Properties

Label 585.2.i.h.391.13
Level $585$
Weight $2$
Character 585.391
Analytic conductor $4.671$
Analytic rank $0$
Dimension $30$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(15\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 391.13
Character \(\chi\) \(=\) 585.391
Dual form 585.2.i.h.196.13

$q$-expansion

\(f(q)\) \(=\) \(q+(1.17680 + 2.03828i) q^{2} +(0.988775 + 1.42208i) q^{3} +(-1.76973 + 3.06526i) q^{4} +(0.500000 - 0.866025i) q^{5} +(-1.73501 + 3.68891i) q^{6} +(0.0389983 + 0.0675470i) q^{7} -3.62327 q^{8} +(-1.04465 + 2.81224i) q^{9} +O(q^{10})\) \(q+(1.17680 + 2.03828i) q^{2} +(0.988775 + 1.42208i) q^{3} +(-1.76973 + 3.06526i) q^{4} +(0.500000 - 0.866025i) q^{5} +(-1.73501 + 3.68891i) q^{6} +(0.0389983 + 0.0675470i) q^{7} -3.62327 q^{8} +(-1.04465 + 2.81224i) q^{9} +2.35360 q^{10} +(0.518744 + 0.898492i) q^{11} +(-6.10892 + 0.514150i) q^{12} +(-0.500000 + 0.866025i) q^{13} +(-0.0917866 + 0.158979i) q^{14} +(1.72595 - 0.145263i) q^{15} +(-0.724419 - 1.25473i) q^{16} -3.01674 q^{17} +(-6.96149 + 1.18017i) q^{18} -1.33883 q^{19} +(1.76973 + 3.06526i) q^{20} +(-0.0574970 + 0.122248i) q^{21} +(-1.22092 + 2.11469i) q^{22} +(3.66011 - 6.33950i) q^{23} +(-3.58260 - 5.15260i) q^{24} +(-0.500000 - 0.866025i) q^{25} -2.35360 q^{26} +(-5.03217 + 1.29510i) q^{27} -0.276066 q^{28} +(2.04671 + 3.54501i) q^{29} +(2.32719 + 3.34702i) q^{30} +(3.49130 - 6.04711i) q^{31} +(-1.91828 + 3.32255i) q^{32} +(-0.764809 + 1.62610i) q^{33} +(-3.55011 - 6.14897i) q^{34} +0.0779966 q^{35} +(-6.77151 - 8.17902i) q^{36} +5.18283 q^{37} +(-1.57554 - 2.72891i) q^{38} +(-1.72595 + 0.145263i) q^{39} +(-1.81164 + 3.13785i) q^{40} +(1.65670 - 2.86949i) q^{41} +(-0.316838 + 0.0266663i) q^{42} +(-2.67701 - 4.63672i) q^{43} -3.67215 q^{44} +(1.91315 + 2.31081i) q^{45} +17.2289 q^{46} +(4.80910 + 8.32961i) q^{47} +(1.06805 - 2.27083i) q^{48} +(3.49696 - 6.05691i) q^{49} +(1.17680 - 2.03828i) q^{50} +(-2.98288 - 4.29006i) q^{51} +(-1.76973 - 3.06526i) q^{52} +10.9978 q^{53} +(-8.56165 - 8.73290i) q^{54} +1.03749 q^{55} +(-0.141301 - 0.244741i) q^{56} +(-1.32380 - 1.90393i) q^{57} +(-4.81715 + 8.34355i) q^{58} +(0.0239283 - 0.0414450i) q^{59} +(-2.60919 + 5.54756i) q^{60} +(-2.28587 - 3.95924i) q^{61} +16.4343 q^{62} +(-0.230698 + 0.0391099i) q^{63} -11.9274 q^{64} +(0.500000 + 0.866025i) q^{65} +(-4.21449 + 0.354708i) q^{66} +(-4.19018 + 7.25760i) q^{67} +(5.33881 - 9.24710i) q^{68} +(12.6343 - 1.06335i) q^{69} +(0.0917866 + 0.158979i) q^{70} +2.31094 q^{71} +(3.78504 - 10.1895i) q^{72} -2.28031 q^{73} +(6.09917 + 10.5641i) q^{74} +(0.737173 - 1.56735i) q^{75} +(2.36937 - 4.10386i) q^{76} +(-0.0404603 + 0.0700793i) q^{77} +(-2.32719 - 3.34702i) q^{78} +(-1.22456 - 2.12100i) q^{79} -1.44884 q^{80} +(-6.81743 - 5.87560i) q^{81} +7.79844 q^{82} +(0.908528 + 1.57362i) q^{83} +(-0.272967 - 0.392588i) q^{84} +(-1.50837 + 2.61258i) q^{85} +(6.30062 - 10.9130i) q^{86} +(-3.01756 + 6.41581i) q^{87} +(-1.87955 - 3.25548i) q^{88} -9.90169 q^{89} +(-2.45869 + 6.61891i) q^{90} -0.0779966 q^{91} +(12.9548 + 22.4384i) q^{92} +(12.0516 - 1.01431i) q^{93} +(-11.3187 + 19.6046i) q^{94} +(-0.669415 + 1.15946i) q^{95} +(-6.62169 + 0.557307i) q^{96} +(-4.63238 - 8.02353i) q^{97} +16.4609 q^{98} +(-3.06868 + 0.520229i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q + q^{2} + q^{3} - 21 q^{4} + 15 q^{5} - 9 q^{6} - 10 q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 30 q + q^{2} + q^{3} - 21 q^{4} + 15 q^{5} - 9 q^{6} - 10 q^{7} + q^{9} + 2 q^{10} + 9 q^{11} + 18 q^{12} - 15 q^{13} + 3 q^{14} + 2 q^{15} - 33 q^{16} + 6 q^{17} + 9 q^{18} + 30 q^{19} + 21 q^{20} + 9 q^{21} - 10 q^{22} - 6 q^{23} + 24 q^{24} - 15 q^{25} - 2 q^{26} - 2 q^{27} + 70 q^{28} + 8 q^{29} - 6 q^{30} - 22 q^{31} + 21 q^{32} - 20 q^{33} - 9 q^{34} - 20 q^{35} - 7 q^{36} + 8 q^{37} - 14 q^{38} - 2 q^{39} + 13 q^{41} + 21 q^{42} - 24 q^{43} + 10 q^{44} - 7 q^{45} - 6 q^{46} - q^{47} - 27 q^{48} - 37 q^{49} + q^{50} - q^{51} - 21 q^{52} + 14 q^{53} - 24 q^{54} + 18 q^{55} + 17 q^{56} - 55 q^{57} - 22 q^{58} + 19 q^{59} + 9 q^{60} - 16 q^{61} + 26 q^{62} + 4 q^{63} + 72 q^{64} + 15 q^{65} + 24 q^{66} - 11 q^{67} - 28 q^{68} + 44 q^{69} - 3 q^{70} - 56 q^{71} - 18 q^{72} + 52 q^{73} + 8 q^{74} + q^{75} - 18 q^{76} - 24 q^{77} + 6 q^{78} - 44 q^{79} - 66 q^{80} + 37 q^{81} + 70 q^{82} - 3 q^{83} - 139 q^{84} + 3 q^{85} + 40 q^{86} + 60 q^{87} - 37 q^{88} - 8 q^{89} - 12 q^{90} + 20 q^{91} - 74 q^{92} - 55 q^{93} - 2 q^{94} + 15 q^{95} + 55 q^{96} - 33 q^{97} + 6 q^{98} + 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.17680 + 2.03828i 0.832125 + 1.44128i 0.896350 + 0.443347i \(0.146209\pi\)
−0.0642249 + 0.997935i \(0.520457\pi\)
\(3\) 0.988775 + 1.42208i 0.570870 + 0.821041i
\(4\) −1.76973 + 3.06526i −0.884864 + 1.53263i
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) −1.73501 + 3.68891i −0.708317 + 1.50599i
\(7\) 0.0389983 + 0.0675470i 0.0147400 + 0.0255304i 0.873301 0.487180i \(-0.161975\pi\)
−0.858561 + 0.512711i \(0.828641\pi\)
\(8\) −3.62327 −1.28102
\(9\) −1.04465 + 2.81224i −0.348216 + 0.937415i
\(10\) 2.35360 0.744275
\(11\) 0.518744 + 0.898492i 0.156407 + 0.270905i 0.933571 0.358394i \(-0.116675\pi\)
−0.777163 + 0.629299i \(0.783342\pi\)
\(12\) −6.10892 + 0.514150i −1.76349 + 0.148422i
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i
\(14\) −0.0917866 + 0.158979i −0.0245310 + 0.0424889i
\(15\) 1.72595 0.145263i 0.445638 0.0375066i
\(16\) −0.724419 1.25473i −0.181105 0.313683i
\(17\) −3.01674 −0.731667 −0.365834 0.930680i \(-0.619216\pi\)
−0.365834 + 0.930680i \(0.619216\pi\)
\(18\) −6.96149 + 1.18017i −1.64084 + 0.278169i
\(19\) −1.33883 −0.307149 −0.153574 0.988137i \(-0.549078\pi\)
−0.153574 + 0.988137i \(0.549078\pi\)
\(20\) 1.76973 + 3.06526i 0.395723 + 0.685413i
\(21\) −0.0574970 + 0.122248i −0.0125469 + 0.0266766i
\(22\) −1.22092 + 2.11469i −0.260301 + 0.450854i
\(23\) 3.66011 6.33950i 0.763186 1.32188i −0.178014 0.984028i \(-0.556967\pi\)
0.941200 0.337850i \(-0.109700\pi\)
