\) −25.0000 −1.42683 −0.713413 0.700744i \(-0.752851\pi\)
−0.713413 + 0.700744i \(0.752851\pi\)
\(308\) 6.00000 + 10.3923i 0.341882 + 0.592157i
\(309\) 0 0
\(310\) 0 0
\(311\) −12.0000 −0.680458 −0.340229 0.940343i \(-0.610505\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) 0 0
\(313\) 23.0000 1.30004 0.650018 0.759918i \(-0.274761\pi\)
0.650018 + 0.759918i \(0.274761\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 11.0000 + 19.0526i 0.618798 + 1.07179i
\(317\) 12.0000 0.673987 0.336994 0.941507i \(-0.390590\pi\)
0.336994 + 0.941507i \(0.390590\pi\)
\(318\) 0 0
\(319\) 18.0000 + 31.1769i 1.00781 + 1.74557i
\(320\) −8.00000 −0.447214
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 2.50000 2.59808i 0.138675 0.144115i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3.00000 5.19615i −0.165395 0.286473i
\(330\) 0 0
\(331\) 3.50000 + 6.06218i 0.192377 + 0.333207i 0.946038 0.324057i \(-0.105047\pi\)
−0.753660 + 0.657264i \(0.771714\pi\)
\(332\) −12.0000 20.7846i −0.658586 1.14070i
\(333\) 0 0
\(334\) 0 0
\(335\) −5.50000 + 9.52628i −0.300497 + 0.520476i
\(336\) 0 0
\(337\) −7.00000 −0.381314 −0.190657 0.981657i \(-0.561062\pi\)
−0.190657 + 0.981657i \(0.561062\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 15.0000 25.9808i 0.812296 1.40694i
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.00000 + 10.3923i 0.322097 + 0.557888i 0.980921 0.194409i \(-0.0622790\pi\)
−0.658824 + 0.752297i \(0.728946\pi\)
\(348\) 0 0
\(349\) −5.50000 + 9.52628i −0.294408 + 0.509930i −0.974847 0.222875i \(-0.928456\pi\)
0.680439 + 0.732805i \(0.261789\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9.00000 + 15.5885i −0.479022 + 0.829690i −0.999711 0.0240566i \(-0.992342\pi\)
0.520689 + 0.853746i \(0.325675\pi\)
\(354\) 0 0
\(355\) −3.00000 5.19615i −0.159223 0.275783i
\(356\) 24.0000 1.27200
\(357\) 0 0
\(358\) 0 0
\(359\) −12.0000 −0.633336 −0.316668 0.948536i \(-0.602564\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(360\) 0 0
\(361\) 1.50000 2.59808i 0.0789474 0.136741i
\(362\) 0 0
\(363\) 0 0
\(364\) 2.00000 + 6.92820i 0.104828 + 0.363137i
\(365\) 5.00000 0.261712
\(366\) 0 0
\(367\) −2.50000 + 4.33013i −0.130499 + 0.226031i −0.923869 0.382709i \(-0.874991\pi\)
0.793370 + 0.608740i \(0.208325\pi\)
\(368\) −12.0000 20.7846i −0.625543 1.08347i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −11.5000 19.9186i −0.595447 1.03135i −0.993484 0.113975i \(-0.963641\pi\)
0.398036 0.917370i \(-0.369692\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.00000 + 20.7846i 0.309016 + 1.07046i
\(378\) 0 0
\(379\) 0.500000 0.866025i 0.0256833 0.0444847i −0.852898 0.522077i \(-0.825157\pi\)
0.878581 + 0.477593i \(0.158491\pi\)
\(380\) −4.00000 + 6.92820i −0.205196 + 0.355409i
\(381\) 0 0
\(382\) 0 0
\(383\) 12.0000 + 20.7846i 0.613171 + 1.06204i 0.990702 + 0.136047i \(0.0434398\pi\)
−0.377531 + 0.925997i \(0.623227\pi\)
