Properties

Label 585.2.i.e.391.7
Level $585$
Weight $2$
Character 585.391
Analytic conductor $4.671$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \( x^{16} - 5 x^{15} + 20 x^{14} - 44 x^{13} + 96 x^{12} - 107 x^{11} + 178 x^{10} - 19 x^{9} + 231 x^{8} + 326 x^{7} + 551 x^{6} + 859 x^{5} + 1118 x^{4} + 1215 x^{3} + 1103 x^{2} + \cdots + 268 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 391.7
Root \(1.48460 + 1.66288i\) of defining polynomial
Character \(\chi\) \(=\) 585.391
Dual form 585.2.i.e.196.7

$q$-expansion

\(f(q)\) \(=\) \(q+(0.984603 + 1.70538i) q^{2} +(-1.60495 + 0.651266i) q^{3} +(-0.938888 + 1.62620i) q^{4} +(0.500000 - 0.866025i) q^{5} +(-2.69089 - 2.09581i) q^{6} +(1.51414 + 2.62256i) q^{7} +0.240686 q^{8} +(2.15171 - 2.09049i) q^{9} +O(q^{10})\) \(q+(0.984603 + 1.70538i) q^{2} +(-1.60495 + 0.651266i) q^{3} +(-0.938888 + 1.62620i) q^{4} +(0.500000 - 0.866025i) q^{5} +(-2.69089 - 2.09581i) q^{6} +(1.51414 + 2.62256i) q^{7} +0.240686 q^{8} +(2.15171 - 2.09049i) q^{9} +1.96921 q^{10} +(2.15197 + 3.72733i) q^{11} +(0.447775 - 3.22143i) q^{12} +(0.500000 - 0.866025i) q^{13} +(-2.98165 + 5.16437i) q^{14} +(-0.238460 + 1.71556i) q^{15} +(2.11476 + 3.66286i) q^{16} -0.303306 q^{17} +(5.68367 + 1.61117i) q^{18} -6.04909 q^{19} +(0.938888 + 1.62620i) q^{20} +(-4.13810 - 3.22297i) q^{21} +(-4.23768 + 7.33988i) q^{22} +(-1.47524 + 2.55520i) q^{23} +(-0.386288 + 0.156751i) q^{24} +(-0.500000 - 0.866025i) q^{25} +1.96921 q^{26} +(-2.09190 + 4.75646i) q^{27} -5.68642 q^{28} +(-4.44268 - 7.69494i) q^{29} +(-3.16047 + 1.28248i) q^{30} +(-0.0319947 + 0.0554165i) q^{31} +(-3.92370 + 6.79606i) q^{32} +(-5.88128 - 4.58065i) q^{33} +(-0.298636 - 0.517253i) q^{34} +3.02828 q^{35} +(1.37935 + 5.46184i) q^{36} +11.1045 q^{37} +(-5.95595 - 10.3160i) q^{38} +(-0.238460 + 1.71556i) q^{39} +(0.120343 - 0.208440i) q^{40} +(-4.09849 + 7.09879i) q^{41} +(1.42201 - 10.2304i) q^{42} +(-1.45536 - 2.52075i) q^{43} -8.08184 q^{44} +(-0.734568 - 2.90868i) q^{45} -5.81012 q^{46} +(3.44432 + 5.96573i) q^{47} +(-5.77957 - 4.50143i) q^{48} +(-1.08523 + 1.87967i) q^{49} +(0.984603 - 1.70538i) q^{50} +(0.486789 - 0.197533i) q^{51} +(0.938888 + 1.62620i) q^{52} +11.8296 q^{53} +(-10.1713 + 1.11573i) q^{54} +4.30395 q^{55} +(0.364432 + 0.631214i) q^{56} +(9.70846 - 3.93957i) q^{57} +(8.74855 - 15.1529i) q^{58} +(-4.57534 + 7.92472i) q^{59} +(-2.56595 - 1.99850i) q^{60} +(-0.657031 - 1.13801i) q^{61} -0.126009 q^{62} +(8.74043 + 2.47769i) q^{63} -6.99415 q^{64} +(-0.500000 - 0.866025i) q^{65} +(2.02104 - 14.5400i) q^{66} +(7.91564 - 13.7103i) q^{67} +(0.284770 - 0.493236i) q^{68} +(0.703575 - 5.06173i) q^{69} +(2.98165 + 5.16437i) q^{70} -2.85405 q^{71} +(0.517885 - 0.503152i) q^{72} -11.2819 q^{73} +(10.9335 + 18.9374i) q^{74} +(1.36649 + 1.06429i) q^{75} +(5.67942 - 9.83704i) q^{76} +(-6.51677 + 11.2874i) q^{77} +(-3.16047 + 1.28248i) q^{78} +(-5.17979 - 8.97167i) q^{79} +4.22951 q^{80} +(0.259671 - 8.99625i) q^{81} -16.1415 q^{82} +(3.53463 + 6.12217i) q^{83} +(9.12640 - 3.70337i) q^{84} +(-0.151653 + 0.262670i) q^{85} +(2.86590 - 4.96389i) q^{86} +(12.1417 + 9.45660i) q^{87} +(0.517949 + 0.897115i) q^{88} +4.26865 q^{89} +(4.23715 - 4.11661i) q^{90} +3.02828 q^{91} +(-2.77018 - 4.79809i) q^{92} +(0.0152590 - 0.109778i) q^{93} +(-6.78257 + 11.7478i) q^{94} +(-3.02455 + 5.23867i) q^{95} +(1.87130 - 13.4627i) q^{96} +(-2.91854 - 5.05505i) q^{97} -4.27408 q^{98} +(12.4224 + 3.52142i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 3 q^{2} + q^{3} - 9 q^{4} + 8 q^{5} + 8 q^{6} + 11 q^{7} - 12 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 3 q^{2} + q^{3} - 9 q^{4} + 8 q^{5} + 8 q^{6} + 11 q^{7} - 12 q^{8} + q^{9} - 6 q^{10} - 6 q^{11} + 2 q^{12} + 8 q^{13} - 10 q^{14} + 5 q^{15} - 11 q^{16} - 4 q^{17} + 5 q^{18} - 20 q^{19} + 9 q^{20} + 11 q^{21} - 3 q^{22} - 6 q^{23} - 57 q^{24} - 8 q^{25} - 6 q^{26} - 14 q^{27} - 68 q^{28} - 14 q^{29} + 7 q^{30} + 31 q^{31} - q^{32} - 31 q^{33} + 7 q^{34} + 22 q^{35} + 2 q^{36} + 2 q^{37} - 9 q^{38} + 5 q^{39} - 6 q^{40} + 12 q^{41} - 26 q^{42} - 15 q^{43} + 32 q^{44} - 16 q^{45} - 64 q^{46} + 18 q^{47} - 4 q^{48} - 17 q^{49} - 3 q^{50} + 32 q^{51} + 9 q^{52} + 4 q^{53} + 2 q^{54} - 12 q^{55} - 16 q^{56} + 45 q^{57} + 42 q^{58} - 24 q^{59} - 8 q^{60} + 9 q^{61} - 40 q^{62} + 47 q^{63} - 60 q^{64} - 8 q^{65} + 55 q^{66} + 18 q^{67} + 14 q^{68} - 12 q^{69} + 10 q^{70} + 20 q^{71} - 9 q^{72} + 12 q^{73} + 37 q^{74} + 4 q^{75} + 53 q^{76} + 34 q^{77} + 7 q^{78} + 3 q^{79} - 22 q^{80} + 13 q^{81} - 68 q^{82} + 10 q^{83} + 22 q^{84} - 2 q^{85} - 60 q^{86} + 11 q^{87} + 14 q^{88} - 26 q^{89} + 19 q^{90} + 22 q^{91} - 5 q^{92} + 74 q^{93} - 17 q^{94} - 10 q^{95} + 13 q^{96} + 34 q^{97} - 60 q^{98} - 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.984603 + 1.70538i 0.696220 + 1.20589i 0.969768 + 0.244030i \(0.0784694\pi\)
−0.273548 + 0.961858i \(0.588197\pi\)
\(3\) −1.60495 + 0.651266i −0.926616 + 0.376009i
\(4\) −0.938888 + 1.62620i −0.469444 + 0.813101i
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) −2.69089 2.09581i −1.09855 0.855611i
\(7\) 1.51414 + 2.62256i 0.572290 + 0.991236i 0.996330 + 0.0855926i \(0.0272783\pi\)
−0.424040 + 0.905644i \(0.639388\pi\)
\(8\) 0.240686 0.0850953
\(9\) 2.15171 2.09049i 0.717235 0.696831i
\(10\) 1.96921 0.622718
\(11\) 2.15197 + 3.72733i 0.648844 + 1.12383i 0.983399 + 0.181455i \(0.0580807\pi\)
−0.334555 + 0.942376i \(0.608586\pi\)
\(12\) 0.447775 3.22143i 0.129261 0.929947i
\(13\) 0.500000 0.866025i 0.138675 0.240192i
\(14\) −2.98165 + 5.16437i −0.796880 + 1.38024i
\(15\) −0.238460 + 1.71556i −0.0615702 + 0.442955i
\(16\) 2.11476 + 3.66286i 0.528689 + 0.915716i
\(17\) −0.303306 −0.0735625 −0.0367812 0.999323i \(-0.511710\pi\)
−0.0367812 + 0.999323i \(0.511710\pi\)
\(18\) 5.68367 + 1.61117i 1.33965 + 0.379757i
\(19\) −6.04909 −1.38776 −0.693878 0.720092i \(-0.744099\pi\)
−0.693878 + 0.720092i \(0.744099\pi\)
\(20\) 0.938888 + 1.62620i 0.209942 + 0.363630i
