Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [585,2,Mod(196,585)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(585, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("585.196");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 585 = 3^{2} \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 585.i (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.67124851824\) |
Analytic rank: | \(0\) |
Dimension: | \(30\) |
Relative dimension: | \(15\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
196.1 | −1.33115 | + | 2.30562i | 0.397495 | + | 1.68582i | −2.54392 | − | 4.40620i | 0.500000 | + | 0.866025i | −4.41599 | − | 1.32761i | −0.723369 | + | 1.25291i | 8.22077 | −2.68400 | + | 1.34021i | −2.66230 | ||||
196.2 | −1.26000 | + | 2.18239i | −1.67966 | + | 0.422782i | −2.17520 | − | 3.76756i | 0.500000 | + | 0.866025i | 1.19370 | − | 4.19837i | −1.50610 | + | 2.60865i | 5.92303 | 2.64251 | − | 1.42026i | −2.52000 | ||||
196.3 | −1.09333 | + | 1.89370i | 1.72789 | + | 0.119945i | −1.39073 | − | 2.40882i | 0.500000 | + | 0.866025i | −2.11629 | + | 3.14097i | 2.12668 | − | 3.68352i | 1.70880 | 2.97123 | + | 0.414503i | −2.18666 | ||||
196.4 | −1.01209 | + | 1.75298i | 0.826646 | − | 1.52206i | −1.04864 | − | 1.81629i | 0.500000 | + | 0.866025i | 1.83150 | + | 2.98955i | −1.83320 | + | 3.17519i | 0.196897 | −1.63331 | − | 2.51640i | −2.02417 | ||||
196.5 | −0.644173 | + | 1.11574i | −0.971694 | − | 1.43381i | 0.170081 | + | 0.294590i | 0.500000 | + | 0.866025i | 2.22570 | − | 0.160537i | 1.40888 | − | 2.44026i | −3.01494 | −1.11162 | + | 2.78645i | −1.28835 | ||||
196.6 | −0.332241 | + | 0.575458i | −0.727463 | + | 1.57188i | 0.779232 | + | 1.34967i | 0.500000 | + | 0.866025i | −0.662856 | − | 0.940866i | −1.40460 | + | 2.43283i | −2.36453 | −1.94159 | − | 2.28697i | −0.664482 | ||||
196.7 | −0.264400 | + | 0.457954i | 1.72073 | − | 0.197726i | 0.860185 | + | 1.48988i | 0.500000 | + | 0.866025i | −0.364411 | + | 0.840293i | −1.64961 | + | 2.85721i | −1.96733 | 2.92181 | − | 0.680465i | −0.528800 | ||||
196.8 | 0.210096 | − | 0.363896i | −1.72749 | − | 0.125594i | 0.911720 | + | 1.57914i | 0.500000 | + | 0.866025i | −0.408641 | + | 0.602241i | 0.421896 | − | 0.730745i | 1.60658 | 2.96845 | + | 0.433924i | 0.420191 | ||||
196.9 | 0.300757 | − | 0.520926i | 1.48936 | + | 0.884196i | 0.819091 | + | 1.41871i | 0.500000 | + | 0.866025i | 0.908536 | − | 0.509919i | 1.29950 | − | 2.25080i | 2.18842 | 1.43640 | + | 2.63377i | 0.601514 | ||||
196.10 | 0.562020 | − | 0.973448i | −0.0186726 | − | 1.73195i | 0.368266 | + | 0.637856i | 0.500000 | + | 0.866025i | −1.69646 | − | 0.955214i | 1.91433 | − | 3.31571i | 3.07597 | −2.99930 | + | 0.0646801i | 1.12404 | ||||
196.11 | 0.628641 | − | 1.08884i | −0.933669 | − | 1.45886i | 0.209620 | + | 0.363073i | 0.500000 | + | 0.866025i | −2.17540 | + | 0.0995174i | −2.28445 | + | 3.95678i | 3.04167 | −1.25652 | + | 2.72418i | 1.25728 | ||||