\(384\) 0 0
\(385\) 6.00000 0.305788
\(386\) 0 0
\(387\) 0 0
\(388\) 17.0000 29.4449i 0.863044 1.49484i
\(389\) −24.0000 −1.21685 −0.608424 0.793612i \(-0.708198\pi\)
−0.608424 + 0.793612i \(0.708198\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 11.0000 0.553470
\(396\) 0 0
\(397\) 6.50000 + 11.2583i 0.326226 + 0.565039i 0.981760 0.190126i \(-0.0608897\pi\)
−0.655534 + 0.755166i \(0.727556\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −2.00000 + 3.46410i −0.100000 + 0.173205i
\(401\) −6.00000 + 10.3923i −0.299626 + 0.518967i −0.976050 0.217545i \(-0.930195\pi\)
0.676425 + 0.736512i \(0.263528\pi\)
\(402\) 0 0
\(403\) 12.5000 12.9904i 0.622669 0.647097i
\(404\) 12.0000 0.597022
\(405\) 0 0
\(406\) 0 0
\(407\) 6.00000 + 10.3923i 0.297409 + 0.515127i
\(408\) 0 0
\(409\) −2.50000 4.33013i −0.123617 0.214111i 0.797574 0.603220i \(-0.206116\pi\)
−0.921192 + 0.389109i \(0.872783\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −13.0000 22.5167i −0.640464 1.10932i
\(413\) −3.00000 + 5.19615i −0.147620 + 0.255686i
\(414\) 0 0
\(415\) −12.0000 −0.589057
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.0000 + 20.7846i −0.586238 + 1.01539i 0.408481 + 0.912767i \(0.366058\pi\)
−0.994720 + 0.102628i \(0.967275\pi\)
\(420\) 0 0
\(421\) 17.0000 0.828529 0.414265 0.910156i \(-0.364039\pi\)
0.414265 + 0.910156i \(0.364039\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −0.500000 + 0.866025i −0.0241967 + 0.0419099i
\(428\) 36.0000 1.74013
\(429\) 0 0
\(430\) 0 0
\(431\) 12.0000 20.7846i 0.578020 1.00116i −0.417687 0.908591i \(-0.637159\pi\)
0.995706 0.0925683i \(-0.0295076\pi\)
\(432\) 0 0
\(433\) −5.50000 9.52628i −0.264313 0.457804i 0.703070 0.711120i \(-0.251812\pi\)
−0.967383 + 0.253317i \(0.918479\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −7.00000 12.1244i −0.335239 0.580651i
\(437\) −24.0000 −1.14808
\(438\) 0 0
\(439\) −5.50000 + 9.52628i −0.262501 + 0.454665i −0.966906 0.255134i \(-0.917881\pi\)
0.704405 + 0.709798i \(0.251214\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 36.0000 1.71041 0.855206 0.518289i \(-0.173431\pi\)
0.855206 + 0.518289i \(0.173431\pi\)
\(444\) 0 0
\(445\) 6.00000 10.3923i 0.284427 0.492642i
\(446\) 0 0
\(447\) 0 0
\(448\) −4.00000 6.92820i −0.188982 0.327327i
\(449\) 3.00000 + 5.19615i 0.141579 + 0.245222i 0.928091 0.372353i \(-0.121449\pi\)
−0.786513 + 0.617574i \(0.788115\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 6.00000 10.3923i 0.282216 0.488813i
\(453\) 0 0
\(454\) 0 0
\(455\) 3.50000 + 0.866025i 0.164083 + 0.0405999i
\(456\) 0 0
\(457\) 15.5000 26.8468i 0.725059 1.25584i −0.233890 0.972263i \(-0.575146\pi\)
0.958950 0.283577i \(-0.0915211\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) −12.0000 −0.559503
\(461\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(462\) 0 0
\(463\) −19.0000 −0.883005 −0.441502 0.897260i \(-0.645554\pi\)
