Properties

Label 585.2.i.e.391.3
Level $585$
Weight $2$
Character 585.391
Analytic conductor $4.671$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \( x^{16} - 5 x^{15} + 20 x^{14} - 44 x^{13} + 96 x^{12} - 107 x^{11} + 178 x^{10} - 19 x^{9} + 231 x^{8} + 326 x^{7} + 551 x^{6} + 859 x^{5} + 1118 x^{4} + 1215 x^{3} + 1103 x^{2} + \cdots + 268 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 391.3
Root \(-0.317019 + 1.12493i\) of defining polynomial
Character \(\chi\) \(=\) 585.391
Dual form 585.2.i.e.196.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.817019 - 1.41512i) q^{2} +(1.40359 - 1.01486i) q^{3} +(-0.335039 + 0.580304i) q^{4} +(0.500000 - 0.866025i) q^{5} +(-2.58290 - 1.15709i) q^{6} +(-1.06506 - 1.84473i) q^{7} -2.17314 q^{8} +(0.940129 - 2.84889i) q^{9} +O(q^{10})\) \(q+(-0.817019 - 1.41512i) q^{2} +(1.40359 - 1.01486i) q^{3} +(-0.335039 + 0.580304i) q^{4} +(0.500000 - 0.866025i) q^{5} +(-2.58290 - 1.15709i) q^{6} +(-1.06506 - 1.84473i) q^{7} -2.17314 q^{8} +(0.940129 - 2.84889i) q^{9} -1.63404 q^{10} +(0.0263229 + 0.0455925i) q^{11} +(0.118669 + 1.15453i) q^{12} +(0.500000 - 0.866025i) q^{13} +(-1.74034 + 3.01437i) q^{14} +(-0.177097 - 1.72297i) q^{15} +(2.44558 + 4.23586i) q^{16} -2.48047 q^{17} +(-4.79961 + 0.997201i) q^{18} +2.13105 q^{19} +(0.335039 + 0.580304i) q^{20} +(-3.36705 - 1.50837i) q^{21} +(0.0430125 - 0.0744999i) q^{22} +(-2.46542 + 4.27023i) q^{23} +(-3.05020 + 2.20543i) q^{24} +(-0.500000 - 0.866025i) q^{25} -1.63404 q^{26} +(-1.57166 - 4.95277i) q^{27} +1.42734 q^{28} +(1.24347 + 2.15375i) q^{29} +(-2.29352 + 1.65831i) q^{30} +(4.08030 - 7.06728i) q^{31} +(1.82302 - 3.15756i) q^{32} +(0.0832164 + 0.0372793i) q^{33} +(2.02659 + 3.51016i) q^{34} -2.13012 q^{35} +(1.33824 + 1.50005i) q^{36} -1.11963 q^{37} +(-1.74110 - 3.01568i) q^{38} +(-0.177097 - 1.72297i) q^{39} +(-1.08657 + 1.88200i) q^{40} +(2.73708 - 4.74077i) q^{41} +(0.616421 + 5.99713i) q^{42} +(4.73861 + 8.20752i) q^{43} -0.0352767 q^{44} +(-1.99714 - 2.23862i) q^{45} +8.05716 q^{46} +(-4.88280 - 8.45726i) q^{47} +(7.73138 + 3.46350i) q^{48} +(1.23130 - 2.13268i) q^{49} +(-0.817019 + 1.41512i) q^{50} +(-3.48156 + 2.51732i) q^{51} +(0.335039 + 0.580304i) q^{52} -3.64091 q^{53} +(-5.72467 + 6.27058i) q^{54} +0.0526457 q^{55} +(2.31452 + 4.00887i) q^{56} +(2.99111 - 2.16271i) q^{57} +(2.03187 - 3.51931i) q^{58} +(-3.74544 + 6.48728i) q^{59} +(1.05918 + 0.474493i) q^{60} +(2.89202 + 5.00912i) q^{61} -13.3347 q^{62} +(-6.25673 + 1.29994i) q^{63} +3.82454 q^{64} +(-0.500000 - 0.866025i) q^{65} +(-0.0152348 - 0.148219i) q^{66} +(3.11795 - 5.40045i) q^{67} +(0.831054 - 1.43943i) q^{68} +(0.873237 + 8.49569i) q^{69} +(1.74034 + 3.01437i) q^{70} +2.50050 q^{71} +(-2.04303 + 6.19104i) q^{72} -1.10245 q^{73} +(0.914759 + 1.58441i) q^{74} +(-1.58069 - 0.708116i) q^{75} +(-0.713983 + 1.23666i) q^{76} +(0.0560707 - 0.0971174i) q^{77} +(-2.29352 + 1.65831i) q^{78} +(7.80779 + 13.5235i) q^{79} +4.89115 q^{80} +(-7.23231 - 5.35664i) q^{81} -8.94500 q^{82} +(-0.244576 - 0.423618i) q^{83} +(2.00340 - 1.44855i) q^{84} +(-1.24024 + 2.14815i) q^{85} +(7.74307 - 13.4114i) q^{86} +(3.93107 + 1.76104i) q^{87} +(-0.0572033 - 0.0990790i) q^{88} -4.64901 q^{89} +(-1.53621 + 4.65519i) q^{90} -2.13012 q^{91} +(-1.65202 - 2.86138i) q^{92} +(-1.44522 - 