196.12 | 0.909537 | − | 1.57536i | 1.33257 | + | 1.10646i | −0.654515 | − | 1.13365i | 0.500000 | + | 0.866025i | 2.95510 | − | 1.09292i | −1.45386 | + | 2.51816i | 1.25693 | 0.551488 | + | 2.94887i | 1.81907 | ||||
196.13 | 1.17680 | − | 2.03828i | 0.988775 | − | 1.42208i | −1.76973 | − | 3.06526i | 0.500000 | + | 0.866025i | −1.73501 | − | 3.68891i | 0.0389983 | − | 0.0675470i | −3.62327 | −1.04465 | − | 2.81224i | 2.35360 | ||||
196.14 | 1.26258 | − | 2.18685i | −0.259881 | + | 1.71244i | −2.18820 | − | 3.79007i | 0.500000 | + | 0.866025i | 3.41673 | + | 2.73041i | 0.799357 | − | 1.38453i | −6.00077 | −2.86492 | − | 0.890062i | 2.52515 | ||||
196.15 | 1.38695 | − | 2.40227i | −1.66494 | − | 0.477475i | −2.84726 | − | 4.93159i | 0.500000 | + | 0.866025i | −3.45621 | + | 3.33739i | −2.15445 | + | 3.73162i | −10.2482 | 2.54404 | + | 1.58993i | 2.77390 | ||||
391.1 | −1.33115 | − | 2.30562i | 0.397495 | − | 1.68582i | −2.54392 | + | 4.40620i | 0.500000 | − | 0.866025i | −4.41599 | + | 1.32761i | −0.723369 | − | 1.25291i | 8.22077 | −2.68400 | − | 1.34021i | −2.66230 | ||||
391.2 | −1.26000 | − | 2.18239i | −1.67966 | − | 0.422782i | −2.17520 | + | 3.76756i | 0.500000 | − | 0.866025i | 1.19370 | + | 4.19837i | −1.50610 | − | 2.60865i | 5.92303 | 2.64251 | + | 1.42026i | −2.52000 | ||||
391.3 | −1.09333 | − | 1.89370i | 1.72789 | − | 0.119945i | −1.39073 | + | 2.40882i | 0.500000 | − | 0.866025i | −2.11629 | − | 3.14097i | 2.12668 | + | 3.68352i | 1.70880 | 2.97123 | − | 0.414503i | −2.18666 | ||||
391.4 | −1.01209 | − | 1.75298i | 0.826646 | + | 1.52206i | −1.04864 | + | 1.81629i | 0.500000 | − | 0.866025i | 1.83150 | − | 2.98955i | −1.83320 | − | 3.17519i | 0.196897 | −1.63331 | + | 2.51640i | −2.02417 | ||||
391.5 | −0.644173 | − | 1.11574i | −0.971694 | + | 1.43381i | 0.170081 | − | 0.294590i | 0.500000 | − | 0.866025i | 2.22570 | + | 0.160537i | 1.40888 | + | 2.44026i | −3.01494 | −1.11162 | − | 2.78645i | −1.28835 | ||||
See all 30 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 585.2.i.h | ✓ | 30 |
3.b | odd | 2 | 1 | 1755.2.i.h | 30 | ||
9.c | even | 3 | 1 | inner | 585.2.i.h | ✓ | 30 |
9.c | even | 3 | 1 | 5265.2.a.bk | 15 | ||
9.d | odd | 6 | 1 | 1755.2.i.h | 30 | ||
9.d | odd | 6 | 1 | 5265.2.a.bl | 15 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
585.2.i.h | ✓ | 30 | 1.a | even | 1 | 1 | trivial |
585.2.i.h | ✓ | 30 | 9.c | even | 3 | 1 | inner |
1755.2.i.h | 30 | 3.b | odd | 2 | 1 | ||
1755.2.i.h | 30 | 9.d | odd | 6 | 1 | ||
5265.2.a.bk | 15 | 9.c | even | 3 | 1 | ||
5265.2.a.bl | 15 | 9.d | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(585, [\chi])\):
\( T_{2}^{30} - T_{2}^{29} + 26 T_{2}^{28} - 23 T_{2}^{27} + 405 T_{2}^{26} - 338 T_{2}^{25} + 4110 T_{2}^{24} - 3223 T_{2}^{23} + 30766 T_{2}^{22} - 23145 T_{2}^{21} + 170006 T_{2}^{20} - 122117 T_{2}^{19} + 718425 T_{2}^{18} + \cdots + 20736 \)
|
\( T_{7}^{30} + 10 T_{7}^{29} + 121 T_{7}^{28} + 770 T_{7}^{27} + 5910 T_{7}^{26} + 30389 T_{7}^{25} + 183025 T_{7}^{24} + 787276 T_{7}^{23} + 3908218 T_{7}^{22} + 14334577 T_{7}^{21} + 61116299 T_{7}^{20} + \cdots + 11314151424 \)
|