\(21\) −4.13810 3.22297i −0.903007 0.703309i
\(22\) −4.23768 + 7.33988i −0.903476 + 1.56487i
\(23\) −1.47524 + 2.55520i −0.307610 + 0.532796i −0.977839 0.209358i \(-0.932862\pi\)
0.670229 + 0.742154i \(0.266196\pi\)
\(24\) −0.386288 + 0.156751i −0.0788507 + 0.0319966i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 1.96921 0.386193
\(27\) −2.09190 + 4.75646i −0.402587 + 0.915382i
\(28\) −5.68642 −1.07463
\(29\) −4.44268 7.69494i −0.824984 1.42891i −0.901931 0.431880i \(-0.857851\pi\)
0.0769469 0.997035i \(-0.475483\pi\)
\(30\) −3.16047 + 1.28248i −0.577020 + 0.234147i
\(31\) −0.0319947 + 0.0554165i −0.00574643 + 0.00995310i −0.868884 0.495015i \(-0.835162\pi\)
0.863138 + 0.504968i \(0.168496\pi\)
\(32\) −3.92370 + 6.79606i −0.693620 + 1.20138i
\(33\) −5.88128 4.58065i −1.02380 0.797389i
\(34\) −0.298636 0.517253i −0.0512156 0.0887081i
\(35\) 3.02828 0.511872
\(36\) 1.37935 + 5.46184i 0.229892 + 0.910307i
\(37\) 11.1045 1.82556 0.912781 0.408450i \(-0.133930\pi\)
0.912781 + 0.408450i \(0.133930\pi\)
\(38\) −5.95595 10.3160i −0.966183 1.67348i
\(39\) −0.238460 + 1.71556i −0.0381842 + 0.274709i
\(40\) 0.120343 0.208440i 0.0190279 0.0329573i
\(41\) −4.09849 + 7.09879i −0.640076 + 1.10865i 0.345339 + 0.938478i \(0.387764\pi\)
−0.985415 + 0.170167i \(0.945569\pi\)
\(42\) 1.42201 10.2304i 0.219421 1.57858i
\(43\) −1.45536 2.52075i −0.221940 0.384411i 0.733457 0.679736i \(-0.237906\pi\)
−0.955397 + 0.295324i \(0.904572\pi\)
\(44\) −8.08184 −1.21838
\(45\) −0.734568 2.90868i −0.109503 0.433600i
\(46\) −5.81012 −0.856656
\(47\) 3.44432 + 5.96573i 0.502405 + 0.870192i 0.999996 + 0.00277976i \(0.000884826\pi\)
−0.497591 + 0.867412i \(0.665782\pi\)
\(48\) −5.77957 4.50143i −0.834209 0.649726i
\(49\) −1.08523 + 1.87967i −0.155033 + 0.268525i
\(50\) 0.984603 1.70538i 0.139244 0.241178i
\(51\) 0.486789 0.197533i 0.0681642 0.0276601i
\(52\) 0.938888 + 1.62620i 0.130200 + 0.225514i
\(53\) 11.8296 1.62493 0.812463 0.583012i \(-0.198126\pi\)
0.812463 + 0.583012i \(0.198126\pi\)
\(54\) −10.1713 + 1.11573i −1.38414 + 0.151832i
\(55\) 4.30395 0.580344
\(56\) 0.364432 + 0.631214i 0.0486992 + 0.0843495i
\(57\) 9.70846 3.93957i 1.28592 0.521808i
\(58\) 8.74855 15.1529i 1.14874 1.98968i
\(59\) −4.57534 + 7.92472i −0.595658 + 1.03171i 0.397795 + 0.917474i \(0.369775\pi\)
−0.993454 + 0.114236i \(0.963558\pi\)
\(60\) −2.56595 1.99850i −0.331263 0.258005i
\(61\) −0.657031 1.13801i −0.0841241 0.145707i 0.820894 0.571081i \(-0.193476\pi\)
−0.905018 + 0.425374i \(0.860143\pi\)
\(62\) −0.126009 −0.0160031
\(63\) 8.74043 + 2.47769i 1.10119 + 0.312159i
\(64\) −6.99415 −0.874269
\(65\) −0.500000 0.866025i −0.0620174 0.107417i
\(66\) 2.02104 14.5400i 0.248772 1.78975i
\(67\) 7.91564 13.7103i 0.967049 1.67498i 0.263043 0.964784i \(-0.415274\pi\)
0.704006 0.710194i \(-0.251393\pi\)
\(68\) 0.284770 0.493236i 0.0345334 0.0598137i
\(69\) 0.703575 5.06173i 0.0847004 0.609361i
\(70\) 2.98165 + 5.16437i 0.356375 + 0.617260i
\(71\) −2.85405 −0.338714 −0.169357 0.985555i \(-0.554169\pi\)
−0.169357 + 0.985555i \(0.554169\pi\)
\(72\) 0.517885 0.503152i 0.0610333 0.0592971i
\(73\) −11.2819 −1.32045 −0.660223 0.751070i \(-0.729538\pi\)
−0.660223 + 0.751070i \(0.729538\pi\)
\(74\) 10.9335 + 18.9374i 1.27099 + 2.20142i
\(75\) 1.36649 + 1.06429i 0.157788 + 0.122894i
\(76\) 5.67942 9.83704i 0.651474 1.12839i
\(77\) −6.51677 + 11.2874i −0.742655 + 1.28632i
\(78\) −3.16047 + 1.28248i −0.357853 + 0.145212i
\(79\) −5.17979 8.97167i −0.582772 1.00939i −0.995149 0.0983781i \(-0.968635\pi\)
0.412377 0.911013i \(-0.364699\pi\)
\(80\) 4.22951 0.472874
\(81\) 0.259671 8.99625i 0.0288524 0.999584i
\(82\) −16.1415 −1.78254
\(83\) 3.53463 + 6.12217i 0.387977 + 0.671995i 0.992177 0.124837i \(-0.0398408\pi\)
−0.604201 + 0.796832i \(0.706507\pi\)
\(84\) 9.12640 3.70337i 0.995772 0.404071i
\(85\) −0.151653 + 0.262670i −0.0164491 + 0.0284906i
\(86\) 2.86590 4.96389i 0.309038 0.535270i
\(87\) 12.1417 + 9.45660i 1.30173 + 1.01385i
\(88\) 0.517949 + 0.897115i 0.0552136 + 0.0956328i
\(89\) 4.26865 0.452476 0.226238 0.974072i \(-0.427357\pi\)
0.226238 + 0.974072i \(0.427357\pi\)
\(90\) 4.23715 4.11661i 0.446635 0.433929i
\(91\) 3.02828 0.317450
\(92\) −2.77018 4.79809i −0.288811 0.500235i
\(93\) 0.0152590 0.109778i 0.00158228 0.0113834i
\(94\) −6.78257 + 11.7478i −0.699569 + 1.21169i
\(95\) −3.02455 + 5.23867i −0.310312 + 0.537476i
\(96\) 1.87130 13.4627i 0.190988 1.37403i
\(97\) −2.91854 5.05505i −0.296333 0.513263i 0.678961 0.734174i \(-0.262430\pi\)
−0.975294 + 0.220911i \(0.929097\pi\)
\(98\) −4.27408 −0.431747
\(99\) 12.4224 + 3.52142i 1.24849 + 0.353916i
\(100\) 1.87778 0.187778
\(101\) −5.32443 9.22219i −0.529801 0.917642i −0.999396 0.0347599i \(-0.988933\pi\)
0.469595 0.882882i \(-0.344400\pi\)
\(102\) 0.816164 + 0.635671i 0.0808122 + 0.0629408i
\(103\) 8.95821 15.5161i 0.882679 1.52885i 0.0343282 0.999411i \(-0.489071\pi\)
0.848351 0.529434i \(-0.177596\pi\)
\(104\) 0.120343 0.208440i 0.0118006 0.0204392i
\(105\) −4.86022 + 1.97221i −0.474309 + 0.192468i
\(106\) 11.6475 + 20.1741i 1.13131 + 1.95948i
\(107\) −1.12190 −0.108458 −0.0542288 0.998529i \(-0.517270\pi\)
−0.0542288 + 0.998529i \(0.517270\pi\)
\(108\) −5.77090 7.86764i −0.555305 0.757064i
\(109\) 14.1268 1.35310 0.676552 0.736394i \(-0.263473\pi\)
0.676552 + 0.736394i \(0.263473\pi\)
\(110\) 4.23768 + 7.33988i 0.404047 + 0.699830i
\(111\) −17.8221 + 7.23196i −1.69159 + 0.686427i
\(112\) −6.40406 + 11.0922i −0.605127 + 1.04811i
\(113\) 0.144808 0.250816i 0.0136224 0.0235947i −0.859134 0.511751i \(-0.828997\pi\)
0.872756 + 0.488156i \(0.162330\pi\)
\(114\) 16.2775 + 12.6777i 1.52452 + 1.18738i
\(115\) 1.47524 + 2.55520i 0.137567 + 0.238274i
\(116\) 16.6847 1.54914
\(117\) −0.734568 2.90868i −0.0679108 0.268907i
\(118\) −18.0196 −1.65884
\(119\) −0.459247 0.795439i −0.0420991 0.0729178i
\(120\) −0.0573940 + 0.412910i −0.00523933 + 0.0376934i
\(121\) −3.76198 + 6.51593i −0.341998 + 0.592357i
\(122\) 1.29383 2.24098i 0.117138 0.202889i
\(123\) 1.95465 14.0624i 0.176245 1.26796i