14.0605i) q^{93} +(-7.97868 + 13.8195i) q^{94} +(1.06552 - 1.84554i) q^{95} +(-0.645704 - 6.28203i) q^{96} +(-3.67049 - 6.35747i) q^{97} -4.02399 q^{98} +(0.154635 - 0.0321280i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 3 q^{2} + q^{3} - 9 q^{4} + 8 q^{5} + 8 q^{6} + 11 q^{7} - 12 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 3 q^{2} + q^{3} - 9 q^{4} + 8 q^{5} + 8 q^{6} + 11 q^{7} - 12 q^{8} + q^{9} - 6 q^{10} - 6 q^{11} + 2 q^{12} + 8 q^{13} - 10 q^{14} + 5 q^{15} - 11 q^{16} - 4 q^{17} + 5 q^{18} - 20 q^{19} + 9 q^{20} + 11 q^{21} - 3 q^{22} - 6 q^{23} - 57 q^{24} - 8 q^{25} - 6 q^{26} - 14 q^{27} - 68 q^{28} - 14 q^{29} + 7 q^{30} + 31 q^{31} - q^{32} - 31 q^{33} + 7 q^{34} + 22 q^{35} + 2 q^{36} + 2 q^{37} - 9 q^{38} + 5 q^{39} - 6 q^{40} + 12 q^{41} - 26 q^{42} - 15 q^{43} + 32 q^{44} - 16 q^{45} - 64 q^{46} + 18 q^{47} - 4 q^{48} - 17 q^{49} - 3 q^{50} + 32 q^{51} + 9 q^{52} + 4 q^{53} + 2 q^{54} - 12 q^{55} - 16 q^{56} + 45 q^{57} + 42 q^{58} - 24 q^{59} - 8 q^{60} + 9 q^{61} - 40 q^{62} + 47 q^{63} - 60 q^{64} - 8 q^{65} + 55 q^{66} + 18 q^{67} + 14 q^{68} - 12 q^{69} + 10 q^{70} + 20 q^{71} - 9 q^{72} + 12 q^{73} + 37 q^{74} + 4 q^{75} + 53 q^{76} + 34 q^{77} + 7 q^{78} + 3 q^{79} - 22 q^{80} + 13 q^{81} - 68 q^{82} + 10 q^{83} + 22 q^{84} - 2 q^{85} - 60 q^{86} + 11 q^{87} + 14 q^{88} - 26 q^{89} + 19 q^{90} + 22 q^{91} - 5 q^{92} + 74 q^{93} - 17 q^{94} - 10 q^{95} + 13 q^{96} + 34 q^{97} - 60 q^{98} - 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.817019 1.41512i −0.577719 1.00064i −0.995740 0.0922020i \(-0.970609\pi\)
0.418021 0.908437i \(-0.362724\pi\)
\(3\) 1.40359 1.01486i 0.810363 0.585928i
\(4\) −0.335039 + 0.580304i −0.167519 + 0.290152i
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) −2.58290 1.15709i −1.05447 0.472379i
\(7\) −1.06506 1.84473i −0.402554 0.697244i 0.591479 0.806320i \(-0.298544\pi\)
−0.994033 + 0.109076i \(0.965211\pi\)
\(8\) −2.17314 −0.768322
\(9\) 0.940129 2.84889i 0.313376 0.949629i
\(10\) −1.63404 −0.516728
\(11\) 0.0263229 + 0.0455925i 0.00793664 + 0.0137467i 0.869966 0.493111i \(-0.164140\pi\)
−0.862030 + 0.506858i \(0.830807\pi\)
\(12\) 0.118669 + 1.15453i 0.0342568 + 0.333283i
\(13\) 0.500000 0.866025i 0.138675 0.240192i
\(14\) −1.74034 + 3.01437i −0.465127 + 0.805623i
\(15\) −0.177097 1.72297i −0.0457263 0.444870i
\(16\) 2.44558 + 4.23586i 0.611394 + 1.05897i
\(17\) −2.48047 −0.601603 −0.300801 0.953687i \(-0.597254\pi\)
−0.300801 + 0.953687i \(0.597254\pi\)
\(18\) −4.79961 + 0.997201i −1.13128 + 0.235042i
\(19\) 2.13105 0.488895 0.244448 0.969662i \(-0.421393\pi\)
0.244448 + 0.969662i \(0.421393\pi\)
\(20\) 0.335039 + 0.580304i 0.0749170 + 0.129760i
\(21\) −3.36705 1.50837i −0.734750 0.329153i
\(22\) 0.0430125 0.0744999i 0.00917030 0.0158834i
\(23\) −2.46542 + 4.27023i −0.514075 + 0.890404i 0.485792 + 0.874074i \(0.338531\pi\)
−0.999867 + 0.0163291i \(0.994802\pi\)
\(24\) −3.05020 + 2.20543i −0.622620 + 0.450181i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) −1.63404 −0.320461
\(27\) −1.57166 4.95277i −0.302466 0.953160i
\(28\) 1.42734 0.269743
\(29\) 1.24347 + 2.15375i 0.230906 + 0.399941i 0.958075 0.286517i \(-0.0924976\pi\)
−0.727169 + 0.686459i \(0.759164\pi\)
\(30\) −2.29352 + 1.65831i −0.418737 + 0.302765i