\(24\) −3.58260 5.15260i −0.731296 1.05177i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) −2.35360 −0.461580
\(27\) −5.03217 + 1.29510i −0.968441 + 0.249242i
\(28\) −0.276066 −0.0521715
\(29\) 2.04671 + 3.54501i 0.380065 + 0.658291i 0.991071 0.133334i \(-0.0425684\pi\)
−0.611006 + 0.791626i \(0.709235\pi\)
\(30\) 2.32719 + 3.34702i 0.424884 + 0.611080i
\(31\) 3.49130 6.04711i 0.627056 1.08609i −0.361083 0.932534i \(-0.617593\pi\)
0.988139 0.153560i \(-0.0490737\pi\)
\(32\) −1.91828 + 3.32255i −0.339106 + 0.587349i
\(33\) −0.764809 + 1.62610i −0.133136 + 0.283069i
\(34\) −3.55011 6.14897i −0.608839 1.05454i
\(35\) 0.0779966 0.0131838
\(36\) −6.77151 8.17902i −1.12859 1.36317i
\(37\) 5.18283 0.852052 0.426026 0.904711i \(-0.359913\pi\)
0.426026 + 0.904711i \(0.359913\pi\)
\(38\) −1.57554 2.72891i −0.255586 0.442688i
\(39\) −1.72595 + 0.145263i −0.276373 + 0.0232606i
\(40\) −1.81164 + 3.13785i −0.286445 + 0.496137i
\(41\) 1.65670 2.86949i 0.258733 0.448139i −0.707170 0.707044i \(-0.750028\pi\)
0.965903 + 0.258905i \(0.0833616\pi\)
\(42\) −0.316838 + 0.0266663i −0.0488891 + 0.00411470i
\(43\) −2.67701 4.63672i −0.408240 0.707093i 0.586453 0.809984i \(-0.300524\pi\)
−0.994693 + 0.102891i \(0.967191\pi\)
\(44\) −3.67215 −0.553597
\(45\) 1.91315 + 2.31081i 0.285196 + 0.344476i
\(46\) 17.2289 2.54027
\(47\) 4.80910 + 8.32961i 0.701480 + 1.21500i 0.967947 + 0.251155i \(0.0808103\pi\)
−0.266467 + 0.963844i \(0.585856\pi\)
\(48\) 1.06805 2.27083i 0.154159 0.327766i
\(49\) 3.49696 6.05691i 0.499565 0.865273i
\(50\) 1.17680 2.03828i 0.166425 0.288257i
\(51\) −2.98288 4.29006i −0.417687 0.600729i
\(52\) −1.76973 3.06526i −0.245417 0.425075i
\(53\) 10.9978 1.51067 0.755333 0.655342i \(-0.227475\pi\)
0.755333 + 0.655342i \(0.227475\pi\)
\(54\) −8.56165 8.73290i −1.16509 1.18840i
\(55\) 1.03749 0.139895
\(56\) −0.141301 0.244741i −0.0188822 0.0327049i
\(57\) −1.32380 1.90393i −0.175342 0.252182i
\(58\) −4.81715 + 8.34355i −0.632523 + 1.09556i
\(59\) 0.0239283 0.0414450i 0.00311520 0.00539568i −0.864464 0.502695i \(-0.832342\pi\)
0.867579 + 0.497300i \(0.165675\pi\)
\(60\) −2.60919 + 5.54756i −0.336845 + 0.716186i
\(61\) −2.28587 3.95924i −0.292675 0.506929i 0.681766 0.731570i \(-0.261212\pi\)
−0.974441 + 0.224642i \(0.927879\pi\)
\(62\) 16.4343 2.08716
\(63\) −0.230698 + 0.0391099i −0.0290652 + 0.00492739i
\(64\) −11.9274 −1.49093
\(65\) 0.500000 + 0.866025i 0.0620174 + 0.107417i
\(66\) −4.21449 + 0.354708i −0.518768 + 0.0436615i
\(67\) −4.19018 + 7.25760i −0.511912 + 0.886657i 0.487993 + 0.872848i \(0.337729\pi\)
−0.999905 + 0.0138094i \(0.995604\pi\)
\(68\) 5.33881 9.24710i 0.647426 1.12138i
\(69\) 12.6343 1.06335i 1.52100 0.128013i
\(70\) 0.0917866 + 0.158979i 0.0109706 + 0.0190016i
\(71\) 2.31094 0.274259 0.137129 0.990553i \(-0.456212\pi\)
0.137129 + 0.990553i \(0.456212\pi\)
\(72\) 3.78504 10.1895i 0.446071 1.20085i
\(73\) −2.28031 −0.266890 −0.133445 0.991056i \(-0.542604\pi\)
−0.133445 + 0.991056i \(0.542604\pi\)
\(74\) 6.09917 + 10.5641i 0.709014 + 1.22805i
\(75\) 0.737173 1.56735i 0.0851214 0.180982i
\(76\) 2.36937 4.10386i 0.271785 0.470745i
\(77\) −0.0404603 + 0.0700793i −0.00461088 + 0.00798628i
\(78\) −2.32719 3.34702i −0.263502 0.378976i
\(79\) −1.22456 2.12100i −0.137773 0.238631i 0.788880 0.614547i \(-0.210661\pi\)
−0.926654 + 0.375917i \(0.877328\pi\)
\(80\) −1.44884 −0.161985
\(81\) −6.81743 5.87560i −0.757492 0.652845i
\(82\) 7.79844 0.861194
\(83\) 0.908528 + 1.57362i 0.0997239 + 0.172727i 0.911570 0.411144i \(-0.134871\pi\)
−0.811846 + 0.583871i \(0.801537\pi\)
\(84\) −0.272967 0.392588i −0.0297831 0.0428349i
\(85\) −1.50837 + 2.61258i −0.163606 + 0.283374i
\(86\) 6.30062 10.9130i 0.679414 1.17678i
\(87\) −3.01756 + 6.41581i −0.323516 + 0.687847i
\(88\) −1.87955 3.25548i −0.200361 0.347035i
\(89\) −9.90169 −1.04958 −0.524789 0.851233i \(-0.675856\pi\)
−0.524789 + 0.851233i \(0.675856\pi\)
\(90\) −2.45869 + 6.61891i −0.259168 + 0.697694i
\(91\) −0.0779966 −0.00817626
\(92\) 12.9548 + 22.4384i 1.35063 + 2.33936i
\(93\) 12.0516 1.01431i 1.24969 0.105179i
\(94\) −11.3187 + 19.6046i −1.16744 + 2.02206i
\(95\) −0.669415 + 1.15946i −0.0686805 + 0.118958i
\(96\) −6.62169 + 0.557307i −0.675823 + 0.0568799i
\(97\) −4.63238 8.02353i −0.470347 0.814666i 0.529078 0.848573i \(-0.322538\pi\)
−0.999425 + 0.0339079i \(0.989205\pi\)
\(98\) 16.4609 1.66280
\(99\) −3.06868 + 0.520229i −0.308414 + 0.0522850i
\(100\) 3.53946 0.353946
\(101\) −2.71516 4.70279i −0.270168 0.467945i 0.698737 0.715379i \(-0.253746\pi\)
−0.968905 + 0.247434i \(0.920413\pi\)
\(102\) 5.23409 11.1285i 0.518252 1.10189i
\(103\) −6.53557 + 11.3199i −0.643969 + 1.11539i 0.340570 + 0.940219i \(0.389380\pi\)
−0.984539 + 0.175167i \(0.943953\pi\)
\(104\) 1.81164 3.13785i 0.177646 0.307691i
\(105\) 0.0771211 + 0.110918i 0.00752625 + 0.0108245i
\(106\) 12.9422 + 22.4166i 1.25706 + 2.17730i
\(107\) 16.5067 1.59576 0.797882 0.602814i \(-0.205954\pi\)
0.797882 + 0.602814i \(0.205954\pi\)
\(108\) 4.93575 17.7169i 0.474942 1.70481i
\(109\) −15.2455 −1.46025 −0.730126 0.683312i \(-0.760539\pi\)
−0.730126 + 0.683312i \(0.760539\pi\)
\(110\) 1.22092 + 2.11469i 0.116410 + 0.201628i
\(111\) 5.12465 + 7.37042i 0.486411 + 0.699569i
\(112\) 0.0565022 0.0978647i 0.00533896 0.00924735i
\(113\) 5.21241 9.02815i 0.490342 0.849297i −0.509596 0.860414i \(-0.670205\pi\)
0.999938 + 0.0111164i \(0.00353854\pi\)
\(114\) 2.32289 4.93883i 0.217559 0.462564i
\(115\) −3.66011 6.33950i −0.341307 0.591162i
\(116\) −14.4885 −1.34522
\(117\) −1.91315 2.31081i −0.176871 0.213635i
\(118\) 0.112635 0.0103689
\(119\) −0.117648 0.203772i −0.0107848 0.0186797i
\(120\) −6.25358 + 0.526326i −0.570871 + 0.0480467i
\(121\) 4.96181 8.59410i 0.451073 0.781282i
\(122\) 5.38003 9.31848i 0.487085 0.843656i
\(123\) 5.71876 0.481313i 0.515643 0.0433985i
\(124\) 12.3573 + 21.4035i 1.10972 + 1.92209i
\(125\) −1.00000 −0.0894427
\(126\) −0.351203 0.424203i −0.0312877 0.0377910i
\(127\) −14.9255 −1.32442 −0.662211 0.749317i \(-0.730382\pi\)