\(124\) −0.0600789 0.104060i −0.00539525 0.00934484i
\(125\) −1.00000 −0.0894427
\(126\) 4.38045 + 17.3453i 0.390242 + 1.54524i
\(127\) 4.70408 0.417419 0.208710 0.977978i \(-0.433074\pi\)
0.208710 + 0.977978i \(0.433074\pi\)
\(128\) 0.960946 + 1.66441i 0.0849364 + 0.147114i
\(129\) 3.97745 + 3.09785i 0.350195 + 0.272750i
\(130\) 0.984603 1.70538i 0.0863554 0.149572i
\(131\) 11.0430 19.1271i 0.964835 1.67114i 0.254779 0.966999i \(-0.417997\pi\)
0.710057 0.704145i \(-0.248669\pi\)
\(132\) 12.9709 5.26343i 1.12897 0.458123i
\(133\) −9.15916 15.8641i −0.794200 1.37559i
\(134\) 31.1751 2.69311
\(135\) 3.07327 + 4.18987i 0.264505 + 0.360607i
\(136\) −0.0730014 −0.00625982
\(137\) 1.08441 + 1.87825i 0.0926473 + 0.160470i 0.908624 0.417615i \(-0.137134\pi\)
−0.815977 + 0.578084i \(0.803800\pi\)
\(138\) 9.32494 3.78394i 0.793791 0.322110i
\(139\) 0.606433 1.05037i 0.0514370 0.0890914i −0.839161 0.543884i \(-0.816953\pi\)
0.890597 + 0.454792i \(0.150287\pi\)
\(140\) −2.84321 + 4.92459i −0.240295 + 0.416203i
\(141\) −9.41322 7.33152i −0.792737 0.617425i
\(142\) −2.81011 4.86726i −0.235819 0.408451i
\(143\) 4.30395 0.359914
\(144\) 12.2075 + 3.46052i 1.01729 + 0.288377i
\(145\) −8.88535 −0.737888
\(146\) −11.1082 19.2399i −0.919320 1.59231i
\(147\) 0.517568 3.72354i 0.0426883 0.307113i
\(148\) −10.4258 + 18.0581i −0.856999 + 1.48437i
\(149\) −2.93510 + 5.08374i −0.240453 + 0.416476i −0.960843 0.277092i \(-0.910629\pi\)
0.720391 + 0.693569i \(0.243963\pi\)
\(150\) −0.469578 + 3.37829i −0.0383409 + 0.275836i
\(151\) 4.65223 + 8.05789i 0.378593 + 0.655742i 0.990858 0.134911i \(-0.0430747\pi\)
−0.612265 + 0.790653i \(0.709741\pi\)
\(152\) −1.45593 −0.118092
\(153\) −0.652625 + 0.634059i −0.0527616 + 0.0512606i
\(154\) −25.6657 −2.06820
\(155\) 0.0319947 + 0.0554165i 0.00256988 + 0.00445116i
\(156\) −2.56595 1.99850i −0.205441 0.160008i
\(157\) 9.14727 15.8435i 0.730031 1.26445i −0.226838 0.973933i \(-0.572839\pi\)
0.956869 0.290519i \(-0.0938280\pi\)
\(158\) 10.2001 17.6671i 0.811475 1.40552i
\(159\) −18.9859 + 7.70425i −1.50568 + 0.610986i
\(160\) 3.92370 + 6.79606i 0.310196 + 0.537275i
\(161\) −8.93490 −0.704169
\(162\) 15.5977 8.41490i 1.22547 0.661137i
\(163\) −11.9524 −0.936186 −0.468093 0.883679i \(-0.655059\pi\)
−0.468093 + 0.883679i \(0.655059\pi\)
\(164\) −7.69604 13.3299i −0.600960 1.04089i
\(165\) −6.90760 + 2.80301i −0.537756 + 0.218214i
\(166\) −6.96043 + 12.0558i −0.540234 + 0.935712i
\(167\) −6.66491 + 11.5440i −0.515746 + 0.893298i 0.484087 + 0.875020i \(0.339152\pi\)
−0.999833 + 0.0182782i \(0.994182\pi\)
\(168\) −0.995982 0.775723i −0.0768416 0.0598483i
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) −0.597272 −0.0458087
\(171\) −13.0159 + 12.6456i −0.995348 + 0.967032i
\(172\) 5.46567 0.416753
\(173\) 8.28672 + 14.3530i 0.630028 + 1.09124i 0.987545 + 0.157334i \(0.0502899\pi\)
−0.357517 + 0.933906i \(0.616377\pi\)
\(174\) −4.17236 + 30.0173i −0.316306 + 2.27560i
\(175\) 1.51414 2.62256i 0.114458 0.198247i
\(176\) −9.10179 + 15.7648i −0.686073 + 1.18831i
\(177\) 2.18207 15.6985i 0.164015 1.17997i
\(178\) 4.20293 + 7.27968i 0.315023 + 0.545635i
\(179\) 13.5386 1.01192 0.505961 0.862556i \(-0.331138\pi\)
0.505961 + 0.862556i \(0.331138\pi\)
\(180\) 5.41977 + 1.53637i 0.403966 + 0.114514i
\(181\) −3.59303 −0.267068 −0.133534 0.991044i \(-0.542632\pi\)
−0.133534 + 0.991044i \(0.542632\pi\)
\(182\) 2.98165 + 5.16437i 0.221015 + 0.382809i
\(183\) 1.79565 + 1.39854i 0.132738 + 0.103383i
\(184\) −0.355071 + 0.615000i −0.0261762 + 0.0453384i
\(185\) 5.55223 9.61674i 0.408208 0.707037i
\(186\) 0.202237 0.0820651i 0.0148287 0.00601730i
\(187\) −0.652706 1.13052i −0.0477306 0.0826718i
\(188\) −12.9353 −0.943404
\(189\) −15.6416 + 1.71579i −1.13776 + 0.124805i
\(190\) −11.9119 −0.864181
\(191\) −10.2707 17.7894i −0.743161 1.28719i −0.951049 0.309040i \(-0.899992\pi\)
0.207888 0.978153i \(-0.433341\pi\)
\(192\) 11.2252 4.55505i 0.810112 0.328733i
\(193\) 0.763135 1.32179i 0.0549316 0.0951444i −0.837252 0.546817i \(-0.815839\pi\)
0.892184 + 0.451673i \(0.149173\pi\)
\(194\) 5.74720 9.95445i 0.412625 0.714688i
\(195\) 1.36649 + 1.06429i 0.0978561 + 0.0762155i
\(196\) −2.03782 3.52960i −0.145558 0.252114i
\(197\) −1.07799 −0.0768033 −0.0384016 0.999262i \(-0.512227\pi\)
−0.0384016 + 0.999262i \(0.512227\pi\)
\(198\) 6.22573 + 24.6521i 0.442443 + 1.75195i
\(199\) 2.00263 0.141963 0.0709813 0.997478i \(-0.477387\pi\)
0.0709813 + 0.997478i \(0.477387\pi\)
\(200\) −0.120343 0.208440i −0.00850953 0.0147389i
\(201\) −3.77513 + 27.1595i −0.266277 + 1.91568i
\(202\) 10.4849 18.1604i 0.737716 1.27776i
\(203\) 13.4537 23.3024i 0.944261 1.63551i
\(204\) −0.135813 + 0.977079i −0.00950879 + 0.0684092i
\(205\) 4.09849 + 7.09879i 0.286251 + 0.495801i
\(206\) 35.2812 2.45815
\(207\) 2.16734 + 8.58203i 0.150640 + 0.596492i
\(208\) 4.22951 0.293264
\(209\) −13.0175 22.5469i −0.900438 1.55960i
\(210\) −8.14877 6.34669i −0.562318 0.437963i
\(211\) 0.117610 0.203707i 0.00809663 0.0140238i −0.861949 0.506996i \(-0.830756\pi\)
0.870045 + 0.492972i \(0.164089\pi\)
\(212\) −11.1067 + 19.2374i −0.762812 + 1.32123i
\(213\) 4.58060 1.85875i 0.313858 0.127359i
\(214\) −1.10462 1.91326i −0.0755104 0.130788i
\(215\) −2.91072 −0.198509
\(216\) −0.503492 + 1.14481i −0.0342583 + 0.0778947i
\(217\) −0.193778 −0.0131545
\(218\) 13.9093 + 24.0917i 0.942058 + 1.63169i
\(219\) 18.1068 7.34751i 1.22355 0.496499i
\(220\) −4.04092 + 6.99908i −0.272439 + 0.471878i
\(221\) −0.151653 + 0.262670i −0.0102013 + 0.0176691i
\(222\) −29.8809 23.2728i −2.00548 1.56197i
\(223\) −0.224073 0.388107i −0.0150051 0.0259895i 0.858425 0.512938i \(-0.171443\pi\)
−0.873430 + 0.486949i \(0.838110\pi\)
\(224\) −23.7641 −1.58781
\(225\) −2.88627 0.818185i −0.192418 0.0545456i
\(226\) 0.570315 0.0379368
\(227\) 4.89779 + 8.48323i 0.325078 + 0.563052i 0.981528 0.191318i \(-0.0612761\pi\)
−0.656450 + 0.754369i \(0.727943\pi\)
\(228\) −2.70863 + 19.4867i −0.179383 + 1.29054i