\(31\) 4.08030 7.06728i 0.732843 1.26932i −0.222820 0.974860i \(-0.571526\pi\)
0.955663 0.294462i \(-0.0951404\pi\)
\(32\) 1.82302 3.15756i 0.322267 0.558183i
\(33\) 0.0832164 + 0.0372793i 0.0144861 + 0.00648949i
\(34\) 2.02659 + 3.51016i 0.347558 + 0.601987i
\(35\) −2.13012 −0.360055
\(36\) 1.33824 + 1.50005i 0.223040 + 0.250008i
\(37\) −1.11963 −0.184066 −0.0920331 0.995756i \(-0.529337\pi\)
−0.0920331 + 0.995756i \(0.529337\pi\)
\(38\) −1.74110 3.01568i −0.282444 0.489208i
\(39\) −0.177097 1.72297i −0.0283583 0.275897i
\(40\) −1.08657 + 1.88200i −0.171802 + 0.297570i
\(41\) 2.73708 4.74077i 0.427461 0.740384i −0.569186 0.822209i \(-0.692742\pi\)
0.996647 + 0.0818250i \(0.0260749\pi\)
\(42\) 0.616421 + 5.99713i 0.0951158 + 0.925378i
\(43\) 4.73861 + 8.20752i 0.722632 + 1.25163i 0.959941 + 0.280201i \(0.0904010\pi\)
−0.237310 + 0.971434i \(0.576266\pi\)
\(44\) −0.0352767 −0.00531816
\(45\) −1.99714 2.23862i −0.297717 0.333714i
\(46\) 8.05716 1.18796
\(47\) −4.88280 8.45726i −0.712230 1.23362i −0.964018 0.265836i \(-0.914352\pi\)
0.251789 0.967782i \(-0.418981\pi\)
\(48\) 7.73138 + 3.46350i 1.11593 + 0.499913i
\(49\) 1.23130 2.13268i 0.175900 0.304668i
\(50\) −0.817019 + 1.41512i −0.115544 + 0.200128i
\(51\) −3.48156 + 2.51732i −0.487516 + 0.352496i
\(52\) 0.335039 + 0.580304i 0.0464615 + 0.0804737i
\(53\) −3.64091 −0.500118 −0.250059 0.968231i \(-0.580450\pi\)
−0.250059 + 0.968231i \(0.580450\pi\)
\(54\) −5.72467 + 6.27058i −0.779029 + 0.853318i
\(55\) 0.0526457 0.00709875
\(56\) 2.31452 + 4.00887i 0.309291 + 0.535708i
\(57\) 2.99111 2.16271i 0.396183 0.286458i
\(58\) 2.03187 3.51931i 0.266798 0.462108i
\(59\) −3.74544 + 6.48728i −0.487614 + 0.844572i −0.999899 0.0142434i \(-0.995466\pi\)
0.512284 + 0.858816i \(0.328799\pi\)
\(60\) 1.05918 + 0.474493i 0.136740 + 0.0612567i
\(61\) 2.89202 + 5.00912i 0.370285 + 0.641352i 0.989609 0.143783i \(-0.0459267\pi\)
−0.619324 + 0.785135i \(0.712593\pi\)
\(62\) −13.3347 −1.69351
\(63\) −6.25673 + 1.29994i −0.788274 + 0.163777i
\(64\) 3.82454 0.478067
\(65\) −0.500000 0.866025i −0.0620174 0.107417i
\(66\) −0.0152348 0.148219i −0.00187527 0.0182445i
\(67\) 3.11795 5.40045i 0.380919 0.659770i −0.610275 0.792189i \(-0.708941\pi\)
0.991194 + 0.132419i \(0.0422745\pi\)
\(68\) 0.831054 1.43943i 0.100780 0.174556i
\(69\) 0.873237 + 8.49569i 0.105125 + 1.02276i
\(70\) 1.74034 + 3.01437i 0.208011 + 0.360286i
\(71\) 2.50050 0.296755 0.148377 0.988931i \(-0.452595\pi\)
0.148377 + 0.988931i \(0.452595\pi\)
\(72\) −2.04303 + 6.19104i −0.240774 + 0.729621i
\(73\) −1.10245 −0.129032 −0.0645159 0.997917i \(-0.520550\pi\)
−0.0645159 + 0.997917i \(0.520550\pi\)
\(74\) 0.914759 + 1.58441i 0.106339 + 0.184184i
\(75\) −1.58069 0.708116i −0.182522 0.0817662i
\(76\) −0.713983 + 1.23666i −0.0818995 + 0.141854i
\(77\) 0.0560707 0.0971174i 0.00638985 0.0110676i
\(78\) −2.29352 + 1.65831i −0.259690 + 0.187767i
\(79\) 7.80779 + 13.5235i 0.878445 + 1.52151i 0.853048 + 0.521833i \(0.174752\pi\)
0.0253969 + 0.999677i \(0.491915\pi\)
\(80\) 4.89115 0.546847
\(81\) −7.23231 5.35664i −0.803591 0.595183i
\(82\) −8.94500 −0.987810
\(83\) −0.244576 0.423618i −0.0268457 0.0464981i 0.852290 0.523069i \(-0.175213\pi\)
−0.879136 + 0.476571i \(0.841880\pi\)
\(84\) 2.00340 1.44855i 0.218589 0.158050i
\(85\) −1.24024 + 2.14815i −0.134522 + 0.233000i