−0.441502 + 0.897260i \(0.645554\pi\)
\(464\) −12.0000 20.7846i −0.557086 0.964901i
\(465\) 0 0
\(466\) 0 0
\(467\) −42.0000 −1.94353 −0.971764 0.235954i \(-0.924178\pi\)
−0.971764 + 0.235954i \(0.924178\pi\)
\(468\) 0 0
\(469\) −11.0000 −0.507933
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −66.0000 −3.03468
\(474\) 0 0
\(475\) 2.00000 + 3.46410i 0.0917663 + 0.158944i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(480\) 0 0
\(481\) 2.00000 + 6.92820i 0.0911922 + 0.315899i
\(482\) 0 0
\(483\) 0 0
\(484\) 25.0000 43.3013i 1.13636 1.96824i
\(485\) −8.50000 14.7224i −0.385965 0.668511i
\(486\) 0 0
\(487\) 14.0000 + 24.2487i 0.634401 + 1.09881i 0.986642 + 0.162905i \(0.0520863\pi\)
−0.352241 + 0.935909i \(0.614580\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 15.0000 25.9808i 0.676941 1.17250i −0.298957 0.954267i \(-0.596639\pi\)
0.975898 0.218229i \(-0.0700279\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −10.0000 + 17.3205i −0.449013 + 0.777714i
\(497\) 3.00000 5.19615i 0.134568 0.233079i
\(498\) 0 0
\(499\) −40.0000 −1.79065 −0.895323 0.445418i \(-0.853055\pi\)
−0.895323 + 0.445418i \(0.853055\pi\)
\(500\) 1.00000 + 1.73205i 0.0447214 + 0.0774597i
\(501\) 0 0
\(502\) 0 0
\(503\) 21.0000 + 36.3731i 0.936344 + 1.62179i 0.772220 + 0.635355i \(0.219146\pi\)
0.164124 + 0.986440i \(0.447520\pi\)
\(504\) 0 0
\(505\) 3.00000 5.19615i 0.133498 0.231226i
\(506\) 0 0
\(507\) 0 0
\(508\) 2.00000 0.0887357
\(509\) −9.00000 + 15.5885i −0.398918 + 0.690946i −0.993593 0.113020i \(-0.963948\pi\)
0.594675 + 0.803966i \(0.297281\pi\)
\(510\) 0 0
\(511\) 2.50000 + 4.33013i 0.110593 + 0.191554i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −13.0000 −0.572848
\(516\) 0 0
\(517\) −18.0000 + 31.1769i −0.791639 + 1.37116i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 36.0000 1.57719 0.788594 0.614914i \(-0.210809\pi\)
0.788594 + 0.614914i \(0.210809\pi\)
\(522\) 0 0
\(523\) 2.00000 3.46410i 0.0874539 0.151475i −0.818980 0.573822i \(-0.805460\pi\)
0.906434 + 0.422347i \(0.138794\pi\)
\(524\) −18.0000 31.1769i −0.786334 1.36197i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) −8.00000 −0.346844
\(533\) 0 0
\(534\) 0 0
\(535\) 9.00000 15.5885i 0.389104 0.673948i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −18.0000 31.1769i −0.775315 1.34288i
\(540\) 0 0
\(541\) −7.00000 −0.300954 −0.150477 0.988614i \(-0.548081\pi\)
−0.150477 + 0.988614i \(0.548081\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −7.00000 −0.299847
\(546\) 0 0
\(547\) −7.00000 −0.299298 −0.149649 0.988739i \(-0.547814\pi\)
−0.149649 + 0.988739i \(0.547814\pi\)
\(548\) −12.0000 + 20.7846i −0.512615 + 0.887875i
\(549\) 0 0
\(550\) 0 0
\(551\) −24.0000 −1.02243
\(552\) 0 0
\(553\) 5.50000 + 9.52628i 0.233884 + 0.405099i
\(554\) 0 0
\(555\) 0 0
\(556\) −19.0000 + 32.9090i −0.805779 + 1.39565i