\(229\) −1.43116 + 2.47884i −0.0945735 + 0.163806i −0.909431 0.415856i \(-0.863482\pi\)
0.814857 + 0.579662i \(0.196815\pi\)
\(230\) −2.90506 + 5.03172i −0.191554 + 0.331782i
\(231\) 3.10798 22.3598i 0.204490 1.47117i
\(232\) −1.06929 1.85206i −0.0702023 0.121594i
\(233\) −15.5072 −1.01591 −0.507955 0.861384i \(-0.669598\pi\)
−0.507955 + 0.861384i \(0.669598\pi\)
\(234\) 4.23715 4.11661i 0.276991 0.269112i
\(235\) 6.88864 0.449365
\(236\) −8.59146 14.8808i −0.559256 0.968660i
\(237\) 14.1562 + 11.0256i 0.919546 + 0.716191i
\(238\) 0.904352 1.56638i 0.0586204 0.101534i
\(239\) 3.64054 6.30561i 0.235487 0.407876i −0.723927 0.689877i \(-0.757665\pi\)
0.959414 + 0.282001i \(0.0909981\pi\)
\(240\) −6.78814 + 2.75454i −0.438172 + 0.177805i
\(241\) −5.49432 9.51644i −0.353920 0.613008i 0.633012 0.774142i \(-0.281818\pi\)
−0.986933 + 0.161134i \(0.948485\pi\)
\(242\) −14.8162 −0.952422
\(243\) 5.44219 + 14.6076i 0.349117 + 0.937079i
\(244\) 2.46751 0.157966
\(245\) 1.08523 + 1.87967i 0.0693327 + 0.120088i
\(246\) 25.9063 10.5124i 1.65173 0.670249i
\(247\) −3.02455 + 5.23867i −0.192447 + 0.333328i
\(248\) −0.00770068 + 0.0133380i −0.000488994 + 0.000846962i
\(249\) −9.66006 7.52376i −0.612181 0.476799i
\(250\) −0.984603 1.70538i −0.0622718 0.107858i
\(251\) 9.53838 0.602057 0.301029 0.953615i \(-0.402670\pi\)
0.301029 + 0.953615i \(0.402670\pi\)
\(252\) −12.2355 + 11.8874i −0.770764 + 0.748838i
\(253\) −12.6987 −0.798364
\(254\) 4.63165 + 8.02225i 0.290616 + 0.503361i
\(255\) 0.0723264 0.520338i 0.00452925 0.0325849i
\(256\) −8.88645 + 15.3918i −0.555403 + 0.961986i
\(257\) −0.375550 + 0.650471i −0.0234261 + 0.0405753i −0.877501 0.479575i \(-0.840791\pi\)
0.854075 + 0.520150i \(0.174124\pi\)
\(258\) −1.36681 + 9.83323i −0.0850937 + 0.612190i
\(259\) 16.8137 + 29.1222i 1.04475 + 1.80956i
\(260\) 1.87778 0.116455
\(261\) −25.6456 7.26986i −1.58742 0.449993i
\(262\) 43.4921 2.68695
\(263\) −10.4188 18.0458i −0.642449 1.11275i −0.984884 0.173212i \(-0.944585\pi\)
0.342436 0.939541i \(-0.388748\pi\)
\(264\) −1.41554 1.10250i −0.0871206 0.0678541i
\(265\) 5.91482 10.2448i 0.363345 0.629331i
\(266\) 18.0363 31.2397i 1.10588 1.91543i
\(267\) −6.85095 + 2.78003i −0.419272 + 0.170135i
\(268\) 14.8638 + 25.7448i 0.907950 + 1.57262i
\(269\) −15.5184 −0.946176 −0.473088 0.881015i \(-0.656861\pi\)
−0.473088 + 0.881015i \(0.656861\pi\)
\(270\) −4.11939 + 9.36646i −0.250698 + 0.570025i
\(271\) 0.983023 0.0597144 0.0298572 0.999554i \(-0.490495\pi\)
0.0298572 + 0.999554i \(0.490495\pi\)
\(272\) −0.641417 1.11097i −0.0388916 0.0673623i
\(273\) −4.86022 + 1.97221i −0.294154 + 0.119364i
\(274\) −2.13543 + 3.69867i −0.129006 + 0.223445i
\(275\) 2.15197 3.72733i 0.129769 0.224766i
\(276\) 7.57082 + 5.89655i 0.455710 + 0.354931i
\(277\) −12.1412 21.0291i −0.729492 1.26352i −0.957098 0.289764i \(-0.906423\pi\)
0.227606 0.973753i \(-0.426910\pi\)
\(278\) 2.38838 0.143246
\(279\) 0.0470046 + 0.186125i 0.00281409 + 0.0111430i
\(280\) 0.728863 0.0435579
\(281\) 1.52022 + 2.63310i 0.0906888 + 0.157078i 0.907801 0.419401i \(-0.137760\pi\)
−0.817112 + 0.576478i \(0.804426\pi\)
\(282\) 3.23475 23.2718i 0.192627 1.38581i
\(283\) 12.6309 21.8774i 0.750829 1.30047i −0.196593 0.980485i \(-0.562988\pi\)
0.947421 0.319988i \(-0.103679\pi\)
\(284\) 2.67964 4.64127i 0.159007 0.275409i
\(285\) 1.44247 10.3776i 0.0854444 0.614714i
\(286\) 4.23768 + 7.33988i 0.250579 + 0.434016i
\(287\) −24.8227 −1.46524
\(288\) 5.76446 + 22.8256i 0.339674 + 1.34501i
\(289\) −16.9080 −0.994589
\(290\) −8.74855 15.1529i −0.513732 0.889811i
\(291\) 7.97628 + 6.21235i 0.467578 + 0.364174i
\(292\) 10.5924 18.3466i 0.619875 1.07366i
\(293\) 13.2059 22.8732i 0.771495 1.33627i −0.165249 0.986252i \(-0.552843\pi\)
0.936744 0.350016i \(-0.113824\pi\)
\(294\) 6.85967 2.78356i 0.400064 0.162341i
\(295\) 4.57534 + 7.92472i 0.266387 + 0.461395i
\(296\) 2.67269 0.155347
\(297\) −22.2306 + 2.43857i −1.28995 + 0.141500i
\(298\) −11.5596 −0.669632
\(299\) 1.47524 + 2.55520i 0.0853156 + 0.147771i
\(300\) −3.01373 + 1.22293i −0.173998 + 0.0706060i
\(301\) 4.40723 7.63354i 0.254028 0.439990i
\(302\) −9.16120 + 15.8677i −0.527168 + 0.913081i
\(303\) 14.5515 + 11.3335i 0.835963 + 0.651092i
\(304\) −12.7923 22.1570i −0.733691 1.27079i
\(305\) −1.31406 −0.0752429
\(306\) −1.72389 0.488679i −0.0985482 0.0279359i
\(307\) −15.3240 −0.874586 −0.437293 0.899319i \(-0.644063\pi\)
−0.437293 + 0.899319i \(0.644063\pi\)
\(308\) −12.2370 21.1952i −0.697269 1.20771i
\(309\) −4.27236 + 30.7367i −0.243046 + 1.74855i
\(310\) −0.0630043 + 0.109127i −0.00357840 + 0.00619797i
\(311\) −1.45646 + 2.52267i −0.0825884 + 0.143047i −0.904361 0.426768i \(-0.859652\pi\)
0.821773 + 0.569816i \(0.192985\pi\)
\(312\) −0.0573940 + 0.412910i −0.00324930 + 0.0233764i
\(313\) 5.44556 + 9.43198i 0.307801 + 0.533127i 0.977881 0.209162i \(-0.0670735\pi\)
−0.670080 + 0.742289i \(0.733740\pi\)
\(314\) 36.0257 2.03305
\(315\) 6.51596 6.33059i 0.367133 0.356689i
\(316\) 19.4530 1.09432
\(317\) 4.11235 + 7.12280i 0.230973 + 0.400057i 0.958095 0.286452i \(-0.0924758\pi\)
−0.727122 + 0.686508i \(0.759143\pi\)
\(318\) −31.8323 24.7927i −1.78507 1.39030i
\(319\) 19.1210 33.1186i 1.07057 1.85429i
\(320\) −3.49707 + 6.05711i −0.195492 + 0.338603i
\(321\) 1.80058 0.730652i 0.100499 0.0407810i
\(322\) −8.79733 15.2374i −0.490256 0.849149i
\(323\) 1.83472 0.102087
\(324\) 14.3859 + 8.86875i 0.799217 + 0.492708i
\(325\) −1.00000 −0.0554700
\(326\) −11.7684 20.3835i −0.651791 1.12894i
\(327\) −22.6728 + 9.20032i −1.25381 + 0.508779i
\(328\) −0.986448 + 1.70858i −0.0544675 + 0.0943405i
\(329\) −10.4303 + 18.0659i −0.575044 + 0.996005i
\(330\) −11.5815 9.02025i −0.637538 0.496548i
\(331\) −9.02510 15.6319i −0.496064 0.859209i 0.503925 0.863747i \(-0.331889\pi\)
−0.999990 + 0.00453859i \(0.998555\pi\)
\(332\) −13.2745 −0.728533
\(333\) 23.8935 23.2138i 1.30936 1.27211i
\(334\) −26.2492 −1.43629
\(335\) −7.91564 13.7103i −0.432478 0.749073i
\(336\) 3.05423 21.9731i 0.166622 1.19873i
