Properties

Label 585.2.i.e.391.6
Level $585$
Weight $2$
Character 585.391
Analytic conductor $4.671$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \( x^{16} - 5 x^{15} + 20 x^{14} - 44 x^{13} + 96 x^{12} - 107 x^{11} + 178 x^{10} - 19 x^{9} + 231 x^{8} + 326 x^{7} + 551 x^{6} + 859 x^{5} + 1118 x^{4} + 1215 x^{3} + 1103 x^{2} + \cdots + 268 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 391.6
Root \(0.466399 - 1.64781i\) of defining polynomial
Character \(\chi\) \(=\) 585.391
Dual form 585.2.i.e.196.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.0336011 - 0.0581988i) q^{2} +(-0.332146 + 1.69991i) q^{3} +(0.997742 - 1.72814i) q^{4} +(0.500000 - 0.866025i) q^{5} +(0.110093 - 0.0377882i) q^{6} +(-1.23179 - 2.13352i) q^{7} -0.268505 q^{8} +(-2.77936 - 1.12923i) q^{9} +O(q^{10})\) \(q+(-0.0336011 - 0.0581988i) q^{2} +(-0.332146 + 1.69991i) q^{3} +(0.997742 - 1.72814i) q^{4} +(0.500000 - 0.866025i) q^{5} +(0.110093 - 0.0377882i) q^{6} +(-1.23179 - 2.13352i) q^{7} -0.268505 q^{8} +(-2.77936 - 1.12923i) q^{9} -0.0672022 q^{10} +(-1.60607 - 2.78180i) q^{11} +(2.60628 + 2.27006i) q^{12} +(0.500000 - 0.866025i) q^{13} +(-0.0827788 + 0.143377i) q^{14} +(1.30609 + 1.13760i) q^{15} +(-1.98646 - 3.44065i) q^{16} -4.77678 q^{17} +(0.0276694 + 0.199699i) q^{18} -3.94903 q^{19} +(-0.997742 - 1.72814i) q^{20} +(4.03591 - 1.38528i) q^{21} +(-0.107932 + 0.186943i) q^{22} +(-2.13489 + 3.69773i) q^{23} +(0.0891830 - 0.456434i) q^{24} +(-0.500000 - 0.866025i) q^{25} -0.0672022 q^{26} +(2.84275 - 4.34957i) q^{27} -4.91602 q^{28} +(1.15314 + 1.99730i) q^{29} +(0.0223210 - 0.114237i) q^{30} +(3.81652 - 6.61041i) q^{31} +(-0.402000 + 0.696284i) q^{32} +(5.26224 - 1.80621i) q^{33} +(0.160505 + 0.278003i) q^{34} -2.46357 q^{35} +(-4.72456 + 3.67643i) q^{36} +4.87293 q^{37} +(0.132692 + 0.229829i) q^{38} +(1.30609 + 1.13760i) q^{39} +(-0.134253 + 0.232532i) q^{40} +(1.26518 - 2.19136i) q^{41} +(-0.216233 - 0.188338i) q^{42} +(2.28304 + 3.95433i) q^{43} -6.40978 q^{44} +(-2.36762 + 1.84238i) q^{45} +0.286938 q^{46} +(3.13284 + 5.42623i) q^{47} +(6.50858 - 2.23400i) q^{48} +(0.465404 - 0.806103i) q^{49} +(-0.0336011 + 0.0581988i) q^{50} +(1.58659 - 8.12007i) q^{51} +(-0.997742 - 1.72814i) q^{52} +12.4968 q^{53} +(-0.348659 - 0.0192939i) q^{54} -3.21214 q^{55} +(0.330741 + 0.572861i) q^{56} +(1.31166 - 6.71298i) q^{57} +(0.0774937 - 0.134223i) q^{58} +(-1.42509 + 2.46833i) q^{59} +(3.26907 - 1.12207i) q^{60} +(-6.35000 - 10.9985i) q^{61} -0.512957 q^{62} +(1.01433 + 7.32078i) q^{63} -7.89182 q^{64} +(-0.500000 - 0.866025i) q^{65} +(-0.281936 - 0.245566i) q^{66} +(6.75359 - 11.6976i) q^{67} +(-4.76599 + 8.25494i) q^{68} +(-5.57670 - 4.85729i) q^{69} +(0.0827788 + 0.143377i) q^{70} +7.79224 q^{71} +(0.746272 + 0.303205i) q^{72} +2.26796 q^{73} +(-0.163736 - 0.283599i) q^{74} +(1.63823 - 0.562306i) q^{75} +(-3.94012 + 6.82448i) q^{76} +(-3.95668 + 6.85316i) q^{77} +(0.0223210 - 0.114237i) q^{78} +(-4.56668 - 7.90972i) q^{79} -3.97292 q^{80} +(6.44966 + 6.27709i) q^{81} -0.170046 q^{82} +(-5.25595 - 9.10356i) q^{83} +(1.63284 - 8.35677i) q^{84} +(-2.38839 + 4.13681i) q^{85} +(0.153425 - 0.265740i) q^{86} +(-3.77824 + 1.29684i) q^{87} +(0.431239 + 0.746927i) q^{88} +0.966612 q^{89} +(0.186779 + 0.0758870i) q^{90} -2.46357 q^{91} +(4.26013 + 7.37876i) q^{92} +(9.96943 + 8.68335i) q^{93} +(0.210533 - 0.364655i) q^{94} +(-1.97452 + 3.41996i) q^{95} +(-1.05009 - 0.914630i) q^{96} +(9.39020 + 16.2643i) q^{97} -0.0625523 q^{98} +(1.32255 + 9.54524i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 3 q^{2} + q^{3} - 9 q^{4} + 8 q^{5} + 8 q^{6} + 11 q^{7} - 12 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 3 q^{2} + q^{3} - 9 q^{4} + 8 q^{5} + 8 q^{6} + 11 q^{7} - 12 q^{8} + q^{9} - 6 q^{10} - 6 q^{11} + 2 q^{12} + 8 q^{13} - 10 q^{14} + 5 q^{15} - 11 q^{16} - 4 q^{17} + 5 q^{18} - 20 q^{19} + 9 q^{20} + 11 q^{21} - 3 q^{22} - 6 q^{23} - 57 q^{24} - 8 q^{25} - 6 q^{26} - 14 q^{27} - 68 q^{28} - 14 q^{29} + 7 q^{30} + 31 q^{31} - q^{32} - 31 q^{33} + 7 q^{34} + 22 q^{35} + 2 q^{36} + 2 q^{37} - 9 q^{38} + 5 q^{39} - 6 q^{40} + 12 q^{41} - 26 q^{42} - 15 q^{43} + 32 q^{44} - 16 q^{45} - 64 q^{46} + 18 q^{47} - 4 q^{48} - 17 q^{49} - 3 q^{50} + 32 q^{51} + 9 q^{52} + 4 q^{53} + 2 q^{54} - 12 q^{55} - 16 q^{56} + 45 q^{57} + 42 q^{58} - 24 q^{59} - 8 q^{60} + 9 q^{61} - 40 q^{62} + 47 q^{63} - 60 q^{64} - 8 q^{65} + 55 q^{66} + 18 q^{67} + 14 q^{68} - 12 q^{69} + 10 q^{70} + 20 q^{71} - 9 q^{72} + 12 q^{73} + 37 q^{74} + 4 q^{75} + 53 q^{76} + 34 q^{77} + 7 q^{78} + 3 q^{79} - 22 q^{80} + 13 q^{81} - 68 q^{82} + 10 q^{83} + 22 q^{84} - 2 q^{85} - 60 q^{86} + 11 q^{87} + 14 q^{88} - 26 q^{89} + 19 q^{90} + 22 q^{91} - 5 q^{92} + 74 q^{93} - 17 q^{94} - 10 q^{95} + 13 q^{96} + 34 q^{97} - 60 q^{98} - 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0336011 0.0581988i −0.0237596 0.0411528i 0.853901 0.520435i \(-0.174230\pi\)
−0.877661 + 0.479282i \(0.840897\pi\)
\(3\) −0.332146 + 1.69991i −0.191765 + 0.981441i
\(4\) 0.997742 1.72814i 0.498871 0.864070i
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 0.110093 0.0377882i 0.0449453 0.0154270i
\(7\) −1.23179 2.13352i −0.465572 0.806394i 0.533656 0.845702i \(-0.320818\pi\)
−0.999227 + 0.0393083i \(0.987485\pi\)
\(8\) −0.268505 −0.0949309
\(9\) −2.77936 1.12923i −0.926453 0.376412i
\(10\) −0.0672022 −0.0212512
\(11\) −1.60607 2.78180i −0.484249 0.838744i 0.515587 0.856837i \(-0.327574\pi\)
−0.999836 + 0.0180933i \(0.994240\pi\)
\(12\) 2.60628 + 2.27006i 0.752368 + 0.655311i
\(13\) 0.500000 0.866025i 0.138675 0.240192i
\(14\) −0.0827788 + 0.143377i −0.0221236 + 0.0383191i
\(15\) 1.30609 + 1.13760i 0.337231 + 0.293727i
\(16\) −1.98646 3.44065i −0.496615 0.860163i
\(17\) −4.77678 −1.15854 −0.579269 0.815136i \(-0.696662\pi\)
−0.579269 + 0.815136i \(0.696662\pi\)
\(18\) 0.0276694 + 0.199699i 0.00652173 + 0.0470695i
\(19\) −3.94903 −0.905970 −0.452985 0.891518i \(-0.649641\pi\)
−0.452985 + 0.891518i \(0.649641\pi\)
\(20\) −0.997742 1.72814i −0.223102 0.386424i
\(21\) 4.03591 1.38528i 0.880708 0.302293i