−0.662211 + 0.749317i \(0.730382\pi\)
\(128\) −10.1996 17.6663i −0.901530 1.56150i
\(129\) 3.94684 8.39160i 0.347500 0.738839i
\(130\) −1.17680 + 2.03828i −0.103212 + 0.178769i
\(131\) −6.40678 + 11.0969i −0.559763 + 0.969537i 0.437753 + 0.899095i \(0.355774\pi\)
−0.997516 + 0.0704422i \(0.977559\pi\)
\(132\) −3.63093 5.22210i −0.316032 0.454526i
\(133\) −0.0522121 0.0904340i −0.00452736 0.00784162i
\(134\) −19.7240 −1.70390
\(135\) −1.39449 + 5.00554i −0.120019 + 0.430808i
\(136\) 10.9305 0.937281
\(137\) 6.65026 + 11.5186i 0.568170 + 0.984099i 0.996747 + 0.0805941i \(0.0256817\pi\)
−0.428577 + 0.903505i \(0.640985\pi\)
\(138\) 17.0355 + 24.5010i 1.45016 + 2.08566i
\(139\) −2.24902 + 3.89542i −0.190760 + 0.330405i −0.945502 0.325616i \(-0.894428\pi\)
0.754743 + 0.656021i \(0.227762\pi\)
\(140\) −0.138033 + 0.239080i −0.0116659 + 0.0202059i
\(141\) −7.09029 + 15.0751i −0.597110 + 1.26955i
\(142\) 2.71952 + 4.71035i 0.228217 + 0.395284i
\(143\) −1.03749 −0.0867592
\(144\) 4.28537 0.726493i 0.357114 0.0605411i
\(145\) 4.09342 0.339940
\(146\) −2.68347 4.64791i −0.222086 0.384664i
\(147\) 12.0711 1.01595i 0.995611 0.0837945i
\(148\) −9.17220 + 15.8867i −0.753950 + 1.30588i
\(149\) −0.830835 + 1.43905i −0.0680647 + 0.117891i −0.898049 0.439895i \(-0.855016\pi\)
0.829985 + 0.557786i \(0.188349\pi\)
\(150\) 4.06220 0.341891i 0.331677 0.0279152i
\(151\) −9.27202 16.0596i −0.754546 1.30691i −0.945600 0.325333i \(-0.894524\pi\)
0.191054 0.981580i \(-0.438810\pi\)
\(152\) 4.85095 0.393464
\(153\) 3.15143 8.48381i 0.254778 0.685876i
\(154\) −0.190455 −0.0153473
\(155\) −3.49130 6.04711i −0.280428 0.485716i
\(156\) 2.60919 5.54756i 0.208903 0.444160i
\(157\) −5.30231 + 9.18387i −0.423170 + 0.732953i −0.996248 0.0865487i \(-0.972416\pi\)
0.573077 + 0.819501i \(0.305750\pi\)
\(158\) 2.88212 4.99199i 0.229290 0.397141i
\(159\) 10.8744 + 15.6398i 0.862393 + 1.24032i
\(160\) 1.91828 + 3.32255i 0.151653 + 0.262671i
\(161\) 0.570953 0.0449974
\(162\) 3.95337 20.8103i 0.310606 1.63501i
\(163\) 2.10755 0.165076 0.0825379 0.996588i \(-0.473697\pi\)
0.0825379 + 0.996588i \(0.473697\pi\)
\(164\) 5.86382 + 10.1564i 0.457888 + 0.793085i
\(165\) 1.02584 + 1.47540i 0.0798618 + 0.114859i
\(166\) −2.13832 + 3.70367i −0.165965 + 0.287461i
\(167\) −3.20410 + 5.54967i −0.247941 + 0.429446i −0.962954 0.269664i \(-0.913087\pi\)
0.715013 + 0.699111i \(0.246421\pi\)
\(168\) 0.208327 0.442937i 0.0160728 0.0341733i
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) −7.10022 −0.544562
\(171\) 1.39860 3.76512i 0.106954 0.287926i
\(172\) 18.9503 1.44495
\(173\) −4.92009 8.52184i −0.374067 0.647904i 0.616120 0.787653i \(-0.288704\pi\)
−0.990187 + 0.139749i \(0.955370\pi\)
\(174\) −16.6283 + 1.39950i −1.26059 + 0.106096i
\(175\) 0.0389983 0.0675470i 0.00294799 0.00510607i
\(176\) 0.751577 1.30177i 0.0566523 0.0981246i
\(177\) 0.0825980 0.00695176i 0.00620844 0.000522527i
\(178\) −11.6523 20.1824i −0.873380 1.51274i
\(179\) 13.5026 1.00923 0.504614 0.863345i \(-0.331635\pi\)
0.504614 + 0.863345i \(0.331635\pi\)
\(180\) −10.4690 + 1.77479i −0.780313 + 0.132285i
\(181\) −2.07776 −0.154439 −0.0772194 0.997014i \(-0.524604\pi\)
−0.0772194 + 0.997014i \(0.524604\pi\)
\(182\) −0.0917866 0.158979i −0.00680367 0.0117843i
\(183\) 3.37016 7.16549i 0.249129 0.529689i
\(184\) −13.2616 + 22.9697i −0.977657 + 1.69335i
\(185\) 2.59141 4.48846i 0.190525 0.329998i
\(186\) 16.2498 + 23.3709i 1.19149 + 1.71364i
\(187\) −1.56492 2.71052i −0.114438 0.198213i
\(188\) −34.0432 −2.48286
\(189\) −0.283726 0.289401i −0.0206380 0.0210508i
\(190\) −3.15108 −0.228603
\(191\) −5.25502 9.10197i −0.380240 0.658595i 0.610856 0.791742i \(-0.290825\pi\)
−0.991096 + 0.133146i \(0.957492\pi\)
\(192\) −11.7935 16.9618i −0.851124 1.22411i
\(193\) 9.16311 15.8710i 0.659575 1.14242i −0.321151 0.947028i \(-0.604070\pi\)
0.980726 0.195389i \(-0.0625970\pi\)
\(194\) 10.9028 18.8842i 0.782776 1.35581i
\(195\) −0.737173 + 1.56735i −0.0527901 + 0.112240i
\(196\) 12.3773 + 21.4382i 0.884095 + 1.53130i
\(197\) −7.66870 −0.546372 −0.273186 0.961961i \(-0.588077\pi\)
−0.273186 + 0.961961i \(0.588077\pi\)
\(198\) −4.67161 5.64263i −0.331997 0.401004i
\(199\) 16.8297 1.19302 0.596512 0.802604i \(-0.296553\pi\)
0.596512 + 0.802604i \(0.296553\pi\)
\(200\) 1.81164 + 3.13785i 0.128102 + 0.221879i
\(201\) −14.4641 + 1.21735i −1.02022 + 0.0858653i
\(202\) 6.39040 11.0685i 0.449627 0.778777i
\(203\) −0.159636 + 0.276498i −0.0112043 + 0.0194064i
\(204\) 18.4290 1.55106i 1.29029 0.108596i
\(205\) −1.65670 2.86949i −0.115709 0.200414i
\(206\) −30.7643 −2.14345
\(207\) 14.0047 + 16.9157i 0.973394 + 1.17572i
\(208\) 1.44884 0.100459
\(209\) −0.694511 1.20293i −0.0480403 0.0832083i
\(210\) −0.135325 + 0.287723i −0.00933833 + 0.0198548i
\(211\) 0.816583 1.41436i 0.0562159 0.0973688i −0.836548 0.547894i \(-0.815430\pi\)
0.892764 + 0.450525i \(0.148763\pi\)
\(212\) −19.4631 + 33.7111i −1.33673 + 2.31529i
\(213\) 2.28500 + 3.28636i 0.156566 + 0.225177i
\(214\) 19.4251 + 33.6453i 1.32787 + 2.29995i
\(215\) −5.35402 −0.365141
\(216\) 18.2329 4.69251i 1.24059 0.319285i
\(217\) 0.544619 0.0369712
\(218\) −17.9409 31.0746i −1.21511 2.10464i
\(219\) −2.25471 3.24279i −0.152359 0.219127i
\(220\) −1.83607 + 3.18017i −0.123788 + 0.214407i
\(221\) 1.50837 2.61258i 0.101464 0.175741i
\(222\) −8.99228 + 19.1190i −0.603523 + 1.28318i
\(223\) 6.10112 + 10.5675i 0.408561 + 0.707649i 0.994729 0.102541i \(-0.0326972\pi\)
−0.586167 + 0.810190i \(0.699364\pi\)
\(224\) −0.299238 −0.0199937
\(225\) 2.95780 0.501431i 0.197187 0.0334288i
\(226\) 24.5359 1.63210
\(227\) −4.50193 7.79757i −0.298803 0.517543i 0.677059 0.735929i \(-0.263254\pi\)
−0.975862 + 0.218386i \(0.929921\pi\)
\(228\) 8.17881 0.688360i 0.541655 0.0455878i
\(229\) 11.8467 20.5191i 0.782852 1.35594i −0.147422 0.989074i \(-0.547098\pi\)
0.930274 0.366865i \(-0.119569\pi\)
\(230\) 8.61446 14.9207i 0.568021 0.983841i
\(231\) −0.139665 + 0.0117547i −0.00918927 + 0.000773404i