\(337\) −18.3022 + 31.7004i −0.996985 + 1.72683i −0.431295 + 0.902211i \(0.641943\pi\)
−0.565690 + 0.824618i \(0.691390\pi\)
\(338\) 0.984603 1.70538i 0.0535554 0.0927606i
\(339\) −0.0690621 + 0.496854i −0.00375094 + 0.0269854i
\(340\) −0.284770 0.493236i −0.0154438 0.0267495i
\(341\) −0.275407 −0.0149141
\(342\) −34.3810 9.74614i −1.85911 0.527011i
\(343\) 14.6252 0.789686
\(344\) −0.350284 0.606710i −0.0188861 0.0327116i
\(345\) −4.03180 3.14018i −0.217065 0.169062i
\(346\) −16.3183 + 28.2641i −0.877276 + 1.51949i
\(347\) −2.91466 + 5.04835i −0.156467 + 0.271009i −0.933592 0.358337i \(-0.883344\pi\)
0.777125 + 0.629346i \(0.216677\pi\)
\(348\) −26.7780 + 10.8662i −1.43545 + 0.582488i
\(349\) −1.50856 2.61290i −0.0807513 0.139865i 0.822822 0.568300i \(-0.192399\pi\)
−0.903573 + 0.428434i \(0.859065\pi\)
\(350\) 5.96330 0.318752
\(351\) 3.07327 + 4.18987i 0.164039 + 0.223639i
\(352\) −33.7748 −1.80020
\(353\) 4.68092 + 8.10759i 0.249140 + 0.431524i 0.963288 0.268472i \(-0.0865187\pi\)
−0.714147 + 0.699995i \(0.753185\pi\)
\(354\) 28.9205 11.7355i 1.53710 0.623737i
\(355\) −1.42703 + 2.47168i −0.0757388 + 0.131183i
\(356\) −4.00778 + 6.94168i −0.212412 + 0.367908i
\(357\) 1.25511 + 0.977545i 0.0664274 + 0.0517372i
\(358\) 13.3302 + 23.0885i 0.704521 + 1.22027i
\(359\) 5.22577 0.275806 0.137903 0.990446i \(-0.455964\pi\)
0.137903 + 0.990446i \(0.455964\pi\)
\(360\) −0.176800 0.700078i −0.00931819 0.0368973i
\(361\) 17.5915 0.925868
\(362\) −3.53771 6.12749i −0.185938 0.322054i
\(363\) 1.79416 12.9078i 0.0941692 0.677482i
\(364\) −2.84321 + 4.92459i −0.149025 + 0.258118i
\(365\) −5.64095 + 9.77041i −0.295261 + 0.511406i
\(366\) −0.617054 + 4.43928i −0.0322539 + 0.232045i
\(367\) 2.15082 + 3.72532i 0.112272 + 0.194460i 0.916686 0.399609i \(-0.130854\pi\)
−0.804414 + 0.594069i \(0.797521\pi\)
\(368\) −12.4791 −0.650520
\(369\) 6.02124 + 23.8424i 0.313453 + 1.24118i
\(370\) 21.8670 1.13681
\(371\) 17.9117 + 31.0240i 0.929930 + 1.61069i
\(372\) 0.164194 + 0.127883i 0.00851307 + 0.00663042i
\(373\) −13.2650 + 22.9757i −0.686836 + 1.18964i 0.286019 + 0.958224i \(0.407668\pi\)
−0.972856 + 0.231412i \(0.925666\pi\)
\(374\) 1.28531 2.22623i 0.0664619 0.115115i
\(375\) 1.60495 0.651266i 0.0828791 0.0336312i
\(376\) 0.828999 + 1.43587i 0.0427523 + 0.0740492i
\(377\) −8.88535 −0.457619
\(378\) −18.3268 24.9855i −0.942629 1.28511i
\(379\) −3.48090 −0.178802 −0.0894008 0.995996i \(-0.528495\pi\)
−0.0894008 + 0.995996i \(0.528495\pi\)
\(380\) −5.67942 9.83704i −0.291348 0.504629i
\(381\) −7.54979 + 3.06360i −0.386787 + 0.156953i
\(382\) 20.2251 35.0309i 1.03481 1.79234i
\(383\) −12.3188 + 21.3368i −0.629461 + 1.09026i 0.358199 + 0.933645i \(0.383391\pi\)
−0.987660 + 0.156614i \(0.949942\pi\)
\(384\) −2.62624 2.04545i −0.134020 0.104382i
\(385\) 6.51677 + 11.2874i 0.332125 + 0.575258i
\(386\) 3.00554 0.152978
\(387\) −8.40112 2.38150i −0.427053 0.121059i
\(388\) 10.9607 0.556446
\(389\) 9.20953 + 15.9514i 0.466942 + 0.808767i 0.999287 0.0377606i \(-0.0120224\pi\)
−0.532345 + 0.846527i \(0.678689\pi\)
\(390\) −0.469578 + 3.37829i −0.0237780 + 0.171066i
\(391\) 0.447450 0.775007i 0.0226285 0.0391938i
\(392\) −0.261199 + 0.452410i −0.0131926 + 0.0228502i
\(393\) −5.26666 + 37.8900i −0.265668 + 1.91130i
\(394\) −1.06139 1.83838i −0.0534720 0.0926162i
\(395\) −10.3596 −0.521248
\(396\) −17.3897 + 16.8950i −0.873868 + 0.849008i
\(397\) 15.1217 0.758934 0.379467 0.925205i \(-0.376107\pi\)
0.379467 + 0.925205i \(0.376107\pi\)
\(398\) 1.97180 + 3.41525i 0.0988372 + 0.171191i
\(399\) 25.0317 + 19.4960i 1.25315 + 0.976022i
\(400\) 2.11476 3.66286i 0.105738 0.183143i
\(401\) −0.137657 + 0.238429i −0.00687426 + 0.0119066i −0.869442 0.494035i \(-0.835521\pi\)
0.862568 + 0.505941i \(0.168855\pi\)
\(402\) −50.0343 + 20.3033i −2.49548 + 1.01263i
\(403\) 0.0319947 + 0.0554165i 0.00159377 + 0.00276049i
\(404\) 19.9962 0.994847
\(405\) −7.66115 4.72301i −0.380686 0.234688i
\(406\) 52.9860 2.62965
\(407\) 23.8965 + 41.3899i 1.18451 + 2.05162i
\(408\) 0.117163 0.0475433i 0.00580045 0.00235375i
\(409\) 6.27626 10.8708i 0.310341 0.537527i −0.668095 0.744076i \(-0.732890\pi\)
0.978436 + 0.206549i \(0.0662234\pi\)
\(410\) −8.07077 + 13.9790i −0.398587 + 0.690373i
\(411\) −2.96366 2.30825i −0.146187 0.113858i
\(412\) 16.8215 + 29.1357i 0.828736 + 1.43541i
\(413\) −27.7108 −1.36356
\(414\) −12.5017 + 12.1460i −0.614424 + 0.596945i
\(415\) 7.06927 0.347017
\(416\) 3.92370 + 6.79606i 0.192375 + 0.333204i
\(417\) −0.289220 + 2.08074i −0.0141632 + 0.101894i
\(418\) 25.6341 44.3996i 1.25381 2.17165i
\(419\) −11.4351 + 19.8062i −0.558641 + 0.967595i 0.438969 + 0.898502i \(0.355344\pi\)
−0.997610 + 0.0690927i \(0.977990\pi\)
\(420\) 1.35599 9.75538i 0.0661653 0.476014i
\(421\) 12.4879 + 21.6296i 0.608622 + 1.05416i 0.991468 + 0.130352i \(0.0416106\pi\)
−0.382846 + 0.923812i \(0.625056\pi\)
\(422\) 0.463198 0.0225481
\(423\) 19.8825 + 5.63618i 0.966720 + 0.274040i
\(424\) 2.84723 0.138274
\(425\) 0.151653 + 0.262670i 0.00735625 + 0.0127414i
\(426\) 7.67996 + 5.98156i 0.372095 + 0.289807i
\(427\) 1.98967 3.44621i 0.0962869 0.166774i
\(428\) 1.05333 1.82443i 0.0509148 0.0881870i
\(429\) −6.90760 + 2.80301i −0.333502 + 0.135331i
\(430\) −2.86590 4.96389i −0.138206 0.239380i
\(431\) −34.4612 −1.65994 −0.829969 0.557809i \(-0.811642\pi\)
−0.829969 + 0.557809i \(0.811642\pi\)
\(432\) −21.8461 + 2.39640i −1.05107 + 0.115297i
\(433\) 15.6584 0.752495 0.376247 0.926519i \(-0.377214\pi\)
0.376247 + 0.926519i \(0.377214\pi\)
\(434\) −0.190794 0.330466i −0.00915842 0.0158629i
\(435\) 14.2605 5.78673i 0.683739 0.277452i
\(436\) −13.2635 + 22.9731i −0.635207 + 1.10021i
\(437\) 8.92389 15.4566i 0.426888 0.739391i
\(438\) 30.3584 + 23.6447i 1.45058 + 1.12979i
\(439\) 14.4634 + 25.0513i 0.690299 + 1.19563i 0.971740 + 0.236054i \(0.0758542\pi\)
−0.281441 + 0.959578i \(0.590812\pi\)
\(440\) 1.03590 0.0493845
\(441\) 1.59435 + 6.31316i 0.0759214 + 0.300627i
\(442\) −0.597272 −0.0284093
\(443\) 12.6006 + 21.8249i 0.598673 + 1.03693i 0.993017 + 0.117969i \(0.0376385\pi\)