\(22\) −0.107932 + 0.186943i −0.0230111 + 0.0398564i
\(23\) −2.13489 + 3.69773i −0.445154 + 0.771030i −0.998063 0.0622118i \(-0.980185\pi\)
0.552908 + 0.833242i \(0.313518\pi\)
\(24\) 0.0891830 0.456434i 0.0182044 0.0931691i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) −0.0672022 −0.0131794
\(27\) 2.84275 4.34957i 0.547087 0.837076i
\(28\) −4.91602 −0.929040
\(29\) 1.15314 + 1.99730i 0.214133 + 0.370890i 0.953004 0.302957i \(-0.0979740\pi\)
−0.738871 + 0.673847i \(0.764641\pi\)
\(30\) 0.0223210 0.114237i 0.00407523 0.0208568i
\(31\) 3.81652 6.61041i 0.685468 1.18726i −0.287822 0.957684i \(-0.592931\pi\)
0.973290 0.229581i \(-0.0737356\pi\)
\(32\) −0.402000 + 0.696284i −0.0710642 + 0.123087i
\(33\) 5.26224 1.80621i 0.916039 0.314420i
\(34\) 0.160505 + 0.278003i 0.0275264 + 0.0476771i
\(35\) −2.46357 −0.416420
\(36\) −4.72456 + 3.67643i −0.787426 + 0.612739i
\(37\) 4.87293 0.801105 0.400553 0.916274i \(-0.368818\pi\)
0.400553 + 0.916274i \(0.368818\pi\)
\(38\) 0.132692 + 0.229829i 0.0215255 + 0.0372832i
\(39\) 1.30609 + 1.13760i 0.209142 + 0.182162i
\(40\) −0.134253 + 0.232532i −0.0212272 + 0.0367666i
\(41\) 1.26518 2.19136i 0.197588 0.342233i −0.750158 0.661259i \(-0.770022\pi\)
0.947746 + 0.319026i \(0.103356\pi\)
\(42\) −0.216233 0.188338i −0.0333654 0.0290612i
\(43\) 2.28304 + 3.95433i 0.348160 + 0.603030i 0.985923 0.167202i \(-0.0534734\pi\)
−0.637763 + 0.770233i \(0.720140\pi\)
\(44\) −6.40978 −0.966311
\(45\) −2.36762 + 1.84238i −0.352945 + 0.274645i
\(46\) 0.286938 0.0423067
\(47\) 3.13284 + 5.42623i 0.456971 + 0.791497i 0.998799 0.0489922i \(-0.0156009\pi\)
−0.541828 + 0.840489i \(0.682268\pi\)
\(48\) 6.50858 2.23400i 0.939433 0.322450i
\(49\) 0.465404 0.806103i 0.0664863 0.115158i
\(50\) −0.0336011 + 0.0581988i −0.00475191 + 0.00823055i
\(51\) 1.58659 8.12007i 0.222167 1.13704i
\(52\) −0.997742 1.72814i −0.138362 0.239650i
\(53\) 12.4968 1.71657 0.858286 0.513172i \(-0.171530\pi\)
0.858286 + 0.513172i \(0.171530\pi\)
\(54\) −0.348659 0.0192939i −0.0474465 0.00262557i
\(55\) −3.21214 −0.433125
\(56\) 0.330741 + 0.572861i 0.0441971 + 0.0765517i
\(57\) 1.31166 6.71298i 0.173733 0.889156i
\(58\) 0.0774937 0.134223i 0.0101754 0.0176244i
\(59\) −1.42509 + 2.46833i −0.185531 + 0.321350i −0.943755 0.330644i \(-0.892734\pi\)
0.758224 + 0.651994i \(0.226067\pi\)
\(60\) 3.26907 1.12207i 0.422035 0.144859i
\(61\) −6.35000 10.9985i −0.813034 1.40822i −0.910731 0.413000i \(-0.864481\pi\)
0.0976967 0.995216i \(-0.468852\pi\)
\(62\) −0.512957 −0.0651457
\(63\) 1.01433 + 7.32078i 0.127794 + 0.922332i
\(64\) −7.89182 −0.986477
\(65\) −0.500000 0.866025i −0.0620174 0.107417i
\(66\) −0.281936 0.245566i −0.0347040 0.0302271i
\(67\) 6.75359 11.6976i 0.825082 1.42908i −0.0767741 0.997049i \(-0.524462\pi\)
0.901856 0.432036i \(-0.142205\pi\)
\(68\) −4.76599 + 8.25494i −0.577961 + 1.00106i
\(69\) −5.57670 4.85729i −0.671356 0.584749i
\(70\) 0.0827788 + 0.143377i 0.00989395 + 0.0171368i
\(71\) 7.79224 0.924769 0.462384 0.886680i \(-0.346994\pi\)
0.462384 + 0.886680i \(0.346994\pi\)
\(72\) 0.746272 + 0.303205i 0.0879490 + 0.0357331i
\(73\) 2.26796 0.265444 0.132722 0.991153i \(-0.457628\pi\)
0.132722 + 0.991153i \(0.457628\pi\)
\(74\) −0.163736 0.283599i −0.0190339 0.0329677i
\(75\) 1.63823 0.562306i 0.189167 0.0649295i
\(76\) −3.94012 + 6.82448i −0.451962 + 0.782822i
\(77\) −3.95668 + 6.85316i −0.450905 + 0.780990i
\(78\) 0.0223210 0.114237i 0.00252735 0.0129348i
\(79\) −4.56668 7.90972i −0.513791 0.889913i −0.999872 0.0159988i \(-0.994907\pi\)
0.486081 0.873914i \(-0.338426\pi\)
\(80\) −3.97292 −0.444186
\(81\) 6.44966 + 6.27709i 0.716629 + 0.697455i
\(82\) −0.170046 −0.0187784
\(83\) −5.25595 9.10356i −0.576915 0.999246i −0.995831 0.0912209i \(-0.970923\pi\)
0.418916 0.908025i \(-0.362410\pi\)
\(84\) 1.63284 8.35677i 0.178157 0.911798i
\(85\) −2.38839 + 4.13681i −0.259057 + 0.448700i
\(86\) 0.153425 0.265740i 0.0165442 0.0286555i
\(87\) −3.77824 + 1.29684i −0.405070 + 0.139036i
\(88\) 0.431239 + 0.746927i 0.0459702 + 0.0796227i
\(89\) 0.966612 0.102461 0.0512303 0.998687i \(-0.483686\pi\)
0.0512303 + 0.998687i \(0.483686\pi\)
\(90\) 0.186779 + 0.0758870i 0.0196882 + 0.00799920i
\(91\) −2.46357 −0.258253
\(92\) 4.26013 + 7.37876i 0.444149 + 0.769289i
\(93\) 9.96943 + 8.68335i 1.03378 + 0.900422i
\(94\) 0.210533 0.364655i 0.0217149 0.0376113i
\(95\) −1.97452 + 3.41996i −0.202581 + 0.350881i
\(96\) −1.05009 0.914630i −0.107175 0.0933490i
\(97\) 9.39020 + 16.2643i 0.953431 + 1.65139i 0.737919 + 0.674889i \(0.235809\pi\)
0.215511 + 0.976501i \(0.430858\pi\)
\(98\) −0.0625523 −0.00631874
\(99\) 1.32255 + 9.54524i 0.132921 + 0.959333i
\(100\) −1.99548 −0.199548
\(101\) 9.27873 + 16.0712i 0.923268 + 1.59915i 0.794324 + 0.607495i \(0.207825\pi\)
0.128944 + 0.991652i \(0.458841\pi\)
\(102\) −0.525890 + 0.180506i −0.0520708 + 0.0178727i
\(103\) −5.12815 + 8.88222i −0.505292 + 0.875191i 0.494690 + 0.869070i \(0.335282\pi\)
−0.999981 + 0.00612110i \(0.998052\pi\)
\(104\) −0.134253 + 0.232532i −0.0131646 + 0.0228017i
\(105\) 0.818267 4.18784i 0.0798546 0.408691i
\(106\) −0.419907 0.727300i −0.0407850 0.0706417i
\(107\) −13.3729 −1.29281 −0.646403 0.762996i \(-0.723727\pi\)
−0.646403 + 0.762996i \(0.723727\pi\)
\(108\) −4.68035 9.25241i −0.450367 0.890314i
\(109\) −1.35788 −0.130061 −0.0650306 0.997883i \(-0.520715\pi\)
−0.0650306 + 0.997883i \(0.520715\pi\)
\(110\) 0.107932 + 0.186943i 0.0102909 + 0.0178243i
\(111\) −1.61853 + 8.28353i −0.153624 + 0.786238i
\(112\) −4.89379 + 8.47630i −0.462420 + 0.800935i
\(113\) 3.67848 6.37132i 0.346042 0.599363i −0.639500 0.768791i \(-0.720859\pi\)
0.985543 + 0.169428i \(0.0541920\pi\)
\(114\) −0.434761 + 0.149227i −0.0407191 + 0.0139764i
\(115\) 2.13489 + 3.69773i 0.199079 + 0.344815i
\(116\) 4.60216 0.427300
\(117\) −2.36762 + 1.84238i −0.218887 + 0.170328i
\(118\) 0.191539 0.0176326
\(119\) 5.88397 + 10.1913i 0.539383 + 0.934238i
\(120\) −0.350692 0.305452i −0.0320136 0.0278838i
\(121\) 0.341067 0.590745i 0.0310061 0.0537041i
\(122\) −0.426734 + 0.739125i −0.0386347 + 0.0669172i