\(86\) 7.74307 13.4114i 0.834957 1.44619i
\(87\) 3.93107 + 1.76104i 0.421455 + 0.188803i
\(88\) −0.0572033 0.0990790i −0.00609789 0.0105619i
\(89\) −4.64901 −0.492794 −0.246397 0.969169i \(-0.579247\pi\)
−0.246397 + 0.969169i \(0.579247\pi\)
\(90\) −1.53621 + 4.65519i −0.161930 + 0.490700i
\(91\) −2.13012 −0.223297
\(92\) −1.65202 2.86138i −0.172235 0.298320i
\(93\) −1.44522 14.0605i −0.149862 1.45800i
\(94\) −7.97868 + 13.8195i −0.822938 + 1.42537i
\(95\) 1.06552 1.84554i 0.109320 0.189348i
\(96\) −0.645704 6.28203i −0.0659019 0.641157i
\(97\) −3.67049 6.35747i −0.372682 0.645503i 0.617296 0.786731i \(-0.288228\pi\)
−0.989977 + 0.141228i \(0.954895\pi\)
\(98\) −4.02399 −0.406484
\(99\) 0.154635 0.0321280i 0.0155414 0.00322898i
\(100\) 0.670078 0.0670078
\(101\) −0.276429 0.478790i −0.0275058 0.0476414i 0.851945 0.523632i \(-0.175423\pi\)
−0.879451 + 0.475990i \(0.842090\pi\)
\(102\) 6.40681 + 2.87012i 0.634369 + 0.284184i
\(103\) 3.91898 6.78787i 0.386148 0.668828i −0.605780 0.795633i \(-0.707139\pi\)
0.991928 + 0.126804i \(0.0404720\pi\)
\(104\) −1.08657 + 1.88200i −0.106547 + 0.184545i
\(105\) −2.98981 + 2.16176i −0.291776 + 0.210967i
\(106\) 2.97469 + 5.15232i 0.288928 + 0.500437i
\(107\) 19.4173 1.87714 0.938572 0.345084i \(-0.112149\pi\)
0.938572 + 0.345084i \(0.112149\pi\)
\(108\) 3.40068 + 0.747329i 0.327230 + 0.0719118i
\(109\) −2.13502 −0.204498 −0.102249 0.994759i \(-0.532604\pi\)
−0.102249 + 0.994759i \(0.532604\pi\)
\(110\) −0.0430125 0.0744999i −0.00410108 0.00710328i
\(111\) −1.57150 + 1.13627i −0.149160 + 0.107850i
\(112\) 5.20936 9.02288i 0.492238 0.852582i
\(113\) 3.11765 5.39992i 0.293283 0.507982i −0.681301 0.732004i \(-0.738585\pi\)
0.974584 + 0.224022i \(0.0719187\pi\)
\(114\) −5.50428 2.46581i −0.515523 0.230944i
\(115\) 2.46542 + 4.27023i 0.229901 + 0.398201i
\(116\) −1.66644 −0.154725
\(117\) −1.99714 2.23862i −0.184636 0.206960i
\(118\) 12.2404 1.12682
\(119\) 2.64185 + 4.57581i 0.242178 + 0.419464i
\(120\) 0.384858 + 3.74427i 0.0351325 + 0.341803i
\(121\) 5.49861 9.52388i 0.499874 0.865807i
\(122\) 4.72567 8.18509i 0.427842 0.741043i
\(123\) −0.969461 9.43185i −0.0874133 0.850441i
\(124\) 2.73412 + 4.73563i 0.245531 + 0.425272i
\(125\) −1.00000 −0.0894427
\(126\) 6.95144 + 7.79194i 0.619283 + 0.694161i
\(127\) −10.6036 −0.940918 −0.470459 0.882422i \(-0.655912\pi\)
−0.470459 + 0.882422i \(0.655912\pi\)
\(128\) −6.77076 11.7273i −0.598456 1.03656i
\(129\) 14.9805 + 6.71097i 1.31896 + 0.590868i
\(130\) −0.817019 + 1.41512i −0.0716573 + 0.124114i
\(131\) 8.09616 14.0230i 0.707365 1.22519i −0.258467 0.966020i \(-0.583217\pi\)
0.965831 0.259171i \(-0.0834494\pi\)
\(132\) −0.0495140 + 0.0358008i −0.00430964 + 0.00311606i
\(133\) −2.26969 3.93121i −0.196807 0.340880i
\(134\) −10.1897 −0.880256
\(135\) −5.07505 1.11529i −0.436791 0.0959886i
\(136\) 5.39042 0.462224
\(137\) 10.3843 + 17.9861i 0.887189 + 1.53666i 0.843184 + 0.537626i \(0.180679\pi\)
0.0440058 + 0.999031i \(0.485988\pi\)
\(138\) 11.3090 8.17687i 0.962682 0.696062i
\(139\) 1.25038 2.16571i 0.106055 0.183693i −0.808113 0.589027i \(-0.799511\pi\)
0.914169 + 0.405333i \(0.132845\pi\)
\(140\) 0.713672 1.23612i 0.0603163 0.104471i
\(141\) −15.4364 6.91518i −1.29998 0.582363i
\(142\) −2.04295 3.53850i −0.171441 0.296944i
\(143\) 0.0526457 0.00440245