−0.394344 + 0.918963i \(0.629028\pi\)
\(444\) 4.97230 35.7722i 0.235975 1.69768i
\(445\) 2.13433 3.69676i 0.101177 0.175243i
\(446\) 0.441247 0.764262i 0.0208936 0.0361889i
\(447\) 1.39981 10.0707i 0.0662087 0.476326i
\(448\) −10.5901 18.3426i −0.500336 0.866607i
\(449\) −21.5777 −1.01832 −0.509158 0.860673i \(-0.670043\pi\)
−0.509158 + 0.860673i \(0.670043\pi\)
\(450\) −1.44652 5.72779i −0.0681894 0.270011i
\(451\) −35.2794 −1.66124
\(452\) 0.271918 + 0.470975i 0.0127899 + 0.0221528i
\(453\) −12.7144 9.90265i −0.597375 0.465267i
\(454\) −9.64477 + 16.7052i −0.452651 + 0.784015i
\(455\) 1.51414 2.62256i 0.0709839 0.122948i
\(456\) 2.33669 0.948198i 0.109426 0.0444034i
\(457\) −0.247288 0.428315i −0.0115676 0.0200357i 0.860184 0.509984i \(-0.170349\pi\)
−0.871751 + 0.489949i \(0.837016\pi\)
\(458\) −5.63649 −0.263376
\(459\) 0.634487 1.44266i 0.0296153 0.0673377i
\(460\) −5.54036 −0.258320
\(461\) −6.81679 11.8070i −0.317490 0.549908i 0.662474 0.749085i \(-0.269507\pi\)
−0.979964 + 0.199177i \(0.936173\pi\)
\(462\) 41.1921 16.7152i 1.91643 0.777662i
\(463\) −10.3778 + 17.9749i −0.482297 + 0.835363i −0.999793 0.0203221i \(-0.993531\pi\)
0.517496 + 0.855686i \(0.326864\pi\)
\(464\) 18.7903 32.5458i 0.872320 1.51090i
\(465\) −0.0874408 0.0681035i −0.00405497 0.00315822i
\(466\) −15.2684 26.4457i −0.707296 1.22507i
\(467\) −34.9625 −1.61787 −0.808935 0.587898i \(-0.799956\pi\)
−0.808935 + 0.587898i \(0.799956\pi\)
\(468\) 5.41977 + 1.53637i 0.250529 + 0.0710186i
\(469\) 47.9415 2.21373
\(470\) 6.78257 + 11.7478i 0.312857 + 0.541884i
\(471\) −4.36252 + 31.3853i −0.201014 + 1.44616i
\(472\) −1.10122 + 1.90737i −0.0506877 + 0.0877937i
\(473\) 6.26378 10.8492i 0.288009 0.498846i
\(474\) −4.86463 + 34.9977i −0.223440 + 1.60750i
\(475\) 3.02455 + 5.23867i 0.138776 + 0.240366i
\(476\) 1.72472 0.0790526
\(477\) 25.4539 24.7298i 1.16545 1.13230i
\(478\) 14.3380 0.655803
\(479\) −15.2877 26.4791i −0.698512 1.20986i −0.968982 0.247131i \(-0.920512\pi\)
0.270470 0.962728i \(-0.412821\pi\)
\(480\) −10.7234 8.35193i −0.489453 0.381212i
\(481\) 5.55223 9.61674i 0.253160 0.438486i
\(482\) 10.8195 18.7398i 0.492812 0.853576i
\(483\) 14.3400 5.81900i 0.652494 0.264773i
\(484\) −7.06414 12.2355i −0.321097 0.556157i
\(485\) −5.83707 −0.265048
\(486\) −19.5532 + 23.6637i −0.886950 + 1.07341i
\(487\) 38.2764 1.73447 0.867235 0.497899i \(-0.165895\pi\)
0.867235 + 0.497899i \(0.165895\pi\)
\(488\) −0.158138 0.273903i −0.00715857 0.0123990i
\(489\) 19.1830 7.78421i 0.867485 0.352014i
\(490\) −2.13704 + 3.70146i −0.0965416 + 0.167215i
\(491\) −3.30374 + 5.72225i −0.149096 + 0.258241i −0.930894 0.365291i \(-0.880970\pi\)
0.781798 + 0.623532i \(0.214303\pi\)
\(492\) 21.0331 + 16.3817i 0.948244 + 0.738542i
\(493\) 1.34749 + 2.33392i 0.0606879 + 0.105114i
\(494\) −11.9119 −0.535942
\(495\) 9.26082 8.99737i 0.416243 0.404402i
\(496\) −0.270644 −0.0121523
\(497\) −4.32143 7.48494i −0.193843 0.335746i
\(498\) 3.31957 23.8820i 0.148754 1.07018i
\(499\) 11.0238 19.0937i 0.493491 0.854752i −0.506480 0.862251i \(-0.669054\pi\)
0.999972 + 0.00749916i \(0.00238708\pi\)
\(500\) 0.938888 1.62620i 0.0419883 0.0727259i
\(501\) 3.17863 22.8681i 0.142011 1.02167i
\(502\) 9.39153 + 16.2666i 0.419164 + 0.726014i
\(503\) −16.8779 −0.752550 −0.376275 0.926508i \(-0.622795\pi\)
−0.376275 + 0.926508i \(0.622795\pi\)
\(504\) 2.10370 + 0.596345i 0.0937062 + 0.0265633i
\(505\) −10.6489 −0.473868
\(506\) −12.5032 21.6562i −0.555836 0.962737i
\(507\) 1.36649 + 1.06429i 0.0606878 + 0.0472668i
\(508\) −4.41660 + 7.64977i −0.195955 + 0.339404i
\(509\) 11.4775 19.8797i 0.508732 0.881150i −0.491216 0.871038i \(-0.663448\pi\)
0.999949 0.0101129i \(-0.00321910\pi\)
\(510\) 0.958589 0.388983i 0.0424470 0.0172244i
\(511\) −17.0823 29.5875i −0.755678 1.30887i
\(512\) −31.1547 −1.37686
\(513\) 12.6541 28.7723i 0.558693 1.27033i
\(514\) −1.47907 −0.0652390
\(515\) −8.95821 15.5161i −0.394746 0.683720i
\(516\) −8.77211 + 3.55961i −0.386171 + 0.156703i
\(517\) −14.8242 + 25.6762i −0.651966 + 1.12924i
\(518\) −33.1096 + 57.3475i −1.45475 + 2.51971i
\(519\) −22.6474 17.6390i −0.994110 0.774265i
\(520\) −0.120343 0.208440i −0.00527739 0.00914070i
\(521\) 10.6723 0.467562 0.233781 0.972289i \(-0.424890\pi\)
0.233781 + 0.972289i \(0.424890\pi\)
\(522\) −12.8528 50.8934i −0.562552 2.22754i
\(523\) −2.51360 −0.109912 −0.0549559 0.998489i \(-0.517502\pi\)
−0.0549559 + 0.998489i \(0.517502\pi\)
\(524\) 20.7364 + 35.9164i 0.905872 + 1.56902i
\(525\) −0.722124 + 5.19518i −0.0315161 + 0.226736i
\(526\) 20.5167 35.5360i 0.894571 1.54944i
\(527\) 0.00970419 0.0168082i 0.000422721 0.000732175i
\(528\) 4.34083 31.2293i 0.188910 1.35908i
\(529\) 7.14730 + 12.3795i 0.310752 + 0.538239i
\(530\) 23.2950 1.01187
\(531\) 6.72180 + 26.6164i 0.291701 + 1.15505i
\(532\) 34.3977 1.49133
\(533\) 4.09849 + 7.09879i 0.177525 + 0.307483i
\(534\) −11.4865 8.94628i −0.497069 0.387143i
\(535\) −0.560948 + 0.971590i −0.0242519 + 0.0420055i
\(536\) 1.90518 3.29987i 0.0822913 0.142533i
\(537\) −21.7287 + 8.81723i −0.937664 + 0.380492i
\(538\) −15.2795 26.4649i −0.658747 1.14098i
\(539\) −9.34153 −0.402368
\(540\) −9.69903 + 1.06393i −0.417380 + 0.0457841i
\(541\) −10.6855 −0.459404 −0.229702 0.973261i \(-0.573775\pi\)
−0.229702 + 0.973261i \(0.573775\pi\)
\(542\) 0.967888 + 1.67643i 0.0415744 + 0.0720089i
\(543\) 5.76662 2.34002i 0.247469 0.100420i
\(544\) 1.19008 2.06128i 0.0510244 0.0883768i
\(545\) 7.06341 12.2342i 0.302563 0.524055i
\(546\) −8.14877 6.34669i −0.348735 0.271613i
\(547\) 6.06138 + 10.4986i 0.259166 + 0.448889i 0.966019 0.258472i \(-0.0832190\pi\)
−0.706853 + 0.707361i \(0.749886\pi\)
\(548\) −4.07255 −0.173971
\(549\) −3.79274 1.07514i −0.161870 0.0458860i
\(550\) 8.47536 0.361391
\(551\) 26.8742 + 46.5474i 1.14488 + 1.98299i
\(552\) 0.169340 1.21829i 0.00720761 0.0518538i
\(553\) 15.6859 27.1687i 0.667030 1.15533i
\(554\) 23.9085 41.4107i 1.01577 1.75937i
\(555\) −2.64797 + 19.0503i −0.112400 + 0.808642i