\(123\) 3.30488 + 2.87854i 0.297991 + 0.259549i
\(124\) −7.61581 13.1910i −0.683920 1.18458i
\(125\) −1.00000 −0.0894427
\(126\) 0.391978 0.305019i 0.0349202 0.0271733i
\(127\) −5.97693 −0.530367 −0.265183 0.964198i \(-0.585433\pi\)
−0.265183 + 0.964198i \(0.585433\pi\)
\(128\) 1.06917 + 1.85186i 0.0945025 + 0.163683i
\(129\) −7.48030 + 2.56753i −0.658603 + 0.226058i
\(130\) −0.0336011 + 0.0581988i −0.00294701 + 0.00510437i
\(131\) −8.93670 + 15.4788i −0.780803 + 1.35239i 0.150672 + 0.988584i \(0.451856\pi\)
−0.931475 + 0.363806i \(0.881477\pi\)
\(132\) 2.12898 10.8960i 0.185304 0.948377i
\(133\) 4.86436 + 8.42533i 0.421794 + 0.730568i
\(134\) −0.907712 −0.0784144
\(135\) −2.34547 4.63668i −0.201866 0.399062i
\(136\) 1.28259 0.109981
\(137\) −5.24653 9.08726i −0.448241 0.776377i 0.550030 0.835145i \(-0.314616\pi\)
−0.998272 + 0.0587679i \(0.981283\pi\)
\(138\) −0.0953054 + 0.487768i −0.00811293 + 0.0415215i
\(139\) 5.35343 9.27241i 0.454072 0.786475i −0.544563 0.838720i \(-0.683304\pi\)
0.998634 + 0.0522449i \(0.0166376\pi\)
\(140\) −2.45801 + 4.25740i −0.207740 + 0.359816i
\(141\) −10.2646 + 3.52322i −0.864439 + 0.296709i
\(142\) −0.261828 0.453499i −0.0219721 0.0380568i
\(143\) −3.21214 −0.268613
\(144\) 1.63578 + 11.8060i 0.136315 + 0.983832i
\(145\) 2.30629 0.191527
\(146\) −0.0762058 0.131992i −0.00630684 0.0109238i
\(147\) 1.21572 + 1.05889i 0.100271 + 0.0873355i
\(148\) 4.86193 8.42111i 0.399648 0.692211i
\(149\) 10.1595 17.5968i 0.832300 1.44159i −0.0639091 0.997956i \(-0.520357\pi\)
0.896210 0.443631i \(-0.146310\pi\)
\(150\) −0.0877720 0.0764492i −0.00716655 0.00624205i
\(151\) 8.51099 + 14.7415i 0.692615 + 1.19964i 0.970978 + 0.239168i \(0.0768747\pi\)
−0.278363 + 0.960476i \(0.589792\pi\)
\(152\) 1.06034 0.0860046
\(153\) 13.2764 + 5.39410i 1.07333 + 0.436087i
\(154\) 0.531794 0.0428532
\(155\) −3.81652 6.61041i −0.306550 0.530961i
\(156\) 3.26907 1.12207i 0.261735 0.0898376i
\(157\) 0.653935 1.13265i 0.0521897 0.0903952i −0.838750 0.544516i \(-0.816713\pi\)
0.890940 + 0.454121i \(0.150047\pi\)
\(158\) −0.306891 + 0.531550i −0.0244149 + 0.0422879i
\(159\) −4.15078 + 21.2434i −0.329178 + 1.68471i
\(160\) 0.402000 + 0.696284i 0.0317809 + 0.0550461i
\(161\) 10.5189 0.829005
\(162\) 0.148604 0.586280i 0.0116754 0.0460625i
\(163\) −9.81120 −0.768473 −0.384236 0.923235i \(-0.625535\pi\)
−0.384236 + 0.923235i \(0.625535\pi\)
\(164\) −2.52465 4.37282i −0.197142 0.341460i
\(165\) 1.06690 5.46034i 0.0830582 0.425087i
\(166\) −0.353211 + 0.611779i −0.0274145 + 0.0474833i
\(167\) −4.08745 + 7.07968i −0.316297 + 0.547842i −0.979712 0.200409i \(-0.935773\pi\)
0.663416 + 0.748251i \(0.269106\pi\)
\(168\) −1.08366 + 0.371955i −0.0836064 + 0.0286970i
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 0.321010 0.0246203
\(171\) 10.9758 + 4.45938i 0.839338 + 0.341018i
\(172\) 9.11152 0.694747
\(173\) 3.19885 + 5.54058i 0.243204 + 0.421242i 0.961625 0.274366i \(-0.0884681\pi\)
−0.718421 + 0.695609i \(0.755135\pi\)
\(174\) 0.202427 + 0.176314i 0.0153460 + 0.0133663i
\(175\) −1.23179 + 2.13352i −0.0931143 + 0.161279i
\(176\) −6.38080 + 11.0519i −0.480971 + 0.833066i
\(177\) −3.72260 3.24237i −0.279807 0.243712i
\(178\) −0.0324792 0.0562557i −0.00243442 0.00421654i
\(179\) −15.6316 −1.16836 −0.584180 0.811624i \(-0.698584\pi\)
−0.584180 + 0.811624i \(0.698584\pi\)
\(180\) 0.821607 + 5.92980i 0.0612389 + 0.441981i
\(181\) 11.1033 0.825299 0.412650 0.910890i \(-0.364603\pi\)
0.412650 + 0.910890i \(0.364603\pi\)
\(182\) 0.0827788 + 0.143377i 0.00613597 + 0.0106278i
\(183\) 20.8056 7.14128i 1.53799 0.527899i
\(184\) 0.573228 0.992860i 0.0422589 0.0731946i
\(185\) 2.43647 4.22008i 0.179133 0.310267i
\(186\) 0.170377 0.871979i 0.0124926 0.0639366i
\(187\) 7.67185 + 13.2880i 0.561021 + 0.971717i
\(188\) 12.5030 0.911878
\(189\) −12.7815 0.707298i −0.929721 0.0514484i
\(190\) 0.265384 0.0192530
\(191\) −7.79123 13.4948i −0.563753 0.976450i −0.997164 0.0752533i \(-0.976023\pi\)
0.433411 0.901196i \(-0.357310\pi\)
\(192\) 2.62124 13.4153i 0.189172 0.968169i
\(193\) 9.34800 16.1912i 0.672884 1.16547i −0.304199 0.952609i \(-0.598389\pi\)
0.977083 0.212860i \(-0.0682780\pi\)
\(194\) 0.631042 1.09300i 0.0453062 0.0784726i
\(195\) 1.63823 0.562306i 0.117316 0.0402675i
\(196\) −0.928706 1.60857i −0.0663362 0.114898i
\(197\) −10.2024 −0.726893 −0.363447 0.931615i \(-0.618400\pi\)
−0.363447 + 0.931615i \(0.618400\pi\)
\(198\) 0.511083 0.397701i 0.0363211 0.0282634i
\(199\) −16.4798 −1.16822 −0.584112 0.811673i \(-0.698557\pi\)
−0.584112 + 0.811673i \(0.698557\pi\)
\(200\) 0.134253 + 0.232532i 0.00949309 + 0.0164425i
\(201\) 17.6416 + 15.3658i 1.24434 + 1.08382i
\(202\) 0.623551 1.08002i 0.0438729 0.0759900i
\(203\) 2.84085 4.92050i 0.199389 0.345351i
\(204\) −12.4496 10.8436i −0.871647 0.759203i
\(205\) −1.26518 2.19136i −0.0883641 0.153051i
\(206\) 0.689246 0.0480220
\(207\) 10.1092 7.86653i 0.702639 0.546762i
\(208\) −3.97292 −0.275473
\(209\) 6.34243 + 10.9854i 0.438715 + 0.759877i
\(210\) −0.271222 + 0.0930939i −0.0187161 + 0.00642409i
\(211\) 12.5991 21.8223i 0.867359 1.50231i 0.00267240 0.999996i \(-0.499149\pi\)
0.864686 0.502313i \(-0.167517\pi\)
\(212\) 12.4686 21.5963i 0.856348 1.48324i
\(213\) −2.58816 + 13.2461i −0.177338 + 0.907606i
\(214\) 0.449344 + 0.778286i 0.0307165 + 0.0532025i
\(215\) 4.56607 0.311403
\(216\) −0.763292 + 1.16788i −0.0519355 + 0.0794644i
\(217\) −18.8046 −1.27654
\(218\) 0.0456262 + 0.0790270i 0.00309020 + 0.00535238i
\(219\) −0.753293 + 3.85531i −0.0509029 + 0.260518i
\(220\) −3.20489 + 5.55103i −0.216074 + 0.374251i
\(221\) −2.38839 + 4.13681i −0.160660 + 0.278272i
\(222\) 0.536476 0.184139i 0.0360059 0.0123586i
\(223\) −3.79219 6.56827i −0.253944 0.439844i 0.710664 0.703531i \(-0.248395\pi\)
−0.964608 + 0.263688i \(0.915061\pi\)
\(224\) 1.98071 0.132342
\(225\) 0.411733 + 2.97161i 0.0274489 + 0.198107i
\(226\) −0.494404 −0.0328873
\(227\) −0.150519 0.260706i −0.00999028 0.0173037i 0.860987 0.508627i \(-0.169847\pi\)
−0.870977 + 0.491323i \(0.836513\pi\)
\(228\) −10.2923 8.96455i −0.681623 0.593692i