\(144\) 14.3666 2.98491i 1.19722 0.248743i
\(145\) 2.48694 0.206529
\(146\) 0.900721 + 1.56009i 0.0745442 + 0.129114i
\(147\) −0.436121 4.24300i −0.0359706 0.349957i
\(148\) 0.375120 0.649727i 0.0308347 0.0534072i
\(149\) 0.945127 1.63701i 0.0774279 0.134109i −0.824712 0.565553i \(-0.808663\pi\)
0.902139 + 0.431444i \(0.141996\pi\)
\(150\) 0.289384 + 2.81540i 0.0236281 + 0.229877i
\(151\) 2.44343 + 4.23214i 0.198843 + 0.344406i 0.948154 0.317812i \(-0.102948\pi\)
−0.749310 + 0.662219i \(0.769615\pi\)
\(152\) −4.63107 −0.375629
\(153\) −2.33196 + 7.06658i −0.188528 + 0.571299i
\(154\) −0.183243 −0.0147662
\(155\) −4.08030 7.06728i −0.327737 0.567658i
\(156\) 1.05918 + 0.474493i 0.0848025 + 0.0379898i
\(157\) 8.99989 15.5883i 0.718269 1.24408i −0.243416 0.969922i \(-0.578268\pi\)
0.961685 0.274157i \(-0.0883987\pi\)
\(158\) 12.7582 22.0979i 1.01499 1.75801i
\(159\) −5.11035 + 3.69501i −0.405277 + 0.293033i
\(160\) −1.82302 3.15756i −0.144122 0.249627i
\(161\) 10.5032 0.827772
\(162\) −1.67134 + 14.6111i −0.131313 + 1.14795i
\(163\) 9.41748 0.737634 0.368817 0.929502i \(-0.379763\pi\)
0.368817 + 0.929502i \(0.379763\pi\)
\(164\) 1.83406 + 3.17668i 0.143216 + 0.248057i
\(165\) 0.0738930 0.0534279i 0.00575256 0.00415935i
\(166\) −0.399646 + 0.692207i −0.0310185 + 0.0537257i
\(167\) 7.74523 13.4151i 0.599344 1.03809i −0.393574 0.919293i \(-0.628762\pi\)
0.992918 0.118801i \(-0.0379051\pi\)
\(168\) 7.31707 + 3.27790i 0.564525 + 0.252896i
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 4.05318 0.310865
\(171\) 2.00346 6.07111i 0.153208 0.464269i
\(172\) −6.35048 −0.484219
\(173\) 4.83831 + 8.38021i 0.367850 + 0.637135i 0.989229 0.146375i \(-0.0467606\pi\)
−0.621379 + 0.783510i \(0.713427\pi\)
\(174\) −0.719678 7.00172i −0.0545587 0.530799i
\(175\) −1.06506 + 1.84473i −0.0805108 + 0.139449i
\(176\) −0.128749 + 0.223000i −0.00970482 + 0.0168092i
\(177\) 1.32661 + 12.9066i 0.0997143 + 0.970117i
\(178\) 3.79832 + 6.57889i 0.284696 + 0.493109i
\(179\) −3.31630 −0.247872 −0.123936 0.992290i \(-0.539552\pi\)
−0.123936 + 0.992290i \(0.539552\pi\)
\(180\) 1.96820 0.408927i 0.146701 0.0304796i
\(181\) −22.6189 −1.68125 −0.840623 0.541621i \(-0.817811\pi\)
−0.840623 + 0.541621i \(0.817811\pi\)
\(182\) 1.74034 + 3.01437i 0.129003 + 0.223440i
\(183\) 9.14275 + 4.09577i 0.675852 + 0.302768i
\(184\) 5.35770 9.27981i 0.394975 0.684117i
\(185\) −0.559815 + 0.969629i −0.0411585 + 0.0712885i
\(186\) −18.7165 + 13.5328i −1.37236 + 0.992276i
\(187\) −0.0652931 0.113091i −0.00477470 0.00827003i
\(188\) 6.54371 0.477249
\(189\) −7.46263 + 8.17428i −0.542827 + 0.594591i
\(190\) −3.48221 −0.252626
\(191\) −2.94105 5.09405i −0.212807 0.368593i 0.739785 0.672843i \(-0.234927\pi\)
−0.952592 + 0.304251i \(0.901594\pi\)
\(192\) 5.36809 3.88136i 0.387408 0.280113i
\(193\) 0.229769 0.397972i 0.0165392 0.0286467i −0.857637 0.514255i \(-0.828069\pi\)
0.874177 + 0.485608i \(0.161402\pi\)
\(194\) −5.99771 + 10.3883i −0.430611 + 0.745840i
\(195\) −1.58069 0.708116i −0.113195 0.0507092i
\(196\) 0.825068 + 1.42906i 0.0589335 + 0.102076i
\(197\) −2.31119 −0.164665 −0.0823326 0.996605i \(-0.526237\pi\)
−0.0823326 + 0.996605i \(0.526237\pi\)
\(198\) −0.171804 0.192577i −0.0122096 0.0136859i
\(199\) 24.3734 1.72779 0.863893 0.503675i \(-0.168019\pi\)