\(232\) −7.41579 12.8445i −0.486870 0.843284i
\(233\) 25.4172 1.66514 0.832569 0.553921i \(-0.186869\pi\)
0.832569 + 0.553921i \(0.186869\pi\)
\(234\) 2.45869 6.61891i 0.160729 0.432692i
\(235\) 9.61821 0.627423
\(236\) 0.0846931 + 0.146693i 0.00551305 + 0.00954888i
\(237\) 1.80542 3.83861i 0.117275 0.249345i
\(238\) 0.276896 0.479599i 0.0179485 0.0310878i
\(239\) 0.142609 0.247006i 0.00922462 0.0159775i −0.861376 0.507967i \(-0.830397\pi\)
0.870601 + 0.491990i \(0.163730\pi\)
\(240\) −1.43258 2.06037i −0.0924724 0.132996i
\(241\) 5.80005 + 10.0460i 0.373614 + 0.647118i 0.990119 0.140233i \(-0.0447852\pi\)
−0.616505 + 0.787351i \(0.711452\pi\)
\(242\) 23.3563 1.50140
\(243\) 1.61470 15.5046i 0.103583 0.994621i
\(244\) 16.1815 1.03591
\(245\) −3.49696 6.05691i −0.223412 0.386962i
\(246\) 7.71091 + 11.0900i 0.491629 + 0.707075i
\(247\) 0.669415 1.15946i 0.0425939 0.0737747i
\(248\) −12.6499 + 21.9103i −0.803272 + 1.39131i
\(249\) −1.33948 + 2.84796i −0.0848864 + 0.180482i
\(250\) −1.17680 2.03828i −0.0744275 0.128912i
\(251\) −22.4343 −1.41604 −0.708019 0.706193i \(-0.750411\pi\)
−0.708019 + 0.706193i \(0.750411\pi\)
\(252\) 0.288391 0.776363i 0.0181669 0.0489063i
\(253\) 7.59465 0.477472
\(254\) −17.5643 30.4223i −1.10208 1.90887i
\(255\) −5.20674 + 0.438220i −0.326059 + 0.0274424i
\(256\) 12.0785 20.9206i 0.754908 1.30754i
\(257\) −0.959804 + 1.66243i −0.0598709 + 0.103700i −0.894407 0.447253i \(-0.852402\pi\)
0.834536 + 0.550953i \(0.185736\pi\)
\(258\) 21.7491 1.83049i 1.35404 0.113961i
\(259\) 0.202121 + 0.350085i 0.0125592 + 0.0217532i
\(260\) −3.53946 −0.219508
\(261\) −12.1075 + 2.05257i −0.749436 + 0.127051i
\(262\) −30.1580 −1.86317
\(263\) 12.4110 + 21.4965i 0.765295 + 1.32553i 0.940090 + 0.340925i \(0.110740\pi\)
−0.174795 + 0.984605i \(0.555926\pi\)
\(264\) 2.77111 5.89182i 0.170550 0.362616i
\(265\) 5.49890 9.52438i 0.337795 0.585078i
\(266\) 0.122887 0.212846i 0.00753466 0.0130504i
\(267\) −9.79055 14.0810i −0.599172 0.861746i
\(268\) −14.8310 25.6880i −0.905944 1.56914i
\(269\) 10.3259 0.629584 0.314792 0.949161i \(-0.398065\pi\)
0.314792 + 0.949161i \(0.398065\pi\)
\(270\) −11.8437 + 3.04816i −0.720787 + 0.185505i
\(271\) −28.5144 −1.73213 −0.866065 0.499932i \(-0.833358\pi\)
−0.866065 + 0.499932i \(0.833358\pi\)
\(272\) 2.18539 + 3.78520i 0.132509 + 0.229511i
\(273\) −0.0771211 0.110918i −0.00466758 0.00671304i
\(274\) −15.6521 + 27.1102i −0.945577 + 1.63779i
\(275\) 0.518744 0.898492i 0.0312815 0.0541811i
\(276\) −19.0999 + 40.6094i −1.14968 + 2.44440i
\(277\) −9.57360 16.5820i −0.575222 0.996314i −0.996017 0.0891583i \(-0.971582\pi\)
0.420795 0.907156i \(-0.361751\pi\)
\(278\) −10.5866 −0.634943
\(279\) 13.3588 + 16.1355i 0.799769 + 0.966006i
\(280\) −0.282603 −0.0168888
\(281\) −6.20045 10.7395i −0.369888 0.640664i 0.619660 0.784870i \(-0.287271\pi\)
−0.989548 + 0.144206i \(0.953937\pi\)
\(282\) −39.0711 + 3.28837i −2.32665 + 0.195820i
\(283\) −11.5577 + 20.0185i −0.687032 + 1.18997i 0.285762 + 0.958301i \(0.407753\pi\)
−0.972794 + 0.231673i \(0.925580\pi\)
\(284\) −4.08974 + 7.08364i −0.242682 + 0.420337i
\(285\) −2.31075 + 0.194482i −0.136877 + 0.0115201i
\(286\) −1.22092 2.11469i −0.0721945 0.125045i
\(287\) 0.258434 0.0152549
\(288\) −7.33990 8.86555i −0.432508 0.522407i
\(289\) −7.89927 −0.464663
\(290\) 4.81715 + 8.34355i 0.282873 + 0.489950i
\(291\) 6.82974 14.5211i 0.400366 0.851242i
\(292\) 4.03552 6.98973i 0.236161 0.409043i
\(293\) −9.84737 + 17.0562i −0.575290 + 0.996431i 0.420720 + 0.907190i \(0.361777\pi\)
−0.996010 + 0.0892407i \(0.971556\pi\)
\(294\) 16.2761 + 23.4088i 0.949244 + 1.36523i
\(295\) −0.0239283 0.0414450i −0.00139316 0.00241302i
\(296\) −18.7788 −1.09150
\(297\) −3.77405 3.84953i −0.218992 0.223373i
\(298\) −3.91092 −0.226553
\(299\) 3.66011 + 6.33950i 0.211670 + 0.366623i
\(300\) 3.49973 + 5.03340i 0.202057 + 0.290604i
\(301\) 0.208798 0.361648i 0.0120349 0.0208450i
\(302\) 21.8227 37.7980i 1.25575 2.17503i
\(303\) 4.00308 8.51118i 0.229971 0.488955i
\(304\) 0.969875 + 1.67987i 0.0556261 + 0.0963473i
\(305\) −4.57173 −0.261777
\(306\) 21.0010 3.56027i 1.20055 0.203527i
\(307\) −26.9891 −1.54035 −0.770175 0.637833i \(-0.779831\pi\)
−0.770175 + 0.637833i \(0.779831\pi\)
\(308\) −0.143207 0.248043i −0.00816000 0.0141335i
\(309\) −22.5601 + 1.89875i −1.28340 + 0.108016i
\(310\) 8.21714 14.2325i 0.466702 0.808352i
\(311\) 10.0010 17.3223i 0.567106 0.982256i −0.429745 0.902950i \(-0.641396\pi\)
0.996850 0.0793053i \(-0.0252702\pi\)
\(312\) 6.25358 0.526326i 0.354039 0.0297973i
\(313\) −10.7728 18.6590i −0.608915 1.05467i −0.991420 0.130718i \(-0.958272\pi\)
0.382505 0.923954i \(-0.375062\pi\)
\(314\) −24.9591 −1.40852
\(315\) −0.0814789 + 0.219345i −0.00459081 + 0.0123587i
\(316\) 8.66854 0.487643
\(317\) −8.10937 14.0458i −0.455468 0.788893i 0.543247 0.839573i \(-0.317195\pi\)
−0.998715 + 0.0506795i \(0.983861\pi\)
\(318\) −19.0814 + 40.5700i −1.07003 + 2.27505i
\(319\) −2.12344 + 3.67791i −0.118890 + 0.205923i
\(320\) −5.96370 + 10.3294i −0.333381 + 0.577433i
\(321\) 16.3214 + 23.4739i 0.910973 + 1.31019i
\(322\) 0.671898 + 1.16376i 0.0374434 + 0.0648539i
\(323\) 4.03891 0.224731
\(324\) 30.0752 10.4990i 1.67085 0.583276i
\(325\) 1.00000 0.0554700
\(326\) 2.48017 + 4.29577i 0.137364 + 0.237921i
\(327\) −15.0744 21.6804i −0.833614 1.19893i
\(328\) −6.00268 + 10.3969i −0.331443 + 0.574075i
\(329\) −0.375094 + 0.649681i −0.0206796 + 0.0358181i
\(330\) −1.80006 + 3.82721i −0.0990900 + 0.210681i
\(331\) −2.48536 4.30476i −0.136607 0.236611i 0.789603 0.613618i \(-0.210287\pi\)
−0.926210 + 0.377007i \(0.876953\pi\)
\(332\) −6.43139 −0.352968
\(333\) −5.41422 + 14.5754i −0.296698 + 0.798726i
\(334\) −15.0824 −0.825272
\(335\) 4.19018 + 7.25760i 0.228934 + 0.396525i
\(336\) 0.195040 0.0164153i 0.0106403 0.000895529i
\(337\) 12.7558 22.0937i 0.694853 1.20352i −0.275378 0.961336i \(-0.588803\pi\)
0.970230 0.242184i \(-0.0778637\pi\)
\(338\) 1.17680 2.03828i 0.0640096 0.110868i