\(229\) 2.31658 4.01244i 0.153084 0.265149i −0.779276 0.626681i \(-0.784413\pi\)
0.932360 + 0.361532i \(0.117746\pi\)
\(230\) 0.143469 0.248496i 0.00946007 0.0163853i
\(231\) −10.3355 9.00223i −0.680028 0.592303i
\(232\) −0.309625 0.536286i −0.0203279 0.0352089i
\(233\) 5.62440 0.368466 0.184233 0.982883i \(-0.441020\pi\)
0.184233 + 0.982883i \(0.441020\pi\)
\(234\) 0.186779 + 0.0758870i 0.0122101 + 0.00496089i
\(235\) 6.26567 0.408727
\(236\) 2.84375 + 4.92552i 0.185112 + 0.320624i
\(237\) 14.9626 5.13574i 0.971924 0.333602i
\(238\) 0.395416 0.684880i 0.0256310 0.0443942i
\(239\) −1.28093 + 2.21863i −0.0828562 + 0.143511i −0.904476 0.426525i \(-0.859738\pi\)
0.821619 + 0.570036i \(0.193071\pi\)
\(240\) 1.31959 6.75359i 0.0851793 0.435943i
\(241\) 7.49149 + 12.9756i 0.482569 + 0.835835i 0.999800 0.0200114i \(-0.00637025\pi\)
−0.517230 + 0.855846i \(0.673037\pi\)
\(242\) −0.0458409 −0.00294676
\(243\) −12.8127 + 8.87890i −0.821935 + 0.569582i
\(244\) −25.3426 −1.62240
\(245\) −0.465404 0.806103i −0.0297336 0.0515001i
\(246\) 0.0564801 0.289062i 0.00360104 0.0184299i
\(247\) −1.97452 + 3.41996i −0.125635 + 0.217607i
\(248\) −1.02476 + 1.77493i −0.0650721 + 0.112708i
\(249\) 17.2209 5.91090i 1.09133 0.374588i
\(250\) 0.0336011 + 0.0581988i 0.00212512 + 0.00368082i
\(251\) −7.27387 −0.459123 −0.229561 0.973294i \(-0.573729\pi\)
−0.229561 + 0.973294i \(0.573729\pi\)
\(252\) 13.6634 + 5.55134i 0.860712 + 0.349702i
\(253\) 13.7151 0.862262
\(254\) 0.200831 + 0.347850i 0.0126013 + 0.0218261i
\(255\) −6.23889 5.43406i −0.390695 0.340294i
\(256\) −7.81997 + 13.5446i −0.488748 + 0.846536i
\(257\) 4.53307 7.85150i 0.282765 0.489763i −0.689300 0.724476i \(-0.742082\pi\)
0.972065 + 0.234713i \(0.0754150\pi\)
\(258\) 0.400773 + 0.349073i 0.0249510 + 0.0217323i
\(259\) −6.00241 10.3965i −0.372972 0.646006i
\(260\) −1.99548 −0.123755
\(261\) −0.949574 6.85339i −0.0587772 0.424214i
\(262\) 1.20113 0.0742061
\(263\) −13.7692 23.8490i −0.849045 1.47059i −0.882061 0.471135i \(-0.843844\pi\)
0.0330158 0.999455i \(-0.489489\pi\)
\(264\) −1.41294 + 0.484976i −0.0869605 + 0.0298482i
\(265\) 6.24841 10.8226i 0.383837 0.664825i
\(266\) 0.326896 0.566200i 0.0200433 0.0347160i
\(267\) −0.321057 + 1.64315i −0.0196483 + 0.100559i
\(268\) −13.4767 23.3423i −0.823219 1.42586i
\(269\) −6.82403 −0.416069 −0.208034 0.978122i \(-0.566707\pi\)
−0.208034 + 0.978122i \(0.566707\pi\)
\(270\) −0.191039 + 0.292301i −0.0116262 + 0.0177889i
\(271\) 1.91734 0.116470 0.0582352 0.998303i \(-0.481453\pi\)
0.0582352 + 0.998303i \(0.481453\pi\)
\(272\) 9.48889 + 16.4352i 0.575348 + 0.996532i
\(273\) 0.818267 4.18784i 0.0495237 0.253460i
\(274\) −0.352578 + 0.610684i −0.0213000 + 0.0368927i
\(275\) −1.60607 + 2.78180i −0.0968498 + 0.167749i
\(276\) −13.9582 + 4.79099i −0.840184 + 0.288384i
\(277\) 13.6495 + 23.6416i 0.820119 + 1.42049i 0.905593 + 0.424148i \(0.139426\pi\)
−0.0854740 + 0.996340i \(0.527240\pi\)
\(278\) −0.719524 −0.0431542
\(279\) −18.0722 + 14.0629i −1.08195 + 0.841927i
\(280\) 0.661482 0.0395311
\(281\) 0.328412 + 0.568826i 0.0195914 + 0.0339333i 0.875655 0.482937i \(-0.160430\pi\)
−0.856063 + 0.516871i \(0.827097\pi\)
\(282\) 0.549950 + 0.479006i 0.0327491 + 0.0285244i
\(283\) 2.50989 4.34726i 0.149198 0.258418i −0.781734 0.623613i \(-0.785664\pi\)
0.930931 + 0.365195i \(0.118998\pi\)
\(284\) 7.77464 13.4661i 0.461340 0.799065i
\(285\) −5.15778 4.49242i −0.305521 0.266108i
\(286\) 0.107932 + 0.186943i 0.00638213 + 0.0110542i
\(287\) −6.23373 −0.367966
\(288\) 1.90357 1.48127i 0.112169 0.0872847i
\(289\) 5.81760 0.342212
\(290\) −0.0774937 0.134223i −0.00455059 0.00788185i
\(291\) −30.7667 + 10.5603i −1.80358 + 0.619057i
\(292\) 2.26284 3.91935i 0.132422 0.229362i
\(293\) 6.11183 10.5860i 0.357057 0.618441i −0.630411 0.776262i \(-0.717113\pi\)
0.987468 + 0.157821i \(0.0504468\pi\)
\(294\) 0.0207765 0.106333i 0.00121171 0.00620147i
\(295\) 1.42509 + 2.46833i 0.0829722 + 0.143712i
\(296\) −1.30841 −0.0760497
\(297\) −16.6653 0.922214i −0.967018 0.0535123i
\(298\) −1.36548 −0.0791004
\(299\) 2.13489 + 3.69773i 0.123464 + 0.213845i
\(300\) 0.662793 3.39213i 0.0382663 0.195845i
\(301\) 5.62443 9.74179i 0.324186 0.561507i
\(302\) 0.571957 0.990659i 0.0329124 0.0570060i
\(303\) −30.4015 + 10.4350i −1.74652 + 0.599473i
\(304\) 7.84460 + 13.5872i 0.449919 + 0.779282i
\(305\) −12.7000 −0.727200
\(306\) −0.132170 0.953917i −0.00755568 0.0545318i
\(307\) −1.01733 −0.0580619 −0.0290309 0.999579i \(-0.509242\pi\)
−0.0290309 + 0.999579i \(0.509242\pi\)
\(308\) 7.89548 + 13.6754i 0.449887 + 0.779227i
\(309\) −13.3956 11.6676i −0.762051 0.663745i
\(310\) −0.256479 + 0.444234i −0.0145670 + 0.0252308i
\(311\) 11.1446 19.3030i 0.631952 1.09457i −0.355200 0.934790i \(-0.615587\pi\)
0.987152 0.159783i \(-0.0510793\pi\)
\(312\) −0.350692 0.305452i −0.0198540 0.0172928i
\(313\) 11.8874 + 20.5896i 0.671915 + 1.16379i 0.977360 + 0.211581i \(0.0678613\pi\)
−0.305445 + 0.952210i \(0.598805\pi\)
\(314\) −0.0878917 −0.00496001
\(315\) 6.84715 + 2.78195i 0.385793 + 0.156745i
\(316\) −18.2255 −1.02526
\(317\) −14.0187 24.2810i −0.787366 1.36376i −0.927575 0.373637i \(-0.878111\pi\)
0.140209 0.990122i \(-0.455223\pi\)
\(318\) 1.37581 0.472232i 0.0771517 0.0264815i
\(319\) 3.70406 6.41562i 0.207388 0.359206i
\(320\) −3.94591 + 6.83451i −0.220583 + 0.382061i
\(321\) 4.44175 22.7326i 0.247915 1.26881i
\(322\) −0.353446 0.612187i −0.0196968 0.0341159i
\(323\) 18.8636 1.04960
\(324\) 17.2828 4.88299i 0.960155 0.271277i
\(325\) −1.00000 −0.0554700
\(326\) 0.329667 + 0.571000i 0.0182586 + 0.0316248i
\(327\) 0.451015 2.30827i 0.0249412 0.127647i
\(328\) −0.339708 + 0.588391i −0.0187572 + 0.0324885i
\(329\) 7.71797 13.3679i 0.425505 0.736997i
\(330\) −0.353634 + 0.121381i −0.0194669 + 0.00668181i
\(331\) 8.93018 + 15.4675i 0.490847 + 0.850172i 0.999944 0.0105370i \(-0.00335410\pi\)
−0.509098 + 0.860709i \(0.670021\pi\)
\(332\) −20.9763 −1.15122
\(333\) −13.5436 5.50269i −0.742186 0.301545i
\(334\) 0.549372 0.0300603
\(335\) −6.75359 11.6976i −0.368988 0.639106i
\(336\) −12.7835 11.1344i −0.697395 0.607429i