\(557\) −6.00000 + 10.3923i −0.254228 + 0.440336i −0.964686 0.263404i \(-0.915155\pi\)
0.710457 + 0.703740i \(0.248488\pi\)
\(558\) 0 0
\(559\) −38.5000 9.52628i −1.62838 0.402919i
\(560\) −4.00000 −0.169031
\(561\) 0 0
\(562\) 0 0
\(563\) 21.0000 + 36.3731i 0.885044 + 1.53294i 0.845663 + 0.533718i \(0.179206\pi\)
0.0393818 + 0.999224i \(0.487461\pi\)
\(564\) 0 0
\(565\) −3.00000 5.19615i −0.126211 0.218604i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.0000 25.9808i 0.628833 1.08917i −0.358954 0.933355i \(-0.616866\pi\)
0.987786 0.155815i \(-0.0498003\pi\)
\(570\) 0 0
\(571\) −28.0000 −1.17176 −0.585882 0.810397i \(-0.699252\pi\)
−0.585882 + 0.810397i \(0.699252\pi\)
\(572\) 30.0000 31.1769i 1.25436 1.30357i
\(573\) 0 0
\(574\) 0 0
\(575\) −3.00000 + 5.19615i −0.125109 + 0.216695i
\(576\) 0 0
\(577\) 14.0000 0.582828 0.291414 0.956597i \(-0.405874\pi\)
0.291414 + 0.956597i \(0.405874\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) −12.0000 −0.498273
\(581\) −6.00000 10.3923i −0.248922 0.431145i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 21.0000 36.3731i 0.866763 1.50128i 0.00147660 0.999999i \(-0.499530\pi\)
0.865286 0.501278i \(-0.167137\pi\)
\(588\) 0 0
\(589\) 10.0000 + 17.3205i 0.412043 + 0.713679i
\(590\) 0 0
\(591\) 0 0
\(592\) −4.00000 6.92820i −0.164399 0.284747i
\(593\) 30.0000 1.23195 0.615976 0.787765i \(-0.288762\pi\)
0.615976 + 0.787765i \(0.288762\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −24.0000 + 41.5692i −0.983078 + 1.70274i
\(597\) 0 0
\(598\) 0 0
\(599\) −18.0000 −0.735460 −0.367730 0.929933i \(-0.619865\pi\)
−0.367730 + 0.929933i \(0.619865\pi\)
\(600\) 0 0
\(601\) −13.0000 + 22.5167i −0.530281 + 0.918474i 0.469095 + 0.883148i \(0.344580\pi\)
−0.999376 + 0.0353259i \(0.988753\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −16.0000 27.7128i −0.651031 1.12762i
\(605\) −12.5000 21.6506i −0.508197 0.880223i
\(606\) 0 0
\(607\) 20.0000 + 34.6410i 0.811775 + 1.40604i 0.911621 + 0.411033i \(0.134832\pi\)
−0.0998457 + 0.995003i \(0.531835\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −15.0000 + 15.5885i −0.606835 + 0.630641i
\(612\) 0 0
\(613\) −11.5000 + 19.9186i −0.464481 + 0.804504i −0.999178 0.0405396i \(-0.987092\pi\)
0.534697 + 0.845044i \(0.320426\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.00000 + 5.19615i 0.120775 + 0.209189i 0.920074 0.391745i \(-0.128129\pi\)
−0.799298 + 0.600935i \(0.794795\pi\)
\(618\) 0 0
\(619\) −19.0000 −0.763674 −0.381837 0.924230i \(-0.624709\pi\)
−0.381837 + 0.924230i \(0.624709\pi\)
\(620\) 5.00000 + 8.66025i 0.200805 + 0.347804i
\(621\) 0 0
\(622\) 0 0
\(623\) 12.0000 0.480770
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) −1.00000 1.73205i −0.0399043 0.0691164i
\(629\) 0 0
\(630\) 0 0
\(631\) 18.5000 + 32.0429i 0.736473 + 1.27561i 0.954074 + 0.299571i \(0.0968437\pi\)