\(556\) 1.13874 + 1.97236i 0.0482935 + 0.0836468i
\(557\) 13.7918 0.584377 0.292189 0.956361i \(-0.405617\pi\)
0.292189 + 0.956361i \(0.405617\pi\)
\(558\) −0.271133 + 0.263420i −0.0114780 + 0.0111515i
\(559\) −2.91072 −0.123110
\(560\) 6.40406 + 11.0922i 0.270621 + 0.468729i
\(561\) 1.78383 + 1.38934i 0.0753132 + 0.0586579i
\(562\) −2.99363 + 5.18512i −0.126279 + 0.218721i
\(563\) 5.37453 9.30896i 0.226509 0.392326i −0.730262 0.683167i \(-0.760602\pi\)
0.956771 + 0.290842i \(0.0939352\pi\)
\(564\) 20.7605 8.42433i 0.874174 0.354728i
\(565\) −0.144808 0.250816i −0.00609214 0.0105519i
\(566\) 49.7457 2.09097
\(567\) 23.9864 12.9406i 1.00734 0.543453i
\(568\) −0.686931 −0.0288230
\(569\) −5.63062 9.75252i −0.236048 0.408847i 0.723529 0.690294i \(-0.242519\pi\)
−0.959577 + 0.281447i \(0.909186\pi\)
\(570\) 19.1180 7.75782i 0.800764 0.324939i
\(571\) −12.9908 + 22.5007i −0.543648 + 0.941627i 0.455042 + 0.890470i \(0.349624\pi\)
−0.998691 + 0.0511568i \(0.983709\pi\)
\(572\) −4.04092 + 6.99908i −0.168959 + 0.292646i
\(573\) 28.0695 + 21.8620i 1.17262 + 0.913299i
\(574\) −24.4405 42.3322i −1.02013 1.76691i
\(575\) 2.95049 0.123044
\(576\) −15.0493 + 14.6212i −0.627056 + 0.609218i
\(577\) 5.83579 0.242947 0.121474 0.992595i \(-0.461238\pi\)
0.121474 + 0.992595i \(0.461238\pi\)
\(578\) −16.6477 28.8346i −0.692452 1.19936i
\(579\) −0.363955 + 2.61840i −0.0151254 + 0.108817i
\(580\) 8.34235 14.4494i 0.346397 0.599977i
\(581\) −10.7039 + 18.5396i −0.444071 + 0.769153i
\(582\) −2.74096 + 19.7193i −0.113616 + 0.817392i
\(583\) 25.4571 + 44.0929i 1.05432 + 1.82614i
\(584\) −2.71539 −0.112364
\(585\) −2.88627 0.818185i −0.119333 0.0338278i
\(586\) 52.0101 2.14852
\(587\) 5.70440 + 9.88032i 0.235446 + 0.407804i 0.959402 0.282042i \(-0.0910116\pi\)
−0.723956 + 0.689846i \(0.757678\pi\)
\(588\) 5.56929 + 4.33766i 0.229674 + 0.178882i
\(589\) 0.193539 0.335220i 0.00797464 0.0138125i
\(590\) −9.00979 + 15.6054i −0.370927 + 0.642465i
\(591\) 1.73011 0.702055i 0.0711672 0.0288787i
\(592\) 23.4832 + 40.6741i 0.965154 + 1.67170i
\(593\) −21.1795 −0.869737 −0.434869 0.900494i \(-0.643205\pi\)
−0.434869 + 0.900494i \(0.643205\pi\)
\(594\) −26.0470 35.5107i −1.06872 1.45702i
\(595\) −0.918494 −0.0376546
\(596\) −5.51146 9.54613i −0.225758 0.391025i
\(597\) −3.21411 + 1.30424i −0.131545 + 0.0533792i
\(598\) −2.90506 + 5.03172i −0.118797 + 0.205762i
\(599\) 7.41622 12.8453i 0.303019 0.524844i −0.673800 0.738914i \(-0.735339\pi\)
0.976818 + 0.214071i \(0.0686722\pi\)
\(600\) 0.328894 + 0.256160i 0.0134270 + 0.0104577i
\(601\) −6.60333 11.4373i −0.269355 0.466537i 0.699340 0.714789i \(-0.253477\pi\)
−0.968695 + 0.248252i \(0.920144\pi\)
\(602\) 17.3575 0.707438
\(603\) −11.6291 46.0481i −0.473576 1.87522i
\(604\) −17.4717 −0.710912
\(605\) 3.76198 + 6.51593i 0.152946 + 0.264910i
\(606\) −5.00047 + 35.9749i −0.203130 + 1.46138i
\(607\) 16.7152 28.9516i 0.678451 1.17511i −0.296997 0.954879i \(-0.595985\pi\)
0.975447 0.220233i \(-0.0706816\pi\)
\(608\) 23.7348 41.1100i 0.962575 1.66723i
\(609\) −6.41632 + 46.1610i −0.260003 + 1.87054i
\(610\) −1.29383 2.24098i −0.0523856 0.0907345i
\(611\) 6.88864 0.278684
\(612\) −0.418366 1.65661i −0.0169114 0.0669644i
\(613\) −33.4817 −1.35231 −0.676157 0.736758i \(-0.736356\pi\)
−0.676157 + 0.736758i \(0.736356\pi\)
\(614\) −15.0881 26.1333i −0.608904 1.05465i
\(615\) −11.2011 8.72397i −0.451670 0.351785i
\(616\) −1.56849 + 2.71671i −0.0631964 + 0.109459i
\(617\) 19.0566 33.0071i 0.767191 1.32881i −0.171889 0.985116i \(-0.554987\pi\)
0.939080 0.343698i \(-0.111680\pi\)
\(618\) −56.6244 + 22.9774i −2.27777 + 0.924287i
\(619\) −21.3997 37.0653i −0.860126 1.48978i −0.871807 0.489849i \(-0.837052\pi\)
0.0116814 0.999932i \(-0.496282\pi\)
\(620\) −0.120158 −0.00482566
\(621\) −9.06764 12.3622i −0.363872 0.496077i
\(622\) −5.73615 −0.229999
\(623\) 6.46333 + 11.1948i 0.258948 + 0.448511i
\(624\) −6.78814 + 2.75454i −0.271743 + 0.110270i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) −10.7234 + 18.5735i −0.428594 + 0.742347i
\(627\) 35.5764 + 27.7088i 1.42078 + 1.10658i
\(628\) 17.1765 + 29.7506i 0.685418 + 1.18718i
\(629\) −3.36805 −0.134293
\(630\) 17.2117 + 4.87908i 0.685731 + 0.194387i
\(631\) −34.5751 −1.37641 −0.688206 0.725516i \(-0.741601\pi\)
−0.688206 + 0.725516i \(0.741601\pi\)
\(632\) −1.24670 2.15935i −0.0495912 0.0858945i
\(633\) −0.0560908 + 0.403535i −0.00222941 + 0.0160391i
\(634\) −8.09807 + 14.0263i −0.321616 + 0.557054i
\(635\) 2.35204 4.07385i 0.0933378 0.161666i
\(636\) 5.29702 38.1084i 0.210040 1.51110i
\(637\) 1.08523 + 1.87967i 0.0429983 + 0.0744753i
\(638\) 75.3066 2.98142
\(639\) −6.14108 + 5.96638i −0.242938 + 0.236026i
\(640\) 1.92189 0.0759694
\(641\) 10.5943 + 18.3499i 0.418452 + 0.724779i 0.995784 0.0917298i \(-0.0292396\pi\)
−0.577332 + 0.816509i \(0.695906\pi\)
\(642\) 3.01890 + 2.35128i 0.119146 + 0.0927976i
\(643\) −12.9509 + 22.4316i −0.510732 + 0.884614i 0.489190 + 0.872177i \(0.337292\pi\)
−0.999923 + 0.0124372i \(0.996041\pi\)
\(644\) 8.38887 14.5299i 0.330568 0.572560i
\(645\) 4.67154 1.89565i 0.183942 0.0746412i
\(646\) 1.80648 + 3.12891i 0.0710748 + 0.123105i
\(647\) −31.6341 −1.24366 −0.621832 0.783151i \(-0.713611\pi\)
−0.621832 + 0.783151i \(0.713611\pi\)
\(648\) 0.0624993 2.16527i 0.00245520 0.0850599i
\(649\) −39.3840 −1.54596
\(650\) −0.984603 1.70538i −0.0386193 0.0668906i
\(651\) 0.311003 0.126201i 0.0121892 0.00494620i
\(652\) 11.2220 19.4370i 0.439487 0.761213i
\(653\) 8.56340 14.8322i 0.335112 0.580430i −0.648395 0.761304i \(-0.724559\pi\)
0.983506 + 0.180874i \(0.0578926\pi\)
\(654\) −38.0138 29.6071i −1.48646 1.15773i
\(655\) −11.0430 19.1271i −0.431488 0.747358i
\(656\) −34.6692 −1.35361
\(657\) −24.2753 + 23.5847i −0.947070 + 0.920128i
\(658\) −41.0790 −1.60143
\(659\) −19.3254 33.4726i −0.752812 1.30391i −0.946455 0.322836i \(-0.895364\pi\)
0.193643 0.981072i \(-0.437970\pi\)
\(660\) 1.92720 13.8649i 0.0750161 0.539689i
\(661\) 22.1320 38.3338i 0.860836 1.49101i −0.0102873 0.999947i \(-0.503275\pi\)