\(337\) −4.88581 + 8.46246i −0.266147 + 0.460980i −0.967863 0.251476i \(-0.919084\pi\)
0.701717 + 0.712456i \(0.252417\pi\)
\(338\) −0.0336011 + 0.0581988i −0.00182766 + 0.00316560i
\(339\) 9.60884 + 8.36928i 0.521881 + 0.454557i
\(340\) 4.76599 + 8.25494i 0.258472 + 0.447687i
\(341\) −24.5184 −1.32775
\(342\) −0.109267 0.788617i −0.00590849 0.0426435i
\(343\) −19.5381 −1.05496
\(344\) −0.613007 1.06176i −0.0330511 0.0572462i
\(345\) −6.99489 + 2.40092i −0.376592 + 0.129261i
\(346\) 0.214970 0.372339i 0.0115569 0.0200171i
\(347\) −10.5073 + 18.1991i −0.564059 + 0.976978i 0.433078 + 0.901357i \(0.357428\pi\)
−0.997137 + 0.0756219i \(0.975906\pi\)
\(348\) −1.52859 + 7.82323i −0.0819410 + 0.419369i
\(349\) 4.61976 + 8.00166i 0.247290 + 0.428319i 0.962773 0.270311i \(-0.0871266\pi\)
−0.715483 + 0.698630i \(0.753793\pi\)
\(350\) 0.165558 0.00884942
\(351\) −2.34547 4.63668i −0.125192 0.247488i
\(352\) 2.58256 0.137651
\(353\) −2.25362 3.90339i −0.119948 0.207756i 0.799799 0.600268i \(-0.204940\pi\)
−0.919747 + 0.392512i \(0.871606\pi\)
\(354\) −0.0636189 + 0.325598i −0.00338131 + 0.0173053i
\(355\) 3.89612 6.74828i 0.206785 0.358161i
\(356\) 0.964429 1.67044i 0.0511146 0.0885332i
\(357\) −19.2786 + 6.61718i −1.02033 + 0.350218i
\(358\) 0.525239 + 0.909741i 0.0277597 + 0.0480813i
\(359\) 25.2752 1.33397 0.666986 0.745070i \(-0.267584\pi\)
0.666986 + 0.745070i \(0.267584\pi\)
\(360\) 0.635720 0.494688i 0.0335054 0.0260723i
\(361\) −3.40514 −0.179218
\(362\) −0.373082 0.646197i −0.0196087 0.0339633i
\(363\) 0.890927 + 0.775995i 0.0467615 + 0.0407292i
\(364\) −2.45801 + 4.25740i −0.128835 + 0.223148i
\(365\) 1.13398 1.96411i 0.0593551 0.102806i
\(366\) −1.11470 0.970905i −0.0582665 0.0507500i
\(367\) 5.55336 + 9.61871i 0.289883 + 0.502092i 0.973782 0.227485i \(-0.0730502\pi\)
−0.683898 + 0.729577i \(0.739717\pi\)
\(368\) 16.9635 0.884282
\(369\) −5.99095 + 4.66188i −0.311876 + 0.242688i
\(370\) −0.327472 −0.0170244
\(371\) −15.3934 26.6622i −0.799187 1.38423i
\(372\) 24.9530 8.56483i 1.29375 0.444066i
\(373\) 3.86823 6.69997i 0.200289 0.346911i −0.748332 0.663324i \(-0.769145\pi\)
0.948622 + 0.316413i \(0.102478\pi\)
\(374\) 0.515565 0.892985i 0.0266592 0.0461751i
\(375\) 0.332146 1.69991i 0.0171520 0.0877827i
\(376\) −0.841183 1.45697i −0.0433807 0.0751376i
\(377\) 2.30629 0.118780
\(378\) 0.388310 + 0.767637i 0.0199725 + 0.0394830i
\(379\) 26.0870 1.34000 0.669999 0.742362i \(-0.266295\pi\)
0.669999 + 0.742362i \(0.266295\pi\)
\(380\) 3.94012 + 6.82448i 0.202124 + 0.350088i
\(381\) 1.98522 10.1602i 0.101706 0.520524i
\(382\) −0.523588 + 0.906880i −0.0267891 + 0.0464000i
\(383\) 0.421284 0.729686i 0.0215266 0.0372852i −0.855061 0.518527i \(-0.826481\pi\)
0.876588 + 0.481242i \(0.159814\pi\)
\(384\) −3.50311 + 1.20240i −0.178768 + 0.0613599i
\(385\) 3.95668 + 6.85316i 0.201651 + 0.349269i
\(386\) −1.25641 −0.0639497
\(387\) −1.88000 13.5686i −0.0955659 0.689730i
\(388\) 37.4760 1.90256
\(389\) 4.37726 + 7.58163i 0.221936 + 0.384404i 0.955396 0.295329i \(-0.0954291\pi\)
−0.733460 + 0.679733i \(0.762096\pi\)
\(390\) −0.0877720 0.0764492i −0.00444451 0.00387116i
\(391\) 10.1979 17.6632i 0.515729 0.893268i
\(392\) −0.124963 + 0.216443i −0.00631161 + 0.0109320i
\(393\) −23.3442 20.3328i −1.17756 1.02565i
\(394\) 0.342813 + 0.593769i 0.0172707 + 0.0299137i
\(395\) −9.13335 −0.459549
\(396\) 17.8151 + 7.23815i 0.895241 + 0.363731i
\(397\) −6.72904 −0.337721 −0.168860 0.985640i \(-0.554009\pi\)
−0.168860 + 0.985640i \(0.554009\pi\)
\(398\) 0.553740 + 0.959106i 0.0277565 + 0.0480757i
\(399\) −15.9379 + 5.47052i −0.797895 + 0.273869i
\(400\) −1.98646 + 3.44065i −0.0993231 + 0.172033i
\(401\) 14.4471 25.0231i 0.721453 1.24959i −0.238964 0.971028i \(-0.576808\pi\)
0.960417 0.278565i \(-0.0898589\pi\)
\(402\) 0.301493 1.54302i 0.0150371 0.0769591i
\(403\) −3.81652 6.61041i −0.190115 0.329288i
\(404\) 37.0311 1.84237
\(405\) 8.66095 2.44702i 0.430366 0.121593i
\(406\) −0.381823 −0.0189496
\(407\) −7.82628 13.5555i −0.387934 0.671922i
\(408\) −0.426007 + 2.18028i −0.0210905 + 0.107940i
\(409\) 9.19426 15.9249i 0.454627 0.787437i −0.544040 0.839059i \(-0.683106\pi\)
0.998667 + 0.0516225i \(0.0164392\pi\)
\(410\) −0.0850230 + 0.147264i −0.00419898 + 0.00727285i
\(411\) 17.1901 5.90031i 0.847925 0.291041i
\(412\) 10.2331 + 17.7243i 0.504151 + 0.873215i
\(413\) 7.02164 0.345513
\(414\) −0.797503 0.324020i −0.0391952 0.0159247i
\(415\) −10.5119 −0.516008
\(416\) 0.402000 + 0.696284i 0.0197097 + 0.0341381i
\(417\) 13.9841 + 12.1801i 0.684804 + 0.596463i
\(418\) 0.426225 0.738244i 0.0208474 0.0361087i
\(419\) 12.6003 21.8244i 0.615567 1.06619i −0.374718 0.927139i \(-0.622261\pi\)
0.990285 0.139054i \(-0.0444061\pi\)
\(420\) −6.42076 5.59246i −0.313301 0.272884i
\(421\) 8.93227 + 15.4711i 0.435332 + 0.754017i 0.997323 0.0731263i \(-0.0232976\pi\)
−0.561991 + 0.827144i \(0.689964\pi\)
\(422\) −1.69338 −0.0824322
\(423\) −2.57978 18.6191i −0.125433 0.905294i
\(424\) −3.35546 −0.162956
\(425\) 2.38839 + 4.13681i 0.115854 + 0.200665i
\(426\) 0.857870 0.294454i 0.0415640 0.0142664i
\(427\) −15.6437 + 27.0957i −0.757051 + 1.31125i
\(428\) −13.3427 + 23.1102i −0.644943 + 1.11707i
\(429\) 1.06690 5.46034i 0.0515105 0.263628i
\(430\) −0.153425 0.265740i −0.00739881 0.0128151i
\(431\) 28.4290 1.36937 0.684687 0.728837i \(-0.259939\pi\)
0.684687 + 0.728837i \(0.259939\pi\)
\(432\) −20.6124 1.14064i −0.991714 0.0548789i
\(433\) −20.4163 −0.981146 −0.490573 0.871400i \(-0.663212\pi\)
−0.490573 + 0.871400i \(0.663212\pi\)
\(434\) 0.631854 + 1.09440i 0.0303300 + 0.0525330i
\(435\) −0.766024 + 3.92047i −0.0367281 + 0.187972i
\(436\) −1.35481 + 2.34661i −0.0648838 + 0.112382i
\(437\) 8.43073 14.6025i 0.403297 0.698530i
\(438\) 0.249686 0.0857019i 0.0119305 0.00409500i
\(439\) −4.91252 8.50874i −0.234462 0.406100i 0.724654 0.689113i \(-0.241999\pi\)
−0.959116 + 0.283013i \(0.908666\pi\)
\(440\) 0.862477 0.0411170
\(441\) −2.20380 + 1.71490i −0.104943 + 0.0816619i
\(442\) 0.321010 0.0152689
\(443\) 9.82384 + 17.0154i 0.466745 + 0.808425i 0.999278 0.0379835i \(-0.0120934\pi\)