−0.217601 + 0.976038i \(0.569823\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.500000 0.866025i 0.0198419 0.0343672i
\(636\) 0 0
\(637\) −6.00000 20.7846i −0.237729 0.823516i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −15.0000 25.9808i −0.592464 1.02618i −0.993899 0.110291i \(-0.964822\pi\)
0.401435 0.915888i \(-0.368512\pi\)
\(642\) 0 0
\(643\) −5.50000 9.52628i −0.216899 0.375680i 0.736959 0.675937i \(-0.236261\pi\)
−0.953858 + 0.300257i \(0.902928\pi\)
\(644\) −6.00000 10.3923i −0.236433 0.409514i
\(645\) 0 0
\(646\) 0 0
\(647\) −3.00000 + 5.19615i −0.117942 + 0.204282i −0.918952 0.394369i \(-0.870963\pi\)
0.801010 + 0.598651i \(0.204296\pi\)
\(648\) 0 0
\(649\) 36.0000 1.41312
\(650\) 0 0
\(651\) 0 0
\(652\) 11.0000 19.0526i 0.430793 0.746156i
\(653\) 24.0000 41.5692i 0.939193 1.62673i 0.172211 0.985060i \(-0.444909\pi\)
0.766982 0.641669i \(-0.221758\pi\)
\(654\) 0 0
\(655\) −18.0000 −0.703318
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −18.0000 31.1769i −0.701180 1.21448i −0.968052 0.250748i \(-0.919323\pi\)
0.266872 0.963732i \(-0.414010\pi\)
\(660\) 0 0
\(661\) 24.5000 42.4352i 0.952940 1.65054i 0.213925 0.976850i \(-0.431375\pi\)
0.739014 0.673690i \(-0.235292\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2.00000 + 3.46410i −0.0775567 + 0.134332i
\(666\) 0 0
\(667\) −18.0000 31.1769i −0.696963 1.20717i
\(668\) −24.0000 −0.928588
\(669\) 0 0
\(670\) 0 0
\(671\) 6.00000 0.231627
\(672\) 0 0
\(673\) −5.50000 + 9.52628i −0.212009 + 0.367211i −0.952343 0.305028i \(-0.901334\pi\)
0.740334 + 0.672239i \(0.234667\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 22.0000 13.8564i 0.846154 0.532939i
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 8.50000 14.7224i 0.326200 0.564995i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 9.00000 + 15.5885i 0.344375 + 0.596476i 0.985240 0.171178i \(-0.0547574\pi\)
−0.640865 + 0.767654i \(0.721424\pi\)
\(684\) 0 0
\(685\) 6.00000 + 10.3923i 0.229248 + 0.397070i
\(686\) 0 0
\(687\) 0 0
\(688\) 44.0000 1.67748
\(689\) 0 0
\(690\) 0 0
\(691\) −2.50000 + 4.33013i −0.0951045 + 0.164726i −0.909652 0.415371i \(-0.863652\pi\)
0.814548 + 0.580097i \(0.196985\pi\)
\(692\) 6.00000 10.3923i 0.228086 0.395056i
\(693\) 0 0
\(694\) 0 0
\(695\) 9.50000 + 16.4545i 0.360356 + 0.624154i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −1.00000 + 1.73205i −0.0377964 + 0.0654654i
\(701\) 12.0000 0.453234 0.226617 0.973984i \(-0.427233\pi\)
0.226617 + 0.973984i \(0.427233\pi\)
\(702\) 0 0
\(703\) −8.00000 −0.301726
\(704\) −24.0000 + 41.5692i −0.904534 + 1.56670i
\(705\) 0 0
\(706\) 0 0
\(707\) 6.00000 0.225653
\(708\) 0 0
\(709\) 9.50000 + 16.4545i 0.356780 + 0.617961i 0.987421 0.158114i \(-0.0505412\pi\)
−0.630641 + 0.776075i \(0.717208\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −15.0000 + 25.9808i −0.561754 + 0.972987i
\(714\) 0 0
\(715\) −6.00000 20.7846i −0.224387 0.777300i