0.871123 0.491064i \(-0.163392\pi\)
\(662\) 17.7723 30.7825i 0.690740 1.19640i
\(663\) 0.0723264 0.520338i 0.00280892 0.0202083i
\(664\) 0.850737 + 1.47352i 0.0330150 + 0.0571836i
\(665\) −18.3183 −0.710354
\(666\) 63.1141 + 17.8912i 2.44562 + 0.693271i
\(667\) 26.2161 1.01509
\(668\) −12.5152 21.6770i −0.484227 0.838707i
\(669\) 0.612386 + 0.476959i 0.0236762 + 0.0184403i
\(670\) 15.5875 26.9984i 0.602199 1.04304i
\(671\) 2.82782 4.89793i 0.109167 0.189083i
\(672\) 38.1401 15.4768i 1.47129 0.597029i
\(673\) 14.2308 + 24.6485i 0.548557 + 0.950129i 0.998374 + 0.0570078i \(0.0181560\pi\)
−0.449817 + 0.893121i \(0.648511\pi\)
\(674\) −72.0817 −2.77648
\(675\) 5.16517 0.566589i 0.198807 0.0218080i
\(676\) 1.87778 0.0722221
\(677\) 6.81855 + 11.8101i 0.262058 + 0.453898i 0.966789 0.255577i \(-0.0822654\pi\)
−0.704730 + 0.709475i \(0.748932\pi\)
\(678\) −0.915326 + 0.371427i −0.0351529 + 0.0142646i
\(679\) 8.83814 15.3081i 0.339177 0.587471i
\(680\) −0.0365007 + 0.0632211i −0.00139974 + 0.00242442i
\(681\) −13.3855 10.4254i −0.512935 0.399501i
\(682\) −0.271167 0.469675i −0.0103835 0.0179848i
\(683\) 47.3362 1.81127 0.905636 0.424057i \(-0.139394\pi\)
0.905636 + 0.424057i \(0.139394\pi\)
\(684\) −8.34383 33.0392i −0.319035 1.26328i
\(685\) 2.16882 0.0828663
\(686\) 14.4000 + 24.9415i 0.549795 + 0.952273i
\(687\) 0.682548 4.91046i 0.0260408 0.187346i
\(688\) 6.15545 10.6616i 0.234674 0.406468i
\(689\) 5.91482 10.2448i 0.225337 0.390295i
\(690\) 1.38548 9.96760i 0.0527445 0.379460i
\(691\) −8.31169 14.3963i −0.316191 0.547660i 0.663499 0.748178i \(-0.269071\pi\)
−0.979690 + 0.200518i \(0.935738\pi\)
\(692\) −31.1212 −1.18305
\(693\) 9.57402 + 37.9104i 0.363687 + 1.44010i
\(694\) −11.4791 −0.435743
\(695\) −0.606433 1.05037i −0.0230033 0.0398429i
\(696\) 2.92234 + 2.27607i 0.110771 + 0.0862742i
\(697\) 1.24310 2.15310i 0.0470856 0.0815546i
\(698\) 2.97067 5.14534i 0.112441 0.194754i
\(699\) 24.8882 10.0993i 0.941358 0.381991i
\(700\) 2.84321 + 4.92459i 0.107463 + 0.186132i
\(701\) 21.7166 0.820223 0.410111 0.912035i \(-0.365490\pi\)
0.410111 + 0.912035i \(0.365490\pi\)
\(702\) −4.11939 + 9.36646i −0.155476 + 0.353514i
\(703\) −67.1719 −2.53343
\(704\) −15.0512 26.0695i −0.567264 0.982530i
\(705\) −11.0559 + 4.48633i −0.416389 + 0.168965i
\(706\) −9.21770 + 15.9655i −0.346913 + 0.600870i
\(707\) 16.1239 27.9273i 0.606400 1.05032i
\(708\) 23.4802 + 18.2876i 0.882441 + 0.687291i
\(709\) 20.1493 + 34.8996i 0.756723 + 1.31068i 0.944513 + 0.328474i \(0.106534\pi\)
−0.187790 + 0.982209i \(0.560132\pi\)
\(710\) −5.62022 −0.210923
\(711\) −29.9006 8.47606i −1.12136 0.317877i
\(712\) 1.02740 0.0385036
\(713\) −0.0944002 0.163506i −0.00353531 0.00612334i
\(714\) −0.431304 + 3.10294i −0.0161411 + 0.116124i
\(715\) 2.15197 3.72733i 0.0804792 0.139394i
\(716\) −12.7112 + 22.0165i −0.475041 + 0.822795i
\(717\) −1.73625 + 12.4911i −0.0648415 + 0.466490i
\(718\) 5.14531 + 8.91194i 0.192021 + 0.332591i
\(719\) 42.5521 1.58693 0.793463 0.608619i \(-0.208276\pi\)
0.793463 + 0.608619i \(0.208276\pi\)
\(720\) 9.10066 8.84177i 0.339162 0.329513i
\(721\) 54.2559 2.02060
\(722\) 17.3206 + 30.0002i 0.644608 + 1.11649i
\(723\) 15.0158 + 11.6951i 0.558444 + 0.434946i
\(724\) 3.37345 5.84299i 0.125373 0.217153i
\(725\) −4.44268 + 7.69494i −0.164997 + 0.285783i
\(726\) 23.7792 9.64930i 0.882530 0.358119i
\(727\) 11.3584 + 19.6733i 0.421259 + 0.729641i 0.996063 0.0886497i \(-0.0282552\pi\)
−0.574804 + 0.818291i \(0.694922\pi\)
\(728\) 0.728863 0.0270135
\(729\) −18.2479 19.9001i −0.675847 0.737042i
\(730\) −22.2164 −0.822265
\(731\) 0.441419 + 0.764559i 0.0163265 + 0.0282782i
\(732\) −3.96022 + 1.60701i −0.146374 + 0.0593967i
\(733\) 14.2542 24.6889i 0.526490 0.911907i −0.473034 0.881044i \(-0.656841\pi\)
0.999524 0.0308627i \(-0.00982547\pi\)
\(734\) −4.23540 + 7.33593i −0.156332 + 0.270774i
\(735\) −2.96590 2.31000i −0.109399 0.0852056i
\(736\) −11.5769 20.0517i −0.426728 0.739115i
\(737\) 68.1370 2.50986
\(738\) −34.7318 + 33.7438i −1.27850 + 1.24213i
\(739\) −10.2174 −0.375852 −0.187926 0.982183i \(-0.560177\pi\)
−0.187926 + 0.982183i \(0.560177\pi\)
\(740\) 10.4258 + 18.0581i 0.383261 + 0.663828i
\(741\) 1.44247 10.3776i 0.0529904 0.381229i
\(742\) −35.2719 + 61.0927i −1.29487 + 2.24278i
\(743\) −26.3337 + 45.6113i −0.966090 + 1.67332i −0.259433 + 0.965761i \(0.583536\pi\)
−0.706657 + 0.707556i \(0.749798\pi\)
\(744\) 0.00367261 0.0264219i 0.000134645 0.000968675i
\(745\) 2.93510 + 5.08374i 0.107534 + 0.186254i
\(746\) −52.2431 −1.91276
\(747\) 20.4038 + 5.78397i 0.746538 + 0.211624i
\(748\) 2.45127 0.0896273
\(749\) −1.69870 2.94224i −0.0620693 0.107507i
\(750\) 2.69089 + 2.09581i 0.0982575 + 0.0765281i
\(751\) −0.0215941 + 0.0374020i −0.000787978 + 0.00136482i −0.866419 0.499317i \(-0.833584\pi\)
0.865631 + 0.500682i \(0.166917\pi\)
\(752\) −14.5678 + 25.2321i −0.531232 + 0.920121i
\(753\) −15.3086 + 6.21203i −0.557876 + 0.226379i
\(754\) −8.74855 15.1529i −0.318603 0.551837i
\(755\) 9.30445 0.338624
\(756\) 11.8955 27.0473i 0.432633 0.983699i
\(757\) −20.9410 −0.761113 −0.380557 0.924758i \(-0.624268\pi\)
−0.380557 + 0.924758i \(0.624268\pi\)
\(758\) −3.42730 5.93626i −0.124485 0.215615i
\(759\) 20.3808 8.27026i 0.739777 0.300192i
\(760\) −0.727965 + 1.26087i −0.0264061 + 0.0457367i
\(761\) −7.61100 + 13.1826i −0.275899 + 0.477870i −0.970361 0.241658i \(-0.922309\pi\)
0.694463 + 0.719529i \(0.255642\pi\)
\(762\) −12.6582 9.85885i −0.458557 0.357148i
\(763\) 21.3900 + 37.0485i 0.774369 + 1.34125i
\(764\) 38.5721 1.39549
\(765\) 0.222799 + 0.882219i 0.00805531 + 0.0318967i
\(766\) −48.5165 −1.75297
\(767\) 4.57534 + 7.92472i 0.165206 + 0.286145i
\(768\) 4.23813 30.4904i 0.152930 1.10023i
\(769\) 8.12917 14.0801i 0.293145 0.507743i −0.681406 0.731905i \(-0.738631\pi\)
0.974552 + 0.224163i \(0.0719647\pi\)
\(770\) −12.8329 + 22.2272i −0.462464 + 0.801012i
\(771\) 0.179107 1.28855i 0.00645039 0.0464061i
\(772\) 1.43300 + 2.48202i 0.0515746 +