\(339\) 17.9927 1.51433i 0.977229 0.0822474i
\(340\) −5.33881 9.24710i −0.289538 0.501494i
\(341\) 7.24437 0.392305
\(342\) 9.32025 1.58005i 0.503981 0.0854393i
\(343\) 1.09148 0.0589343
\(344\) 9.69953 + 16.8001i 0.522964 + 0.905800i
\(345\) 5.39628 11.4733i 0.290526 0.617703i
\(346\) 11.5799 20.0571i 0.622542 1.07827i
\(347\) −8.09828 + 14.0266i −0.434738 + 0.752989i −0.997274 0.0737840i \(-0.976492\pi\)
0.562536 + 0.826773i \(0.309826\pi\)
\(348\) −14.3259 20.6038i −0.767947 1.10448i
\(349\) −7.82529 13.5538i −0.418878 0.725518i 0.576949 0.816780i \(-0.304243\pi\)
−0.995827 + 0.0912622i \(0.970910\pi\)
\(350\) 0.183573 0.00981240
\(351\) 1.39449 5.00554i 0.0744325 0.267176i
\(352\) −3.98038 −0.212155
\(353\) −5.74531 9.95118i −0.305792 0.529648i 0.671645 0.740873i \(-0.265588\pi\)
−0.977437 + 0.211225i \(0.932255\pi\)
\(354\) 0.111371 + 0.160177i 0.00591931 + 0.00851331i
\(355\) 1.15547 2.00134i 0.0613261 0.106220i
\(356\) 17.5233 30.3513i 0.928733 1.60861i
\(357\) 0.173454 0.368790i 0.00918014 0.0195184i
\(358\) 15.8898 + 27.5220i 0.839805 + 1.45458i
\(359\) −29.3245 −1.54769 −0.773844 0.633376i \(-0.781669\pi\)
−0.773844 + 0.633376i \(0.781669\pi\)
\(360\) −6.93187 8.37270i −0.365341 0.441280i
\(361\) −17.2075 −0.905660
\(362\) −2.44512 4.23506i −0.128512 0.222590i
\(363\) 17.1277 1.44153i 0.898969 0.0756607i
\(364\) 0.138033 0.239080i 0.00723488 0.0125312i
\(365\) −1.14015 + 1.97480i −0.0596784 + 0.103366i
\(366\) 18.5713 1.56303i 0.970738 0.0817010i
\(367\) −1.68166 2.91272i −0.0877820 0.152043i 0.818791 0.574091i \(-0.194645\pi\)
−0.906573 + 0.422048i \(0.861311\pi\)
\(368\) −10.6058 −0.552867
\(369\) 6.33904 + 7.65665i 0.329997 + 0.398589i
\(370\) 12.1983 0.634161
\(371\) 0.428896 + 0.742869i 0.0222672 + 0.0385678i
\(372\) −18.2190 + 38.7364i −0.944609 + 2.00839i
\(373\) −3.93890 + 6.82238i −0.203949 + 0.353249i −0.949797 0.312866i \(-0.898711\pi\)
0.745849 + 0.666115i \(0.232044\pi\)
\(374\) 3.68320 6.37949i 0.190454 0.329876i
\(375\) −0.988775 1.42208i −0.0510601 0.0734361i
\(376\) −17.4247 30.1805i −0.898610 1.55644i
\(377\) −4.09342 −0.210822
\(378\) 0.255991 0.918882i 0.0131668 0.0472622i
\(379\) 15.4148 0.791805 0.395903 0.918293i \(-0.370432\pi\)
0.395903 + 0.918293i \(0.370432\pi\)
\(380\) −2.36937 4.10386i −0.121546 0.210524i
\(381\) −14.7579 21.2253i −0.756072 1.08740i
\(382\) 12.3683 21.4224i 0.632815 1.09607i
\(383\) −17.1158 + 29.6454i −0.874575 + 1.51481i −0.0173604 + 0.999849i \(0.505526\pi\)
−0.857215 + 0.514959i \(0.827807\pi\)
\(384\) 15.0378 31.9728i 0.767395 1.63160i
\(385\) 0.0404603 + 0.0700793i 0.00206205 + 0.00357157i
\(386\) 43.1327 2.19539
\(387\) 15.8361 2.68467i 0.804994 0.136470i
\(388\) 32.7922 1.66477
\(389\) 14.1998 + 24.5948i 0.719959 + 1.24701i 0.961016 + 0.276494i \(0.0891727\pi\)
−0.241057 + 0.970511i \(0.577494\pi\)
\(390\) −4.06220 + 0.341891i −0.205698 + 0.0173123i
\(391\) −11.0416 + 19.1246i −0.558399 + 0.967175i
\(392\) −12.6704 + 21.9458i −0.639953 + 1.10843i
\(393\) −22.1155 + 1.86133i −1.11558 + 0.0938916i
\(394\) −9.02455 15.6310i −0.454650 0.787477i
\(395\) −2.44912 −0.123228
\(396\) 3.83610 10.3270i 0.192771 0.518950i
\(397\) −29.4099 −1.47604 −0.738021 0.674778i \(-0.764239\pi\)
−0.738021 + 0.674778i \(0.764239\pi\)
\(398\) 19.8052 + 34.3036i 0.992745 + 1.71949i
\(399\) 0.0769787 0.163669i 0.00385376 0.00819369i
\(400\) −0.724419 + 1.25473i −0.0362210 + 0.0627366i
\(401\) −16.4045 + 28.4134i −0.819201 + 1.41890i 0.0870705 + 0.996202i \(0.472249\pi\)
−0.906272 + 0.422696i \(0.861084\pi\)
\(402\) −19.5026 28.0493i −0.972704 1.39897i
\(403\) 3.49130 + 6.04711i 0.173914 + 0.301228i
\(404\) 19.2204 0.956248
\(405\) −8.49713 + 2.96626i −0.422226 + 0.147395i
\(406\) −0.751442 −0.0372935
\(407\) 2.68856 + 4.65673i 0.133267 + 0.230825i
\(408\) 10.8078 + 15.5441i 0.535065 + 0.769546i
\(409\) −7.24656 + 12.5514i −0.358320 + 0.620628i −0.987680 0.156486i \(-0.949984\pi\)
0.629361 + 0.777113i \(0.283317\pi\)
\(410\) 3.89922 6.75365i 0.192569 0.333539i
\(411\) −9.80479 + 20.8465i −0.483635 + 1.02828i
\(412\) −23.1324 40.0664i −1.13965 1.97393i
\(413\) 0.00373265 0.000183672
\(414\) −17.9981 + 48.4519i −0.884560 + 2.38128i
\(415\) 1.81706 0.0891957
\(416\) −1.91828 3.32255i −0.0940512 0.162901i
\(417\) −7.76339 + 0.653397i −0.380175 + 0.0319970i
\(418\) 1.63460 2.83122i 0.0799511 0.138479i
\(419\) 6.35956 11.0151i 0.310685 0.538122i −0.667826 0.744318i \(-0.732775\pi\)
0.978511 + 0.206195i \(0.0661083\pi\)
\(420\) −0.476475 + 0.0401020i −0.0232496 + 0.00195678i
\(421\) 5.37790 + 9.31479i 0.262103 + 0.453975i 0.966800 0.255532i \(-0.0822507\pi\)
−0.704698 + 0.709508i \(0.748917\pi\)
\(422\) 3.84383 0.187115
\(423\) −28.4487 + 4.82287i −1.38322 + 0.234496i
\(424\) −39.8481 −1.93519
\(425\) 1.50837 + 2.61258i 0.0731667 + 0.126729i
\(426\) −4.00952 + 8.52488i −0.194262 + 0.413032i
\(427\) 0.178290 0.308807i 0.00862805 0.0149442i
\(428\) −29.2124 + 50.5973i −1.41203 + 2.44571i
\(429\) −1.02584 1.47540i −0.0495282 0.0712328i
\(430\) −6.30062 10.9130i −0.303843 0.526271i
\(431\) 33.6881 1.62270 0.811351 0.584560i \(-0.198733\pi\)
0.811351 + 0.584560i \(0.198733\pi\)
\(432\) 5.27040 + 5.37582i 0.253572 + 0.258644i
\(433\) 40.2183 1.93277 0.966384 0.257104i \(-0.0827683\pi\)
0.966384 + 0.257104i \(0.0827683\pi\)
\(434\) 0.640909 + 1.11009i 0.0307646 + 0.0532859i
\(435\) 4.04747 + 5.82119i 0.194062 + 0.279105i
\(436\) 26.9804 46.7314i 1.29213 2.23803i
\(437\) −4.90027 + 8.48752i −0.234412 + 0.406013i
\(438\) 3.95637 8.41186i 0.189042 0.401934i
\(439\) −9.07679 15.7215i −0.433212 0.750345i 0.563936 0.825818i \(-0.309286\pi\)
−0.997148 + 0.0754738i \(0.975953\pi\)
\(440\) −3.75910 −0.179208
\(441\) 13.3804 + 16.1616i 0.637163 + 0.769601i
\(442\) 7.10022 0.337723
\(443\) −4.30495 7.45640i −0.204534 0.354264i 0.745450 0.666562i \(-0.232235\pi\)
−0.949984 + 0.312298i \(0.898901\pi\)
\(444\) −31.6615 + 2.66475i −1.50259 + 0.126464i
\(445\) −4.95085 + 8.57512i −0.234693 + 0.406500i
\(446\) −14.3596 + 24.8716i −0.679948 + 1.17771i