\(716\) −24.0000 −0.896922
\(717\) 0 0
\(718\) 0 0
\(719\) 3.00000 + 5.19615i 0.111881 + 0.193784i 0.916529 0.399969i \(-0.130979\pi\)
−0.804648 + 0.593753i \(0.797646\pi\)
\(720\) 0 0
\(721\) −6.50000 11.2583i −0.242073 0.419282i
\(722\) 0 0
\(723\) 0 0
\(724\) −10.0000 17.3205i −0.371647 0.643712i
\(725\) −3.00000 + 5.19615i −0.111417 + 0.192980i
\(726\) 0 0
\(727\) −25.0000 −0.927199 −0.463599 0.886045i \(-0.653442\pi\)
−0.463599 + 0.886045i \(0.653442\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 29.0000 1.07114 0.535570 0.844491i \(-0.320097\pi\)
0.535570 + 0.844491i \(0.320097\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 33.0000 + 57.1577i 1.21557 + 2.10543i
\(738\) 0 0
\(739\) −10.0000 + 17.3205i −0.367856 + 0.637145i −0.989230 0.146369i \(-0.953241\pi\)
0.621374 + 0.783514i \(0.286575\pi\)
\(740\) −4.00000 −0.147043
\(741\) 0 0
\(742\) 0 0
\(743\) 3.00000 5.19615i 0.110059 0.190628i −0.805735 0.592277i \(-0.798229\pi\)
0.915794 + 0.401648i \(0.131563\pi\)
\(744\) 0 0
\(745\) 12.0000 + 20.7846i 0.439646 + 0.761489i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 18.0000 0.657706
\(750\) 0 0
\(751\) 20.0000 34.6410i 0.729810 1.26407i −0.227153 0.973859i \(-0.572942\pi\)
0.956963 0.290209i \(-0.0937250\pi\)
\(752\) 12.0000 20.7846i 0.437595 0.757937i
\(753\) 0 0
\(754\) 0 0
\(755\) −16.0000 −0.582300
\(756\) 0 0
\(757\) −7.00000 + 12.1244i −0.254419 + 0.440667i −0.964738 0.263213i \(-0.915218\pi\)
0.710318 + 0.703881i \(0.248551\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 24.0000 + 41.5692i 0.869999 + 1.50688i 0.861996 + 0.506915i \(0.169214\pi\)
0.00800331 + 0.999968i \(0.497452\pi\)
\(762\) 0 0
\(763\) −3.50000 6.06218i −0.126709 0.219466i
\(764\) −6.00000 + 10.3923i −0.217072 + 0.375980i
\(765\) 0 0
\(766\) 0 0
\(767\) 21.0000 + 5.19615i 0.758266 + 0.187622i
\(768\) 0 0
\(769\) −19.0000 + 32.9090i −0.685158 + 1.18673i 0.288230 + 0.957561i \(0.406933\pi\)
−0.973387 + 0.229166i \(0.926400\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 26.0000 0.935760
\(773\) −9.00000 15.5885i −0.323708 0.560678i 0.657542 0.753418i \(-0.271596\pi\)
−0.981250 + 0.192740i \(0.938263\pi\)
\(774\) 0 0
\(775\) 5.00000 0.179605
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −36.0000 −1.28818
\(782\) 0 0
\(783\) 0 0
\(784\) 12.0000 + 20.7846i 0.428571 + 0.742307i
\(785\) −1.00000 −0.0356915
\(786\) 0 0
\(787\) 6.50000 + 11.2583i 0.231700 + 0.401316i 0.958308 0.285736i \(-0.0922379\pi\)
−0.726609 + 0.687052i \(0.758905\pi\)
\(788\) 24.0000 0.854965
\(789\) 0 0
\(790\) 0 0
\(791\) 3.00000 5.19615i 0.106668 0.184754i
\(792\) 0 0
\(793\) 3.50000 + 0.866025i 0.124289 + 0.0307535i
\(794\) 0 0
\(795\) 0 0
\(796\) 17.0000 29.4449i 0.602549 1.04365i
\(797\) 6.00000 + 10.3923i 0.212531 + 0.368114i 0.952506 0.304520i \(-0.0984960\pi\)
−0.739975 + 0.672634i \(0.765163\pi\)
\(798\) 0 0
\(799\)