−0.532534 + 0.846409i \(0.678760\pi\)
\(444\) 12.7002 + 11.0619i 0.602726 + 0.524973i
\(445\) 0.483306 0.837110i 0.0229109 0.0396828i
\(446\) −0.254844 + 0.441402i −0.0120672 + 0.0209010i
\(447\) 26.5385 + 23.1149i 1.25523 + 1.09330i
\(448\) 9.72103 + 16.8373i 0.459276 + 0.795489i
\(449\) 27.3713 1.29173 0.645866 0.763451i \(-0.276496\pi\)
0.645866 + 0.763451i \(0.276496\pi\)
\(450\) 0.159110 0.123812i 0.00750050 0.00583654i
\(451\) −8.12789 −0.382727
\(452\) −7.34035 12.7139i −0.345261 0.598010i
\(453\) −27.8860 + 9.57156i −1.31020 + 0.449711i
\(454\) −0.0101152 + 0.0175200i −0.000474729 + 0.000822255i
\(455\) −1.23179 + 2.13352i −0.0577470 + 0.100021i
\(456\) −0.352187 + 1.80247i −0.0164927 + 0.0844084i
\(457\) 12.2292 + 21.1815i 0.572056 + 0.990830i 0.996355 + 0.0853077i \(0.0271873\pi\)
−0.424299 + 0.905522i \(0.639479\pi\)
\(458\) −0.311359 −0.0145488
\(459\) −13.5792 + 20.7770i −0.633821 + 0.969785i
\(460\) 8.52026 0.397259
\(461\) −4.38036 7.58701i −0.204014 0.353362i 0.745804 0.666165i \(-0.232065\pi\)
−0.949818 + 0.312803i \(0.898732\pi\)
\(462\) −0.176634 + 0.904000i −0.00821774 + 0.0420579i
\(463\) −7.55160 + 13.0797i −0.350952 + 0.607867i −0.986417 0.164263i \(-0.947475\pi\)
0.635464 + 0.772130i \(0.280809\pi\)
\(464\) 4.58135 7.93513i 0.212684 0.368379i
\(465\) 12.5047 4.29210i 0.579892 0.199042i
\(466\) −0.188986 0.327333i −0.00875460 0.0151634i
\(467\) −19.5484 −0.904591 −0.452296 0.891868i \(-0.649395\pi\)
−0.452296 + 0.891868i \(0.649395\pi\)
\(468\) 0.821607 + 5.92980i 0.0379788 + 0.274105i
\(469\) −33.2759 −1.53654
\(470\) −0.210533 0.364655i −0.00971118 0.0168203i
\(471\) 1.70819 + 1.48783i 0.0787094 + 0.0685557i
\(472\) 0.382645 0.662761i 0.0176127 0.0305060i
\(473\) 7.33344 12.7019i 0.337192 0.584033i
\(474\) −0.801653 0.698238i −0.0368211 0.0320711i
\(475\) 1.97452 + 3.41996i 0.0905970 + 0.156919i
\(476\) 23.4827 1.07633
\(477\) −34.7332 14.1119i −1.59032 0.646137i
\(478\) 0.172162 0.00787451
\(479\) −0.653565 1.13201i −0.0298621 0.0517227i 0.850708 0.525638i \(-0.176173\pi\)
−0.880570 + 0.473916i \(0.842840\pi\)
\(480\) −1.31714 + 0.452094i −0.0601189 + 0.0206352i
\(481\) 2.43647 4.22008i 0.111093 0.192419i
\(482\) 0.503445 0.871992i 0.0229313 0.0397181i
\(483\) −3.49381 + 17.8811i −0.158974 + 0.813619i
\(484\) −0.680593 1.17882i −0.0309361 0.0535828i
\(485\) 18.7804 0.852774
\(486\) 0.947262 + 0.447343i 0.0429687 + 0.0202919i
\(487\) 30.3533 1.37544 0.687719 0.725977i \(-0.258612\pi\)
0.687719 + 0.725977i \(0.258612\pi\)
\(488\) 1.70501 + 2.95316i 0.0771821 + 0.133683i
\(489\) 3.25875 16.6781i 0.147366 0.754211i
\(490\) −0.0312762 + 0.0541719i −0.00141291 + 0.00244724i
\(491\) −4.18858 + 7.25484i −0.189028 + 0.327406i −0.944926 0.327283i \(-0.893867\pi\)
0.755898 + 0.654689i \(0.227200\pi\)
\(492\) 8.27193 2.83925i 0.372928 0.128003i
\(493\) −5.50831 9.54067i −0.248082 0.429690i
\(494\) 0.265384 0.0119402
\(495\) 8.92770 + 3.62726i 0.401270 + 0.163033i
\(496\) −30.3255 −1.36166
\(497\) −9.59837 16.6249i −0.430546 0.745727i
\(498\) −0.922650 0.803626i −0.0413449 0.0360113i
\(499\) −6.43013 + 11.1373i −0.287852 + 0.498574i −0.973297 0.229550i \(-0.926274\pi\)
0.685445 + 0.728125i \(0.259608\pi\)
\(500\) −0.997742 + 1.72814i −0.0446204 + 0.0772848i
\(501\) −10.6772 9.29977i −0.477020 0.415483i
\(502\) 0.244410 + 0.423331i 0.0109086 + 0.0188942i
\(503\) 5.22447 0.232947 0.116474 0.993194i \(-0.462841\pi\)
0.116474 + 0.993194i \(0.462841\pi\)
\(504\) −0.272354 1.96567i −0.0121316 0.0875578i
\(505\) 18.5575 0.825796
\(506\) −0.460843 0.798204i −0.0204870 0.0354845i
\(507\) 1.63823 0.562306i 0.0727565 0.0249729i
\(508\) −5.96344 + 10.3290i −0.264585 + 0.458274i
\(509\) −5.01119 + 8.67964i −0.222117 + 0.384718i −0.955451 0.295151i \(-0.904630\pi\)
0.733334 + 0.679869i \(0.237963\pi\)
\(510\) −0.106622 + 0.545687i −0.00472131 + 0.0241634i
\(511\) −2.79364 4.83872i −0.123583 0.214053i
\(512\) 5.32773 0.235455
\(513\) −11.2261 + 17.1766i −0.495644 + 0.758366i
\(514\) −0.609264 −0.0268735
\(515\) 5.12815 + 8.88222i 0.225973 + 0.391397i
\(516\) −3.02636 + 15.4887i −0.133228 + 0.681853i
\(517\) 10.0631 17.4298i 0.442575 0.766563i
\(518\) −0.403375 + 0.698667i −0.0177233 + 0.0306976i
\(519\) −10.4809 + 3.59747i −0.460062 + 0.157911i
\(520\) 0.134253 + 0.232532i 0.00588737 + 0.0101972i
\(521\) 20.3192 0.890202 0.445101 0.895480i \(-0.353168\pi\)
0.445101 + 0.895480i \(0.353168\pi\)
\(522\) −0.366952 + 0.285545i −0.0160611 + 0.0124980i
\(523\) −0.572523 −0.0250347 −0.0125173 0.999922i \(-0.503984\pi\)
−0.0125173 + 0.999922i \(0.503984\pi\)
\(524\) 17.8330 + 30.8877i 0.779040 + 1.34934i
\(525\) −3.21764 2.80256i −0.140429 0.122314i
\(526\) −0.925321 + 1.60270i −0.0403459 + 0.0698811i
\(527\) −18.2307 + 31.5765i −0.794141 + 1.37549i
\(528\) −16.6678 14.5176i −0.725372 0.631797i
\(529\) 2.38452 + 4.13012i 0.103675 + 0.179570i
\(530\) −0.839814 −0.0364792
\(531\) 6.74817 5.25112i 0.292846 0.227879i
\(532\) 19.4135 0.841683
\(533\) −1.26518 2.19136i −0.0548011 0.0949183i
\(534\) 0.106417 0.0365265i 0.00460512 0.00158066i
\(535\) −6.68644 + 11.5813i −0.289080 + 0.500702i
\(536\) −1.81337 + 3.14086i −0.0783258 + 0.135664i
\(537\) 5.19198 26.5723i 0.224050 1.14668i
\(538\) 0.229295 + 0.397151i 0.00988561 + 0.0171224i
\(539\) −2.98989 −0.128784
\(540\) −10.3530 0.572908i −0.445522 0.0246541i
\(541\) −23.5766 −1.01364 −0.506819 0.862052i \(-0.669179\pi\)
−0.506819 + 0.862052i \(0.669179\pi\)
\(542\) −0.0644248 0.111587i −0.00276728 0.00479308i
\(543\) −3.68791 + 18.8745i −0.158263 + 0.809982i
\(544\) 1.92026 3.32599i 0.0823306 0.142601i
\(545\) −0.678940 + 1.17596i −0.0290826 + 0.0503725i
\(546\) −0.271222 + 0.0930939i −0.0116072 + 0.00398405i
\(547\) 1.87854 + 3.25373i 0.0803205 + 0.139119i 0.903388 0.428825i \(-0.141072\pi\)
−0.823067 + 0.567944i \(0.807739\pi\)
\(548\) −20.9387 −0.894458
\(549\) 5.22901 + 37.7395i 0.223169 + 1.61068i
\(550\) 0.215863 0.00920443
\(551\) −4.55380 7.88741i −0.193998 0.336015i
\(552\) 1.49737 + 1.30421i 0.0637324 + 0.0555108i
\(553\) −11.2503 + 19.4862i −0.478413 + 0.828636i
\(554\) 0.917276 1.58877i 0.0389713 0.0675003i