0.863893 + 0.503675i \(0.168019\pi\)
\(200\) 1.08657 + 1.88200i 0.0768322 + 0.133077i
\(201\) −1.10436 10.7443i −0.0778957 0.757844i
\(202\) −0.451696 + 0.782360i −0.0317812 + 0.0550467i
\(203\) 2.64873 4.58774i 0.185904 0.321996i
\(204\) −0.294355 2.86377i −0.0206090 0.200504i
\(205\) −2.73708 4.74077i −0.191166 0.331110i
\(206\) −12.8075 −0.892341
\(207\) 9.84758 + 11.0383i 0.684454 + 0.767212i
\(208\) 4.89115 0.339140
\(209\) 0.0560952 + 0.0971597i 0.00388019 + 0.00672068i
\(210\) 5.50188 + 2.46473i 0.379666 + 0.170083i
\(211\) −13.6969 + 23.7237i −0.942934 + 1.63321i −0.183097 + 0.983095i \(0.558612\pi\)
−0.759836 + 0.650114i \(0.774721\pi\)
\(212\) 1.21985 2.11284i 0.0837794 0.145110i
\(213\) 3.50967 2.53765i 0.240479 0.173877i
\(214\) −15.8643 27.4778i −1.08446 1.87834i
\(215\) 9.47722 0.646341
\(216\) 3.41544 + 10.7631i 0.232391 + 0.732334i
\(217\) −17.3830 −1.18004
\(218\) 1.74435 + 3.02131i 0.118142 + 0.204629i
\(219\) −1.54739 + 1.11883i −0.104563 + 0.0756034i
\(220\) −0.0176384 + 0.0305505i −0.00118918 + 0.00205972i
\(221\) −1.24024 + 2.14815i −0.0834273 + 0.144500i
\(222\) 2.89190 + 1.29551i 0.194091 + 0.0869490i
\(223\) −12.6679 21.9415i −0.848307 1.46931i −0.882718 0.469904i \(-0.844289\pi\)
0.0344101 0.999408i \(-0.489045\pi\)
\(224\) −7.76649 −0.518920
\(225\) −2.93727 + 0.610268i −0.195818 + 0.0406845i
\(226\) −10.1887 −0.677742
\(227\) 10.6209 + 18.3959i 0.704931 + 1.22098i 0.966716 + 0.255850i \(0.0823554\pi\)
−0.261785 + 0.965126i \(0.584311\pi\)
\(228\) 0.252889 + 2.46035i 0.0167480 + 0.162941i
\(229\) −6.11686 + 10.5947i −0.404214 + 0.700119i −0.994230 0.107273i \(-0.965788\pi\)
0.590016 + 0.807392i \(0.299121\pi\)
\(230\) 4.02858 6.97771i 0.265637 0.460096i
\(231\) −0.0198600 0.193217i −0.00130669 0.0127127i
\(232\) −2.70223 4.68040i −0.177410 0.307284i
\(233\) 11.4048 0.747154 0.373577 0.927599i \(-0.378131\pi\)
0.373577 + 0.927599i \(0.378131\pi\)
\(234\) −1.53621 + 4.65519i −0.100425 + 0.304319i
\(235\) −9.76560 −0.637038
\(236\) −2.50973 4.34698i −0.163370 0.282965i
\(237\) 24.6833 + 11.0576i 1.60335 + 0.718270i
\(238\) 4.31687 7.47705i 0.279821 0.484665i
\(239\) −7.42854 + 12.8666i −0.480512 + 0.832272i −0.999750 0.0223581i \(-0.992883\pi\)
0.519238 + 0.854630i \(0.326216\pi\)
\(240\) 6.86517 4.96382i 0.443145 0.320413i
\(241\) 9.29538 + 16.1001i 0.598768 + 1.03710i 0.993003 + 0.118087i \(0.0376763\pi\)
−0.394235 + 0.919010i \(0.628990\pi\)
\(242\) −17.9699 −1.15515
\(243\) −15.5874 0.178762i −0.999934 0.0114676i
\(244\) −3.87575 −0.248120
\(245\) −1.23130 2.13268i −0.0786650 0.136252i
\(246\) −12.5551 + 9.07790i −0.800484 + 0.578786i
\(247\) 1.06552 1.84554i 0.0677976 0.117429i
\(248\) −8.86707 + 15.3582i −0.563059 + 0.975247i
\(249\) −0.773196 0.346376i −0.0489993 0.0219507i
\(250\) 0.817019 + 1.41512i 0.0516728 + 0.0894999i
\(251\) 30.0723 1.89815 0.949073 0.315058i \(-0.102024\pi\)
0.949073 + 0.315058i \(0.102024\pi\)
\(252\) 1.34189 4.06634i 0.0845309 0.256155i
\(253\) −0.259587 −0.0163201
\(254\) 8.66334 + 15.0054i 0.543587 + 0.941520i
\(255\) 0.439285 + 4.27379i 0.0275091 + 0.267635i
\(256\) −7.23913 + 12.5385i −0.452446 + 0.783659i
\(257\) −1.52032 + 2.63327i −0.0948348 + 0.164259i −0.909540 0.415617i \(-0.863566\pi\)
0.814705 + 0.579876i \(0.196899\pi\)
\(258\) −2.74255 26.6822i −0.170744 1.66116i