\(447\) −2.86796 + 0.241378i −0.135650 + 0.0114168i
\(448\) −0.465148 0.805660i −0.0219762 0.0380639i
\(449\) −38.0939 −1.79776 −0.898881 0.438192i \(-0.855619\pi\)
−0.898881 + 0.438192i \(0.855619\pi\)
\(450\) 4.50280 + 5.43874i 0.212264 + 0.256385i
\(451\) 3.43762 0.161871
\(452\) 18.4491 + 31.9548i 0.867772 + 1.50303i
\(453\) 13.6702 29.0649i 0.642281 1.36559i
\(454\) 10.5958 18.3524i 0.497284 0.861320i
\(455\) −0.0389983 + 0.0675470i −0.00182827 + 0.00316665i
\(456\) 4.79650 + 6.89845i 0.224617 + 0.323050i
\(457\) 14.7544 + 25.5554i 0.690182 + 1.19543i 0.971778 + 0.235898i \(0.0758030\pi\)
−0.281596 + 0.959533i \(0.590864\pi\)
\(458\) 55.7649 2.60572
\(459\) 15.1808 3.90699i 0.708577 0.182363i
\(460\) 25.9096 1.20804
\(461\) −16.7495 29.0111i −0.780104 1.35118i −0.931881 0.362765i \(-0.881833\pi\)
0.151777 0.988415i \(-0.451501\pi\)
\(462\) −0.188317 0.270843i −0.00876131 0.0126008i
\(463\) −5.51218 + 9.54738i −0.256173 + 0.443704i −0.965213 0.261463i \(-0.915795\pi\)
0.709041 + 0.705168i \(0.249128\pi\)
\(464\) 2.96535 5.13614i 0.137663 0.238439i
\(465\) 5.14739 10.9442i 0.238704 0.507523i
\(466\) 29.9111 + 51.8075i 1.38560 + 2.39994i
\(467\) 23.9869 1.10998 0.554990 0.831857i \(-0.312722\pi\)
0.554990 + 0.831857i \(0.312722\pi\)
\(468\) 10.4690 1.77479i 0.483929 0.0820399i
\(469\) −0.653639 −0.0301822
\(470\) 11.3187 + 19.6046i 0.522094 + 0.904294i
\(471\) −18.3030 + 1.54045i −0.843359 + 0.0709804i
\(472\) −0.0866987 + 0.150166i −0.00399063 + 0.00691197i
\(473\) 2.77737 4.81054i 0.127703 0.221189i
\(474\) 9.94880 0.837329i 0.456963 0.0384598i
\(475\) 0.669415 + 1.15946i 0.0307149 + 0.0531997i
\(476\) 0.832818 0.0381722
\(477\) −11.4888 + 30.9285i −0.526037 + 1.41612i
\(478\) 0.671291 0.0307041
\(479\) 14.7875 + 25.6128i 0.675660 + 1.17028i 0.976275 + 0.216532i \(0.0694747\pi\)
−0.300615 + 0.953746i \(0.597192\pi\)
\(480\) −2.82820 + 6.01320i −0.129089 + 0.274464i
\(481\) −2.59141 + 4.48846i −0.118158 + 0.204656i
\(482\) −13.6510 + 23.6443i −0.621787 + 1.07697i
\(483\) 0.564544 + 0.811943i 0.0256876 + 0.0369447i
\(484\) 17.5621 + 30.4185i 0.798277 + 1.38266i
\(485\) −9.26477 −0.420692
\(486\) 33.5029 14.9547i 1.51972 0.678357i
\(487\) 8.53551 0.386781 0.193390 0.981122i \(-0.438052\pi\)
0.193390 + 0.981122i \(0.438052\pi\)
\(488\) 8.28232 + 14.3454i 0.374923 + 0.649386i
\(489\) 2.08389 + 2.99711i 0.0942367 + 0.135534i
\(490\) 8.23046 14.2556i 0.371814 0.644001i
\(491\) −3.15511 + 5.46481i −0.142388 + 0.246623i −0.928395 0.371594i \(-0.878811\pi\)
0.786007 + 0.618217i \(0.212145\pi\)
\(492\) −8.64531 + 18.3813i −0.389761 + 0.828692i
\(493\) −6.17440 10.6944i −0.278081 0.481650i
\(494\) 3.15108 0.141774
\(495\) −1.08381 + 2.91767i −0.0487136 + 0.131140i
\(496\) −10.1167 −0.454252
\(497\) 0.0901229 + 0.156097i 0.00404256 + 0.00700192i
\(498\) −7.38124 + 0.621234i −0.330761 + 0.0278382i
\(499\) −0.925459 + 1.60294i −0.0414293 + 0.0717576i −0.885996 0.463692i \(-0.846524\pi\)
0.844567 + 0.535450i \(0.179858\pi\)
\(500\) 1.76973 3.06526i 0.0791447 0.137083i
\(501\) −11.0602 + 0.930872i −0.494135 + 0.0415883i
\(502\) −26.4007 45.7273i −1.17832 2.04091i
\(503\) 43.5312 1.94096 0.970480 0.241181i \(-0.0775346\pi\)
0.970480 + 0.241181i \(0.0775346\pi\)
\(504\) 0.835882 0.141706i 0.0372331 0.00631208i
\(505\) −5.43031 −0.241646
\(506\) 8.93741 + 15.4800i 0.397316 + 0.688172i
\(507\) 0.737173 1.56735i 0.0327390 0.0696083i
\(508\) 26.4140 45.7505i 1.17193 2.02985i
\(509\) −13.7438 + 23.8049i −0.609181 + 1.05513i 0.382194 + 0.924082i \(0.375169\pi\)
−0.991376 + 0.131051i \(0.958165\pi\)
\(510\) −7.02052 10.0971i −0.310874 0.447108i
\(511\) −0.0889281 0.154028i −0.00393395 0.00681379i
\(512\) 16.0576 0.709653
\(513\) 6.73722 1.73392i 0.297455 0.0765545i
\(514\) −4.51800 −0.199280
\(515\) 6.53557 + 11.3199i 0.287992 + 0.498816i
\(516\) 18.7376 + 26.9489i 0.824877 + 1.18636i
\(517\) −4.98939 + 8.64188i −0.219433 + 0.380069i
\(518\) −0.475714 + 0.823961i −0.0209017 + 0.0362028i
\(519\) 7.25391 15.4230i 0.318412 0.676993i
\(520\) −1.81164 3.13785i −0.0794455 0.137604i
\(521\) 24.5536 1.07571 0.537857 0.843036i \(-0.319234\pi\)
0.537857 + 0.843036i \(0.319234\pi\)
\(522\) −18.4319 22.2631i −0.806741 0.974427i
\(523\) 41.0287 1.79406 0.897030 0.441970i \(-0.145720\pi\)
0.897030 + 0.441970i \(0.145720\pi\)
\(524\) −22.6765 39.2769i −0.990628 1.71582i
\(525\) 0.134618 0.0113300i 0.00587522 0.000494481i
\(526\) −29.2106 + 50.5942i −1.27364 + 2.20601i
\(527\) −10.5324 + 18.2426i −0.458797 + 0.794659i
\(528\) 2.59437 0.218352i 0.112905 0.00950255i
\(529\) −15.2929 26.4880i −0.664907 1.15165i
\(530\) 25.8845 1.12435
\(531\) 0.0915568 + 0.110588i 0.00397323 + 0.00479909i
\(532\) 0.369605 0.0160244
\(533\) 1.65670 + 2.86949i 0.0717597 + 0.124291i
\(534\) 17.1796 36.5265i 0.743433 1.58066i
\(535\) 8.25335 14.2952i 0.356823 0.618036i
\(536\) 15.1822 26.2963i 0.655769 1.13583i
\(537\) 13.3510 + 19.2018i 0.576138 + 0.828618i
\(538\) 12.1516 + 21.0472i 0.523892 + 0.907408i
\(539\) 7.25611 0.312543
\(540\) −12.8754 13.1329i −0.554069 0.565151i
\(541\) −14.2877 −0.614278 −0.307139 0.951665i \(-0.599372\pi\)
−0.307139 + 0.951665i \(0.599372\pi\)
\(542\) −33.5559 58.1205i −1.44135 2.49649i
\(543\) −2.05444 2.95475i −0.0881645 0.126801i
\(544\) 5.78694 10.0233i 0.248113 0.429744i
\(545\) −7.62274 + 13.2030i −0.326522 + 0.565553i
\(546\) 0.135325 0.287723i 0.00579138 0.0123134i
\(547\) 13.4851 + 23.3568i 0.576580 + 0.998667i 0.995868 + 0.0908132i \(0.0289466\pi\)
−0.419287 + 0.907854i \(0.637720\pi\)
\(548\) −47.0766 −2.01101
\(549\) 13.5223 2.29241i 0.577116 0.0978377i
\(550\) 2.44184 0.104120
\(551\) −2.74020 4.74616i −0.116736 0.202193i
\(552\) −45.7776 + 3.85282i −1.94843 + 0.163987i
\(553\) 0.0955113 0.165430i 0.00406155 0.00703482i
\(554\) 22.5325 39.0274i 0.957313 1.65812i
\(555\) 8.94530 0.752871i 0.379707 0.0319576i
\(556\) −7.96031 13.7877i −0.337592 0.584727i
\(557\) 27.5795 1.16858 0.584290 0.811545i \(-0.301373\pi\)
0.584290 + 0.811545i \(0.301373\pi\)
