Properties

Label 585.2.j
Level $585$
Weight $2$
Character orbit 585.j
Rep. character $\chi_{585}(406,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $48$
Newform subspaces $9$
Sturm bound $168$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.j (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 9 \)
Sturm bound: \(168\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(585, [\chi])\).

Total New Old
Modular forms 184 48 136
Cusp forms 152 48 104
Eisenstein series 32 0 32

Trace form

\( 48 q - 26 q^{4} - 6 q^{7} + 12 q^{8} + O(q^{10}) \) \( 48 q - 26 q^{4} - 6 q^{7} + 12 q^{8} - 2 q^{10} + 8 q^{11} + 8 q^{13} - 4 q^{14} - 26 q^{16} + 6 q^{17} + 8 q^{19} + 4 q^{20} - 20 q^{22} + 18 q^{23} + 48 q^{25} + 38 q^{26} - 22 q^{28} - 12 q^{29} + 8 q^{31} - 22 q^{32} + 4 q^{34} + 10 q^{35} + 10 q^{37} - 104 q^{38} + 12 q^{40} - 20 q^{41} - 14 q^{43} - 12 q^{44} + 26 q^{46} + 24 q^{47} - 40 q^{49} + 2 q^{52} + 24 q^{53} - 8 q^{55} + 24 q^{56} - 32 q^{58} + 28 q^{59} - 4 q^{61} - 8 q^{62} + 2 q^{67} - 38 q^{68} - 8 q^{70} - 28 q^{71} - 54 q^{74} - 30 q^{76} + 36 q^{77} - 64 q^{79} + 32 q^{80} - 4 q^{82} + 16 q^{83} + 6 q^{85} - 12 q^{86} - 26 q^{88} + 32 q^{89} - 32 q^{91} - 84 q^{92} - 20 q^{94} + 16 q^{95} + 18 q^{97} + 60 q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(585, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
585.2.j.a 585.j 13.c $2$ $4.671$ \(\Q(\sqrt{-3}) \) None \(0\) \(0\) \(2\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+2\zeta_{6}q^{4}+q^{5}+\zeta_{6}q^{7}+(6-6\zeta_{6})q^{11}+\cdots\)
585.2.j.b 585.j 13.c $2$ $4.671$ \(\Q(\sqrt{-3}) \) None \(2\) \(0\) \(2\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(2-2\zeta_{6})q^{2}-2\zeta_{6}q^{4}+q^{5}-5\zeta_{6}q^{7}+\cdots\)
585.2.j.c 585.j 13.c $4$ $4.671$ \(\Q(\zeta_{12})\) None \(-2\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\zeta_{12}+\zeta_{12}^{2})q^{2}+(-2+2\zeta_{12}+\cdots)q^{4}+\cdots\)
585.2.j.d 585.j 13.c $4$ $4.671$ \(\Q(\sqrt{-3}, \sqrt{13})\) None \(-1\) \(0\) \(4\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{2}+(-1+\beta _{1}+\beta _{2}+\beta _{3})q^{4}+\cdots\)
585.2.j.e 585.j 13.c $4$ $4.671$ \(\Q(\sqrt{-3}, \sqrt{5})\) None \(1\) \(0\) \(-4\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}+(\beta _{1}+\beta _{2}-\beta _{3})q^{4}-q^{5}+\cdots\)
585.2.j.f 585.j 13.c $6$ $4.671$ 6.0.1714608.1 None \(0\) \(0\) \(-6\) \(-3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{3}-\beta _{5})q^{2}+(-2\beta _{1}-\beta _{2}+\beta _{4}+\cdots)q^{4}+\cdots\)
585.2.j.g 585.j 13.c $6$ $4.671$ 6.0.591408.1 None \(0\) \(0\) \(6\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{5}q^{2}+(\beta _{1}-\beta _{3}-\beta _{4}+\beta _{5})q^{4}+\cdots\)
585.2.j.h 585.j 13.c $10$ $4.671$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(-2\) \(0\) \(10\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}+\beta _{3})q^{2}+(-1+\beta _{4}-\beta _{8})q^{4}+\cdots\)
585.2.j.i 585.j 13.c $10$ $4.671$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(2\) \(0\) \(-10\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}-\beta _{3})q^{2}+(-1+\beta _{4}-\beta _{8}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(585, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(585, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 2}\)