\(259\) 1.19247 + 2.06542i 0.0740966 + 0.128339i
\(260\) 0.670078 0.0415565
\(261\) 7.30481 1.51770i 0.452156 0.0939431i
\(262\) −26.4588 −1.63463
\(263\) 2.40051 + 4.15780i 0.148022 + 0.256381i 0.930496 0.366301i \(-0.119376\pi\)
−0.782474 + 0.622683i \(0.786043\pi\)
\(264\) −0.180841 0.0810131i −0.0111300 0.00498601i
\(265\) −1.82046 + 3.15312i −0.111830 + 0.193695i
\(266\) −3.70875 + 6.42375i −0.227398 + 0.393865i
\(267\) −6.52530 + 4.71808i −0.399342 + 0.288742i
\(268\) 2.08927 + 3.61872i 0.127623 + 0.221049i
\(269\) −16.8723 −1.02873 −0.514363 0.857573i \(-0.671971\pi\)
−0.514363 + 0.857573i \(0.671971\pi\)
\(270\) 2.56815 + 8.09300i 0.156293 + 0.492525i
\(271\) −2.34099 −0.142205 −0.0711026 0.997469i \(-0.522652\pi\)
−0.0711026 + 0.997469i \(0.522652\pi\)
\(272\) −6.06618 10.5069i −0.367816 0.637076i
\(273\) −2.98981 + 2.16176i −0.180952 + 0.130836i
\(274\) 16.9683 29.3900i 1.02509 1.77551i
\(275\) 0.0263229 0.0455925i 0.00158733 0.00274933i
\(276\) −5.22266 2.33964i −0.314367 0.140830i
\(277\) 1.88617 + 3.26693i 0.113329 + 0.196291i 0.917110 0.398633i \(-0.130515\pi\)
−0.803782 + 0.594924i \(0.797182\pi\)
\(278\) −4.08632 −0.245081
\(279\) −16.2979 18.2685i −0.975729 1.09370i
\(280\) 4.62905 0.276638
\(281\) −5.47798 9.48813i −0.326789 0.566015i 0.655084 0.755556i \(-0.272633\pi\)
−0.981873 + 0.189541i \(0.939300\pi\)
\(282\) 2.82601 + 27.4941i 0.168286 + 1.63725i
\(283\) −8.78483 + 15.2158i −0.522204 + 0.904484i 0.477462 + 0.878652i \(0.341557\pi\)
−0.999666 + 0.0258318i \(0.991777\pi\)
\(284\) −0.837764 + 1.45105i −0.0497122 + 0.0861040i
\(285\) −0.377403 3.67173i −0.0223554 0.217495i
\(286\) −0.0430125 0.0744999i −0.00254338 0.00440527i
\(287\) −11.6606 −0.688305
\(288\) −7.28166 8.16209i −0.429076 0.480956i
\(289\) −10.8473 −0.638074
\(290\) −2.03187 3.51931i −0.119316 0.206661i
\(291\) −11.6038 5.19826i −0.680226 0.304727i
\(292\) 0.369363 0.639756i 0.0216153 0.0374389i
\(293\) −12.2723 + 21.2562i −0.716953 + 1.24180i 0.245249 + 0.969460i \(0.421130\pi\)
−0.962202 + 0.272338i \(0.912203\pi\)
\(294\) −5.64803 + 4.08377i −0.329400 + 0.238171i
\(295\) 3.74544 + 6.48728i 0.218068 + 0.377704i
\(296\) 2.43312 0.141422
\(297\) 0.184439 0.202027i 0.0107022 0.0117228i
\(298\) −3.08875 −0.178926
\(299\) 2.46542 + 4.27023i 0.142579 + 0.246954i
\(300\) 0.940514 0.680033i 0.0543006 0.0392617i
\(301\) 10.0938 17.4830i 0.581797 1.00770i
\(302\) 3.99265 6.91547i 0.229751 0.397941i
\(303\) −0.873897 0.391488i −0.0502041 0.0224904i
\(304\) 5.21163 + 9.02681i 0.298908 + 0.517723i
\(305\) 5.78404 0.331193
\(306\) 11.9053 2.47353i 0.680581 0.141402i
\(307\) −11.0689 −0.631735 −0.315868 0.948803i \(-0.602296\pi\)
−0.315868 + 0.948803i \(0.602296\pi\)
\(308\) 0.0375718 + 0.0650762i 0.00214085 + 0.00370806i
\(309\) −1.38808 13.5046i −0.0789651 0.768249i
\(310\) −6.66736 + 11.5482i −0.378680 + 0.655894i
\(311\) −7.39666 + 12.8114i −0.419426 + 0.726468i −0.995882 0.0906608i \(-0.971102\pi\)
0.576456 + 0.817129i \(0.304435\pi\)
\(312\) 0.384858 + 3.74427i 0.0217883 + 0.211977i
\(313\) −13.5262 23.4281i −0.764548 1.32424i −0.940485 0.339834i \(-0.889629\pi\)
0.175937 0.984401i \(-0.443704\pi\)
\(314\) −29.4123 −1.65983
\(315\) −2.00258 + 6.06846i −0.112833 + 0.341919i
\(316\) −10.4636 −0.588626
\(317\) −0.288999 0.500561i −0.0162318 0.0281143i 0.857795 0.513991i \(-0.171834\pi\)