\(555\) 6.36448 + 5.54345i 0.270157 + 0.235306i
\(556\) −10.6827 18.5029i −0.453046 0.784699i
\(557\) −39.9225 −1.69157 −0.845785 0.533523i \(-0.820868\pi\)
−0.845785 + 0.533523i \(0.820868\pi\)
\(558\) 1.42569 + 0.579249i 0.0603544 + 0.0245216i
\(559\) 4.56607 0.193124
\(560\) 4.89379 + 8.47630i 0.206801 + 0.358189i
\(561\) −25.1366 + 8.62785i −1.06127 + 0.364268i
\(562\) 0.0220700 0.0382264i 0.000930967 0.00161248i
\(563\) −16.7785 + 29.0612i −0.707130 + 1.22478i 0.258788 + 0.965934i \(0.416677\pi\)
−0.965917 + 0.258850i \(0.916656\pi\)
\(564\) −4.15284 + 21.2540i −0.174866 + 0.894955i
\(565\) −3.67848 6.37132i −0.154755 0.268043i
\(566\) −0.337340 −0.0141795
\(567\) 5.44768 21.4925i 0.228781 0.902600i
\(568\) −2.09226 −0.0877892
\(569\) −7.71687 13.3660i −0.323508 0.560332i 0.657701 0.753279i \(-0.271529\pi\)
−0.981209 + 0.192946i \(0.938196\pi\)
\(570\) −0.0881462 + 0.451127i −0.00369204 + 0.0188956i
\(571\) −19.9691 + 34.5875i −0.835681 + 1.44744i 0.0577933 + 0.998329i \(0.481594\pi\)
−0.893475 + 0.449114i \(0.851740\pi\)
\(572\) −3.20489 + 5.55103i −0.134003 + 0.232100i
\(573\) 25.5277 8.76210i 1.06644 0.366042i
\(574\) 0.209460 + 0.362796i 0.00874270 + 0.0151428i
\(575\) 4.26977 0.178062
\(576\) 21.9342 + 8.91171i 0.913924 + 0.371321i
\(577\) 25.4359 1.05891 0.529455 0.848338i \(-0.322396\pi\)
0.529455 + 0.848338i \(0.322396\pi\)
\(578\) −0.195478 0.338578i −0.00813081 0.0140830i
\(579\) 24.4186 + 21.2686i 1.01480 + 0.883892i
\(580\) 2.30108 3.98558i 0.0955471 0.165492i
\(581\) −12.9484 + 22.4273i −0.537190 + 0.930441i
\(582\) 1.64839 + 1.43575i 0.0683281 + 0.0595136i
\(583\) −20.0708 34.7637i −0.831248 1.43976i
\(584\) −0.608958 −0.0251989
\(585\) 0.411733 + 2.97161i 0.0170231 + 0.122861i
\(586\) −0.821457 −0.0339341
\(587\) 20.4639 + 35.4446i 0.844637 + 1.46295i 0.885936 + 0.463807i \(0.153517\pi\)
−0.0412991 + 0.999147i \(0.513150\pi\)
\(588\) 3.04288 1.04443i 0.125486 0.0430717i
\(589\) −15.0716 + 26.1047i −0.621013 + 1.07563i
\(590\) 0.0957694 0.165877i 0.00394276 0.00682907i
\(591\) 3.38870 17.3432i 0.139393 0.713403i
\(592\) −9.67990 16.7661i −0.397841 0.689081i
\(593\) −1.00808 −0.0413971 −0.0206985 0.999786i \(-0.506589\pi\)
−0.0206985 + 0.999786i \(0.506589\pi\)
\(594\) 0.506300 + 1.00089i 0.0207738 + 0.0410669i
\(595\) 11.7679 0.482439
\(596\) −20.2732 35.1141i −0.830421 1.43833i
\(597\) 5.47371 28.0141i 0.224024 1.14654i
\(598\) 0.143469 0.248496i 0.00586688 0.0101617i
\(599\) −0.939758 + 1.62771i −0.0383975 + 0.0665064i −0.884585 0.466378i \(-0.845559\pi\)
0.846188 + 0.532884i \(0.178892\pi\)
\(600\) −0.439875 + 0.150982i −0.0179578 + 0.00616382i
\(601\) 1.47264 + 2.55068i 0.0600702 + 0.104045i 0.894497 0.447075i \(-0.147534\pi\)
−0.834426 + 0.551119i \(0.814201\pi\)
\(602\) −0.755947 −0.0308101
\(603\) −31.9799 + 24.8853i −1.30232 + 1.01341i
\(604\) 33.9671 1.38210
\(605\) −0.341067 0.590745i −0.0138663 0.0240172i
\(606\) 1.62882 + 1.41870i 0.0661665 + 0.0576308i
\(607\) −0.670347 + 1.16108i −0.0272085 + 0.0471266i −0.879309 0.476252i \(-0.841995\pi\)
0.852101 + 0.523378i \(0.175328\pi\)
\(608\) 1.58751 2.74965i 0.0643820 0.111513i
\(609\) 7.42081 + 6.46351i 0.300706 + 0.261914i
\(610\) 0.426734 + 0.739125i 0.0172780 + 0.0299263i
\(611\) 6.26567 0.253482
\(612\) 22.5682 17.5615i 0.912264 0.709882i
\(613\) −20.1796 −0.815046 −0.407523 0.913195i \(-0.633607\pi\)
−0.407523 + 0.913195i \(0.633607\pi\)
\(614\) 0.0341833 + 0.0592072i 0.00137952 + 0.00238941i
\(615\) 4.14533 1.42284i 0.167156 0.0573743i
\(616\) 1.06239 1.84011i 0.0428048 0.0741402i
\(617\) 3.56739 6.17890i 0.143618 0.248753i −0.785239 0.619193i \(-0.787460\pi\)
0.928856 + 0.370440i \(0.120793\pi\)
\(618\) −0.228930 + 1.17165i −0.00920893 + 0.0471308i
\(619\) 15.4477 + 26.7562i 0.620895 + 1.07542i 0.989319 + 0.145764i \(0.0465640\pi\)
−0.368424 + 0.929658i \(0.620103\pi\)
\(620\) −15.2316 −0.611717
\(621\) 10.0146 + 19.7976i 0.401873 + 0.794448i
\(622\) −1.49788 −0.0600596
\(623\) −1.19066 2.06228i −0.0477028 0.0826236i
\(624\) 1.31959 6.75359i 0.0528259 0.270360i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0.798859 1.38366i 0.0319288 0.0553023i
\(627\) −20.7808 + 7.13277i −0.829904 + 0.284855i
\(628\) −1.30492 2.26018i −0.0520718 0.0901910i
\(629\) −23.2769 −0.928112
\(630\) −0.0681655 0.491973i −0.00271578 0.0196007i
\(631\) 11.8799 0.472932 0.236466 0.971640i \(-0.424011\pi\)
0.236466 + 0.971640i \(0.424011\pi\)
\(632\) 1.22618 + 2.12380i 0.0487747 + 0.0844803i
\(633\) 32.9111 + 28.6655i 1.30810 + 1.13935i
\(634\) −0.942085 + 1.63174i −0.0374150 + 0.0648046i
\(635\) −2.98847 + 5.17618i −0.118594 + 0.205410i
\(636\) 32.5702 + 28.3686i 1.29149 + 1.12489i
\(637\) −0.465404 0.806103i −0.0184400 0.0319390i
\(638\) −0.497842 −0.0197098
\(639\) −21.6574 8.79926i −0.856754 0.348094i
\(640\) 2.13835 0.0845256
\(641\) −12.5654 21.7639i −0.496302 0.859621i 0.503689 0.863885i \(-0.331976\pi\)
−0.999991 + 0.00426452i \(0.998643\pi\)
\(642\) −1.47226 + 0.505337i −0.0581055 + 0.0199441i
\(643\) 18.9486 32.8199i 0.747258 1.29429i −0.201874 0.979411i \(-0.564703\pi\)
0.949132 0.314877i \(-0.101963\pi\)
\(644\) 10.4951 18.1781i 0.413567 0.716318i
\(645\) −1.51660 + 7.76189i −0.0597162 + 0.305624i
\(646\) −0.633839 1.09784i −0.0249381 0.0431940i
\(647\) −5.59065 −0.219791 −0.109896 0.993943i \(-0.535052\pi\)
−0.109896 + 0.993943i \(0.535052\pi\)
\(648\) −1.73177 1.68543i −0.0680302 0.0662100i
\(649\) 9.15521 0.359373
\(650\) 0.0336011 + 0.0581988i 0.00131794 + 0.00228274i
\(651\) 6.24587 31.9660i 0.244795 1.25285i
\(652\) −9.78905 + 16.9551i −0.383369 + 0.664014i
\(653\) 4.29248 7.43479i 0.167978 0.290946i −0.769731 0.638368i \(-0.779610\pi\)
0.937709 + 0.347422i \(0.112943\pi\)
\(654\) −0.149493 + 0.0513118i −0.00584564 + 0.00200645i
\(655\) 8.93670 + 15.4788i 0.349186 + 0.604807i
\(656\) −10.0529 −0.392501
\(657\) −6.30346 2.56106i −0.245922 0.0999163i
\(658\) −1.03733 −0.0404393
\(659\) 9.85987 + 17.0778i 0.384086 + 0.665257i 0.991642 0.129020i \(-0.0411832\pi\)
−0.607556 + 0.794277i \(0.707850\pi\)
\(660\) −8.37174 7.29177i −0.325870 0.283832i