\(558\) −17.1680 + 46.2172i −0.726780 + 1.95653i
\(559\) 5.35402 0.226451
\(560\) −0.0565022 0.0978647i −0.00238766 0.00413554i
\(561\) 2.30723 4.90554i 0.0974114 0.207112i
\(562\) 14.5934 25.2765i 0.615586 1.06623i
\(563\) −2.92366 + 5.06393i −0.123218 + 0.213419i −0.921035 0.389480i \(-0.872655\pi\)
0.797817 + 0.602899i \(0.205988\pi\)
\(564\) −33.6611 48.4123i −1.41739 2.03853i
\(565\) −5.21241 9.02815i −0.219288 0.379817i
\(566\) −54.4043 −2.28679
\(567\) 0.131011 0.689635i 0.00550196 0.0289620i
\(568\) −8.37318 −0.351331
\(569\) −13.5782 23.5181i −0.569228 0.985931i −0.996643 0.0818755i \(-0.973909\pi\)
0.427415 0.904056i \(-0.359424\pi\)
\(570\) −3.11571 4.48110i −0.130503 0.187693i
\(571\) 7.58773 13.1423i 0.317537 0.549990i −0.662437 0.749118i \(-0.730478\pi\)
0.979973 + 0.199128i \(0.0638110\pi\)
\(572\) 1.83607 3.18017i 0.0767701 0.132970i
\(573\) 7.74773 16.4729i 0.323666 0.688165i
\(574\) 0.304126 + 0.526761i 0.0126940 + 0.0219866i
\(575\) −7.32023 −0.305275
\(576\) 12.4599 33.5428i 0.519163 1.39761i
\(577\) 9.39043 0.390929 0.195464 0.980711i \(-0.437379\pi\)
0.195464 + 0.980711i \(0.437379\pi\)
\(578\) −9.29588 16.1009i −0.386657 0.669710i
\(579\) 31.6301 2.66211i 1.31450 0.110634i
\(580\) −7.24424 + 12.5474i −0.300801 + 0.521002i
\(581\) −0.0708621 + 0.122737i −0.00293985 + 0.00509198i
\(582\) 37.6354 3.16754i 1.56004 0.131299i
\(583\) 5.70505 + 9.88144i 0.236279 + 0.409247i
\(584\) 8.26217 0.341891
\(585\) −2.95780 + 0.501431i −0.122290 + 0.0207316i
\(586\) −46.3537 −1.91485
\(587\) 17.1063 + 29.6290i 0.706054 + 1.22292i 0.966310 + 0.257381i \(0.0828596\pi\)
−0.260256 + 0.965540i \(0.583807\pi\)
\(588\) −18.2485 + 38.7991i −0.752554 + 1.60005i
\(589\) −4.67426 + 8.09606i −0.192600 + 0.333592i
\(590\) 0.0563177 0.0975451i 0.00231856 0.00401587i
\(591\) −7.58262 10.9055i −0.311907 0.448594i
\(592\) −3.75454 6.50306i −0.154311 0.267274i
\(593\) −34.8084 −1.42941 −0.714704 0.699427i \(-0.753439\pi\)
−0.714704 + 0.699427i \(0.753439\pi\)
\(594\) 3.40513 12.2227i 0.139714 0.501504i
\(595\) −0.235296 −0.00964618
\(596\) −2.94071 5.09345i −0.120456 0.208636i
\(597\) 16.6408 + 23.9332i 0.681061 + 0.979522i
\(598\) −8.61446 + 14.9207i −0.352271 + 0.610152i
\(599\) −13.2322 + 22.9189i −0.540655 + 0.936442i 0.458212 + 0.888843i \(0.348490\pi\)
−0.998867 + 0.0475987i \(0.984843\pi\)
\(600\) −2.67098 + 5.67892i −0.109042 + 0.231841i
\(601\) −14.2152 24.6215i −0.579852 1.00433i −0.995496 0.0948056i \(-0.969777\pi\)
0.415644 0.909527i \(-0.363556\pi\)
\(602\) 0.982854 0.0400581
\(603\) −16.0329 19.3654i −0.652910 0.788621i
\(604\) 65.6358 2.67068
\(605\) −4.96181 8.59410i −0.201726 0.349400i
\(606\) 22.0590 1.85657i 0.896086 0.0754181i
\(607\) 14.7710 25.5842i 0.599537 1.03843i −0.393352 0.919388i \(-0.628685\pi\)
0.992889 0.119041i \(-0.0379819\pi\)
\(608\) 2.56825 4.44833i 0.104156 0.180404i
\(609\) −0.551049 + 0.0463784i −0.0223296 + 0.00187935i
\(610\) −5.38003 9.31848i −0.217831 0.377294i
\(611\) −9.61821 −0.389111
\(612\) 20.4279 + 24.6740i 0.825749 + 0.997387i
\(613\) 34.7033 1.40165 0.700826 0.713332i \(-0.252815\pi\)
0.700826 + 0.713332i \(0.252815\pi\)
\(614\) −31.7609 55.0114i −1.28176 2.22008i
\(615\) 2.44255 5.19325i 0.0984932 0.209412i
\(616\) 0.146599 0.253916i 0.00590663 0.0102306i
\(617\) 9.37308 16.2346i 0.377346 0.653582i −0.613329 0.789827i \(-0.710170\pi\)
0.990675 + 0.136245i \(0.0435035\pi\)
\(618\) −30.4190 43.7494i −1.22363 1.75986i
\(619\) −15.5917 27.0056i −0.626684 1.08545i −0.988213 0.153087i \(-0.951078\pi\)
0.361529 0.932361i \(-0.382255\pi\)
\(620\) 24.7146 0.992563
\(621\) −10.2080 + 36.6417i −0.409633 + 1.47038i
\(622\) 47.0769 1.88761
\(623\) −0.386149 0.668830i −0.0154707 0.0267961i
\(624\) 1.43258 + 2.06037i 0.0573489 + 0.0824808i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 25.3549 43.9160i 1.01339 1.75524i
\(627\) 1.02395 2.17708i 0.0408926 0.0869441i
\(628\) −18.7673 32.5059i −0.748897 1.29713i
\(629\) −15.6353 −0.623418
\(630\) −0.542972 + 0.0920493i −0.0216325 + 0.00366733i
\(631\) −8.29360 −0.330163 −0.165082 0.986280i \(-0.552789\pi\)
−0.165082 + 0.986280i \(0.552789\pi\)
\(632\) 4.43691 + 7.68495i 0.176491 + 0.305691i
\(633\) 2.81876 0.237238i 0.112036 0.00942935i
\(634\) 19.0863 33.0584i 0.758012 1.31292i
\(635\) −7.46274 + 12.9258i −0.296150 + 0.512946i
\(636\) −67.1847 + 5.65453i −2.66405 + 0.224217i
\(637\) 3.49696 + 6.05691i 0.138555 + 0.239983i
\(638\) −9.99548 −0.395725
\(639\) −2.41412 + 6.49894i −0.0955011 + 0.257094i
\(640\) −20.3993 −0.806353
\(641\) −5.04487 8.73798i −0.199260 0.345129i 0.749028 0.662538i \(-0.230521\pi\)
−0.948289 + 0.317409i \(0.897187\pi\)
\(642\) −28.6394 + 60.8918i −1.13031 + 2.40321i
\(643\) −18.8065 + 32.5737i −0.741654 + 1.28458i 0.210088 + 0.977683i \(0.432625\pi\)
−0.951742 + 0.306900i \(0.900708\pi\)
\(644\) −1.01043 + 1.75012i −0.0398166 + 0.0689643i
\(645\) −5.29392 7.61386i −0.208448 0.299796i
\(646\) 4.75299 + 8.23243i 0.187004 + 0.323901i
\(647\) 24.9035 0.979058 0.489529 0.871987i \(-0.337169\pi\)
0.489529 + 0.871987i \(0.337169\pi\)
\(648\) 24.7014 + 21.2889i 0.970362 + 0.836307i
\(649\) 0.0496506 0.00194896
\(650\) 1.17680 + 2.03828i 0.0461580 + 0.0799480i
\(651\) 0.538506 + 0.774494i 0.0211057 + 0.0303548i
\(652\) −3.72978 + 6.46017i −0.146070 + 0.253000i
\(653\) −1.31120 + 2.27107i −0.0513113 + 0.0888737i −0.890540 0.454904i \(-0.849673\pi\)
0.839229 + 0.543778i \(0.183007\pi\)
\(654\) 26.4511 56.2393i 1.03432 2.19913i
\(655\) 6.40678 + 11.0969i 0.250333 + 0.433590i
\(656\) −4.80059 −0.187431
\(657\) 2.38211 6.41278i 0.0929351 0.250186i
\(658\) −1.76564 −0.0688320
\(659\) −4.79039 8.29720i −0.186607 0.323213i 0.757510 0.652824i \(-0.226416\pi\)
−0.944117 + 0.329611i \(0.893082\pi\)
\(660\) −6.33794 + 0.533425i −0.246704 + 0.0207636i
\(661\) −14.3246 + 24.8109i −0.557162 + 0.965034i 0.440569 + 0.897719i \(0.354777\pi\)
−0.997732 + 0.0673151i \(0.978557\pi\)
\(662\) 5.84955 10.1317i 0.227349 0.393780i
\(663\) 5.20674 0.438220i 0.202213 0.0170190i