\(661\) −17.6742 + 30.6127i −0.687448 + 1.19069i 0.285213 + 0.958464i \(0.407936\pi\)
−0.972661 + 0.232230i \(0.925398\pi\)
\(662\) 0.600127 1.03945i 0.0233246 0.0403994i
\(663\) −6.23889 5.43406i −0.242299 0.211041i
\(664\) 1.41125 + 2.44436i 0.0547671 + 0.0948594i
\(665\) 9.72873 0.377264
\(666\) 0.134831 + 0.973119i 0.00522459 + 0.0377076i
\(667\) −9.84732 −0.381290
\(668\) 8.15645 + 14.1274i 0.315582 + 0.546605i
\(669\) 12.4250 4.26474i 0.480378 0.164884i
\(670\) −0.453856 + 0.786102i −0.0175340 + 0.0303698i
\(671\) −20.3971 + 35.3288i −0.787422 + 1.36385i
\(672\) −0.657886 + 3.36702i −0.0253785 + 0.129886i
\(673\) −8.53274 14.7791i −0.328913 0.569694i 0.653383 0.757027i \(-0.273349\pi\)
−0.982296 + 0.187333i \(0.940016\pi\)
\(674\) 0.656674 0.0252941
\(675\) −5.18821 0.287102i −0.199694 0.0110506i
\(676\) −1.99548 −0.0767494
\(677\) 5.54423 + 9.60290i 0.213082 + 0.369069i 0.952678 0.303982i \(-0.0983164\pi\)
−0.739595 + 0.673052i \(0.764983\pi\)
\(678\) 0.164214 0.840440i 0.00630662 0.0322769i
\(679\) 23.1335 40.0683i 0.887780 1.53768i
\(680\) 0.641295 1.11076i 0.0245925 0.0425955i
\(681\) 0.493170 0.169275i 0.0188983 0.00648663i
\(682\) 0.823846 + 1.42694i 0.0315467 + 0.0546405i
\(683\) −42.5037 −1.62636 −0.813179 0.582014i \(-0.802265\pi\)
−0.813179 + 0.582014i \(0.802265\pi\)
\(684\) 18.6574 14.5184i 0.713385 0.555123i
\(685\) −10.4931 −0.400919
\(686\) 0.656502 + 1.13710i 0.0250654 + 0.0434145i
\(687\) 6.05132 + 5.27069i 0.230872 + 0.201089i
\(688\) 9.07033 15.7103i 0.345803 0.598948i
\(689\) 6.24841 10.8226i 0.238046 0.412307i
\(690\) 0.374766 + 0.326421i 0.0142671 + 0.0124266i
\(691\) −0.656332 1.13680i −0.0249681 0.0432460i 0.853271 0.521467i \(-0.174615\pi\)
−0.878239 + 0.478221i \(0.841282\pi\)
\(692\) 12.7665 0.485310
\(693\) 18.7358 14.5794i 0.711716 0.553825i
\(694\) 1.41222 0.0536072
\(695\) −5.35343 9.27241i −0.203067 0.351722i
\(696\) 1.01448 0.348208i 0.0384536 0.0131988i
\(697\) −6.04349 + 10.4676i −0.228914 + 0.396490i
\(698\) 0.310458 0.537729i 0.0117510 0.0203534i
\(699\) −1.86812 + 9.56094i −0.0706589 + 0.361628i
\(700\) 2.45801 + 4.25740i 0.0929040 + 0.160915i
\(701\) 21.2054 0.800916 0.400458 0.916315i \(-0.368851\pi\)
0.400458 + 0.916315i \(0.368851\pi\)
\(702\) −0.191039 + 0.292301i −0.00721029 + 0.0110322i
\(703\) −19.2434 −0.725778
\(704\) 12.6748 + 21.9534i 0.477700 + 0.827401i
\(705\) −2.08112 + 10.6511i −0.0783795 + 0.401142i
\(706\) −0.151448 + 0.262316i −0.00569983 + 0.00987240i
\(707\) 22.8588 39.5926i 0.859694 1.48903i
\(708\) −9.31746 + 3.19812i −0.350172 + 0.120193i
\(709\) −24.6030 42.6136i −0.923985 1.60039i −0.793186 0.608980i \(-0.791579\pi\)
−0.130799 0.991409i \(-0.541754\pi\)
\(710\) −0.523655 −0.0196524
\(711\) 3.76050 + 27.1408i 0.141030 + 1.01786i
\(712\) −0.259540 −0.00972669
\(713\) 16.2957 + 28.2249i 0.610278 + 1.05703i
\(714\) 1.03290 + 0.899650i 0.0386551 + 0.0336685i
\(715\) −1.60607 + 2.78180i −0.0600637 + 0.104033i
\(716\) −15.5963 + 27.0136i −0.582861 + 1.00955i
\(717\) −3.34601 2.91436i −0.124959 0.108839i
\(718\) −0.849273 1.47098i −0.0316946 0.0548966i
\(719\) −31.1080 −1.16013 −0.580067 0.814569i \(-0.696974\pi\)
−0.580067 + 0.814569i \(0.696974\pi\)
\(720\) 11.0422 + 4.48636i 0.411518 + 0.167197i
\(721\) 25.2671 0.940998
\(722\) 0.114417 + 0.198175i 0.00425814 + 0.00737532i
\(723\) −24.5456 + 8.42502i −0.912862 + 0.313330i
\(724\) 11.0782 19.1880i 0.411718 0.713116i
\(725\) 1.15314 1.99730i 0.0428267 0.0741780i
\(726\) 0.0152259 0.0779251i 0.000565085 0.00289207i
\(727\) −15.0470 26.0622i −0.558062 0.966592i −0.997658 0.0683968i \(-0.978212\pi\)
0.439596 0.898196i \(-0.355122\pi\)
\(728\) 0.661482 0.0245162
\(729\) −10.8376 24.7295i −0.401392 0.915906i
\(730\) −0.152412 −0.00564101
\(731\) −10.9056 18.8890i −0.403356 0.698634i
\(732\) 8.41747 43.0801i 0.311118 1.59229i
\(733\) 6.49987 11.2581i 0.240078 0.415827i −0.720658 0.693290i \(-0.756160\pi\)
0.960736 + 0.277463i \(0.0894936\pi\)
\(734\) 0.373198 0.646398i 0.0137750 0.0238590i
\(735\) 1.52488 0.523399i 0.0562461 0.0193059i
\(736\) −1.71645 2.97297i −0.0632691 0.109585i
\(737\) −43.3870 −1.59818
\(738\) 0.472618 + 0.192022i 0.0173973 + 0.00706842i
\(739\) 43.9402 1.61637 0.808183 0.588932i \(-0.200451\pi\)
0.808183 + 0.588932i \(0.200451\pi\)
\(740\) −4.86193 8.42111i −0.178728 0.309566i
\(741\) −5.15778 4.49242i −0.189476 0.165033i
\(742\) −1.03447 + 1.79176i −0.0379767 + 0.0657775i
\(743\) 24.4254 42.3061i 0.896081 1.55206i 0.0636208 0.997974i \(-0.479735\pi\)
0.832461 0.554084i \(-0.186931\pi\)
\(744\) −2.67684 2.33153i −0.0981379 0.0854779i
\(745\) −10.1595 17.5968i −0.372216 0.644697i
\(746\) −0.519907 −0.0190351
\(747\) 4.32809 + 31.2373i 0.158357 + 1.14291i
\(748\) 30.6181 1.11951
\(749\) 16.4725 + 28.5313i 0.601894 + 1.04251i
\(750\) −0.110093 + 0.0377882i −0.00402003 + 0.00137983i
\(751\) 16.7071 28.9376i 0.609651 1.05595i −0.381647 0.924308i \(-0.624643\pi\)
0.991298 0.131638i \(-0.0420238\pi\)
\(752\) 12.4465 21.5580i 0.453878 0.786139i
\(753\) 2.41599 12.3649i 0.0880435 0.450602i
\(754\) −0.0774937 0.134223i −0.00282216 0.00488812i
\(755\) 17.0220 0.619493
\(756\) −13.9750 + 21.3826i −0.508266 + 0.777678i
\(757\) 45.6922 1.66071 0.830356 0.557233i \(-0.188137\pi\)
0.830356 + 0.557233i \(0.188137\pi\)
\(758\) −0.876551 1.51823i −0.0318378 0.0551446i
\(759\) −4.55543 + 23.3144i −0.165351 + 0.846259i
\(760\) 0.530168 0.918278i 0.0192312 0.0333094i
\(761\) 2.43929 4.22497i 0.0884242 0.153155i −0.818421 0.574619i \(-0.805150\pi\)
0.906845 + 0.421464i \(0.138484\pi\)
\(762\) −0.658018 + 0.225857i −0.0238375 + 0.00818195i
\(763\) 1.67262 + 2.89706i 0.0605528 + 0.104881i
\(764\) −31.0945 −1.12496
\(765\) 11.3096 8.80063i 0.408900 0.318187i
\(766\) −0.0566225 −0.00204585
\(767\) 1.42509 + 2.46833i 0.0514572 + 0.0891264i
\(768\) −20.4271 17.7920i −0.737101 0.642013i
\(769\) −5.62978 + 9.75106i −0.203015 + 0.351632i −0.949498 0.313772i \(-0.898407\pi\)
0.746483 + 0.665404i \(0.231741\pi\)
\(770\) 0.265897 0.460548i 0.00958227 0.0165970i
\(771\) 11.8412 + 10.3136i 0.426449 + 0.371436i