\(664\) −3.29184 5.70164i −0.127748 0.221267i
\(665\) −0.104424 −0.00404940
\(666\) −36.0802 + 6.11662i −1.39808 + 0.237014i
\(667\) 29.9648 1.16024
\(668\) −11.3408 19.6428i −0.438788 0.760003i
\(669\) −8.99517 + 19.1251i −0.347773 + 0.739421i
\(670\) −9.86202 + 17.0815i −0.381003 + 0.659917i
\(671\) 2.37156 4.10767i 0.0915531 0.158575i
\(672\) −0.295879 0.425541i −0.0114138 0.0164156i
\(673\) 20.9864 + 36.3495i 0.808965 + 1.40117i 0.913581 + 0.406656i \(0.133305\pi\)
−0.104616 + 0.994513i \(0.533361\pi\)
\(674\) 60.0442 2.31282
\(675\) 3.63767 + 3.71043i 0.140014 + 0.142815i
\(676\) 3.53946 0.136133
\(677\) −15.8221 27.4046i −0.608091 1.05324i −0.991555 0.129688i \(-0.958602\pi\)
0.383464 0.923556i \(-0.374731\pi\)
\(678\) 24.2605 + 34.8921i 0.931718 + 1.34002i
\(679\) 0.361310 0.625808i 0.0138658 0.0240163i
\(680\) 5.46524 9.46607i 0.209582 0.363007i
\(681\) 6.63740 14.1122i 0.254346 0.540779i
\(682\) 8.52520 + 14.7661i 0.326447 + 0.565422i
\(683\) 11.7455 0.449429 0.224714 0.974425i \(-0.427855\pi\)
0.224714 + 0.974425i \(0.427855\pi\)
\(684\) 9.06591 + 10.9503i 0.346644 + 0.418696i
\(685\) 13.3005 0.508187
\(686\) 1.28445 + 2.22474i 0.0490407 + 0.0849409i
\(687\) 40.8936 3.44176i 1.56019 0.131311i
\(688\) −3.87855 + 6.71785i −0.147869 + 0.256116i
\(689\) −5.49890 + 9.52438i −0.209492 + 0.362850i
\(690\) 29.7362 2.50272i 1.13204 0.0952768i
\(691\) −3.58458 6.20867i −0.136364 0.236189i 0.789754 0.613424i \(-0.210208\pi\)
−0.926118 + 0.377235i \(0.876875\pi\)
\(692\) 34.8289 1.32400
\(693\) −0.154813 0.186992i −0.00588087 0.00710325i
\(694\) −38.1203 −1.44703
\(695\) 2.24902 + 3.89542i 0.0853102 + 0.147762i
\(696\) 10.9334 23.2462i 0.414431 0.881146i
\(697\) −4.99784 + 8.65651i −0.189307 + 0.327889i
\(698\) 18.4176 31.9003i 0.697118 1.20744i
\(699\) 25.1319 + 36.1454i 0.950577 + 1.36715i
\(700\) 0.138033 + 0.239080i 0.00521715 + 0.00903636i
\(701\) 15.0370 0.567939 0.283970 0.958833i \(-0.408348\pi\)
0.283970 + 0.958833i \(0.408348\pi\)
\(702\) 11.8437 3.04816i 0.447013 0.115045i
\(703\) −6.93893 −0.261707
\(704\) −6.18727 10.7167i −0.233192 0.403900i
\(705\) 9.51025 + 13.6779i 0.358177 + 0.515140i
\(706\) 13.5222 23.4211i 0.508915 0.881466i
\(707\) 0.211773 0.366801i 0.00796454 0.0137950i
\(708\) −0.124867 + 0.265487i −0.00469279 + 0.00997761i
\(709\) 19.3143 + 33.4533i 0.725362 + 1.25636i 0.958825 + 0.283999i \(0.0916611\pi\)
−0.233462 + 0.972366i \(0.575006\pi\)
\(710\) 5.43905 0.204124
\(711\) 7.24399 1.22806i 0.271671 0.0460560i
\(712\) 35.8765 1.34453
\(713\) −25.5571 44.2662i −0.957122 1.65778i
\(714\) 0.955818 0.0804453i 0.0357706 0.00301059i
\(715\) −0.518744 + 0.898492i −0.0193999 + 0.0336017i
\(716\) −23.8959 + 41.3889i −0.893030 + 1.54677i
\(717\) 0.492272 0.0414315i 0.0183842 0.00154729i
\(718\) −34.5092 59.7716i −1.28787 2.23066i
\(719\) −0.942162 −0.0351367 −0.0175683 0.999846i \(-0.505592\pi\)
−0.0175683 + 0.999846i \(0.505592\pi\)
\(720\) 1.51352 4.07449i 0.0564057 0.151847i
\(721\) −1.01950 −0.0379683
\(722\) −20.2499 35.0738i −0.753622 1.30531i
\(723\) −8.55128 + 18.1814i −0.318025 + 0.676172i
\(724\) 3.67707 6.36888i 0.136657 0.236698i
\(725\) 2.04671 3.54501i 0.0760129 0.131658i
\(726\) 23.0941 + 33.2146i 0.857103 + 1.23271i
\(727\) 16.0418 + 27.7853i 0.594959 + 1.03050i 0.993553 + 0.113372i \(0.0361651\pi\)
−0.398594 + 0.917128i \(0.630502\pi\)
\(728\) 0.282603 0.0104740
\(729\) 23.6454 13.0343i 0.875756 0.482753i
\(730\) −5.36694 −0.198639
\(731\) 8.07585 + 13.9878i 0.298696 + 0.517357i
\(732\) 15.9998 + 23.0114i 0.591371 + 0.850526i
\(733\) −18.7469 + 32.4706i −0.692434 + 1.19933i 0.278604 + 0.960406i \(0.410128\pi\)
−0.971038 + 0.238924i \(0.923205\pi\)
\(734\) 3.95797 6.85540i 0.146091 0.253037i
\(735\) 5.15573 10.9619i 0.190172 0.404335i
\(736\) 14.0422 + 24.3218i 0.517603 + 0.896514i
\(737\) −8.69453 −0.320267
\(738\) −8.14661 + 21.9311i −0.299881 + 0.807295i
\(739\) 34.3049 1.26193 0.630963 0.775813i \(-0.282660\pi\)
0.630963 + 0.775813i \(0.282660\pi\)
\(740\) 9.17220 + 15.8867i 0.337177 + 0.584007i
\(741\) 2.31075 0.194482i 0.0848876 0.00714447i
\(742\) −1.00945 + 1.74842i −0.0370581 + 0.0641865i
\(743\) −22.3176 + 38.6552i −0.818754 + 1.41812i 0.0878471 + 0.996134i \(0.472001\pi\)
−0.906601 + 0.421989i \(0.861332\pi\)
\(744\) −43.6663 + 3.67512i −1.60088 + 0.134737i
\(745\) 0.830835 + 1.43905i 0.0304394 + 0.0527227i
\(746\) −18.5412 −0.678843
\(747\) −5.37448 + 0.911128i −0.196642 + 0.0333364i
\(748\) 11.0779 0.405049
\(749\) 0.643733 + 1.11498i 0.0235215 + 0.0407404i
\(750\) 1.73501 3.68891i 0.0633538 0.134700i
\(751\) −16.1703 + 28.0078i −0.590063 + 1.02202i 0.404161 + 0.914688i \(0.367564\pi\)
−0.994223 + 0.107330i \(0.965770\pi\)
\(752\) 6.96762 12.0683i 0.254083 0.440084i
\(753\) −22.1824 31.9034i −0.808373 1.16262i
\(754\) −4.81715 8.34355i −0.175430 0.303854i
\(755\) −18.5440 −0.674887
\(756\) 1.38921 0.357533i 0.0505250 0.0130033i
\(757\) 30.7792 1.11869 0.559344 0.828936i \(-0.311053\pi\)
0.559344 + 0.828936i \(0.311053\pi\)
\(758\) 18.1402 + 31.4197i 0.658881 + 1.14122i
\(759\) 7.50941 + 10.8002i 0.272574 + 0.392024i
\(760\) 2.42547 4.20104i 0.0879812 0.152388i
\(761\) 0.786630 1.36248i 0.0285153 0.0493900i −0.851416 0.524492i \(-0.824255\pi\)
0.879931 + 0.475102i \(0.157589\pi\)
\(762\) 25.8959 55.0588i 0.938110 1.99457i
\(763\) −0.594548 1.02979i −0.0215241 0.0372808i
\(764\) 37.1999 1.34584
\(765\) −5.77148 6.97112i −0.208668 0.252042i
\(766\) −80.5675 −2.91102
\(767\) 0.0239283 + 0.0414450i 0.000864000 + 0.00149649i
\(768\) 41.6939 3.50912i 1.50450 0.126624i
\(769\) 15.3446 26.5777i 0.553341 0.958415i −0.444689 0.895685i \(-0.646686\pi\)
0.998031 0.0627303i \(-0.0199808\pi\)
\(770\) −0.0952276 + 0.164939i −0.00343176 + 0.00594399i
\(771\) −3.31315 + 0.278847i −0.119320 + 0.0100424i
\(772\) 32.4324 + 56.1746i 1.16727 + 2.02177i
\(773\) −0.437296 −0.0157284 −0.00786422 0.999969i \(-0.502503\pi\)
−0.00786422 + 0.999969i \(0.502503\pi\)
\(774\) 24.1081 + 29.1191i 0.866547 + 1.04666i