−0.874027 + 0.485877i \(0.838500\pi\)
\(318\) 9.40412 + 4.21285i 0.527357 + 0.236245i
\(319\) −0.0654632 + 0.113386i −0.00366524 + 0.00634838i
\(320\) 1.91227 3.31215i 0.106899 0.185155i
\(321\) 27.2540 19.7058i 1.52117 1.09987i
\(322\) −8.58135 14.8633i −0.478220 0.828301i
\(323\) −5.28600 −0.294121
\(324\) 5.53159 2.40226i 0.307311 0.133459i
\(325\) −1.00000 −0.0554700
\(326\) −7.69425 13.3268i −0.426145 0.738105i
\(327\) −2.99669 + 2.16674i −0.165718 + 0.119821i
\(328\) −5.94808 + 10.3024i −0.328428 + 0.568853i
\(329\) −10.4009 + 18.0149i −0.573422 + 0.993196i
\(330\) −0.135979 0.0609157i −0.00748538 0.00335330i
\(331\) 12.0570 + 20.8833i 0.662712 + 1.14785i 0.979900 + 0.199489i \(0.0639281\pi\)
−0.317188 + 0.948363i \(0.602739\pi\)
\(332\) 0.327770 0.0179887
\(333\) −1.05260 + 3.18970i −0.0576820 + 0.174795i
\(334\) −25.3120 −1.38501
\(335\) −3.11795 5.40045i −0.170352 0.295058i
\(336\) −1.84513 17.9512i −0.100660 0.979317i
\(337\) −3.06746 + 5.31299i −0.167095 + 0.289417i −0.937397 0.348262i \(-0.886772\pi\)
0.770302 + 0.637679i \(0.220105\pi\)
\(338\) −0.817019 + 1.41512i −0.0444400 + 0.0769723i
\(339\) −1.10425 10.7432i −0.0599748 0.583493i
\(340\) −0.831054 1.43943i −0.0450702 0.0780640i
\(341\) 0.429620 0.0232652
\(342\) −10.2282 + 2.12508i −0.553078 + 0.114911i
\(343\) −20.1564 −1.08835
\(344\) −10.2977 17.8361i −0.555214 0.961658i
\(345\) 7.79410 + 3.49160i 0.419620 + 0.187981i
\(346\) 7.90599 13.6936i 0.425028 0.736171i
\(347\) 1.86200 3.22507i 0.0999572 0.173131i −0.811710 0.584061i \(-0.801463\pi\)
0.911667 + 0.410930i \(0.134796\pi\)
\(348\) −2.33900 + 1.69120i −0.125383 + 0.0906578i
\(349\) 1.67433 + 2.90002i 0.0896246 + 0.155234i 0.907352 0.420371i \(-0.138100\pi\)
−0.817728 + 0.575605i \(0.804767\pi\)
\(350\) 3.48069 0.186051
\(351\) −5.07505 1.11529i −0.270886 0.0595296i
\(352\) 0.191948 0.0102309
\(353\) 17.7813 + 30.7981i 0.946403 + 1.63922i 0.752917 + 0.658115i \(0.228646\pi\)
0.193486 + 0.981103i \(0.438021\pi\)
\(354\) 17.1804 12.4222i 0.913130 0.660234i
\(355\) 1.25025 2.16550i 0.0663563 0.114933i
\(356\) 1.55760 2.69784i 0.0825525 0.142985i
\(357\) 8.35186 + 3.74147i 0.442028 + 0.198019i
\(358\) 2.70948 + 4.69296i 0.143200 + 0.248030i
\(359\) 9.06902 0.478645 0.239322 0.970940i \(-0.423075\pi\)
0.239322 + 0.970940i \(0.423075\pi\)
\(360\) 4.34008 + 4.86484i 0.228742 + 0.256399i
\(361\) −14.4586 −0.760981
\(362\) 18.4800 + 32.0083i 0.971289 + 1.68232i
\(363\) −1.94758 18.9479i −0.102221 0.994508i
\(364\) 0.713672 1.23612i 0.0374066 0.0647901i
\(365\) −0.551224 + 0.954749i −0.0288524 + 0.0499738i
\(366\) −1.67381 16.2844i −0.0874912 0.851199i
\(367\) 12.3093 + 21.3203i 0.642541 + 1.11291i 0.984864 + 0.173331i \(0.0554529\pi\)
−0.342323 + 0.939582i \(0.611214\pi\)
\(368\) −24.1174 −1.25721
\(369\) −10.9327 12.2546i −0.569134 0.637948i
\(370\) 1.82952 0.0951121
\(371\) 3.87778 + 6.71652i 0.201324 + 0.348704i
\(372\) 8.64357 + 3.87214i 0.448148 + 0.200761i
\(373\) −13.4879 + 23.3617i −0.698376 + 1.20962i 0.270653 + 0.962677i \(0.412760\pi\)
−0.969029 + 0.246946i \(0.920573\pi\)
\(374\) −0.106691 + 0.184795i −0.00551688 + 0.00955551i
\(375\) −1.40359 + 1.01486i −0.0724811 + 0.0524070i
\(376\) 10.6110 + 18.3788i 0.547222 + 0.947816i
\(377\) 2.48694 0.128084
\(378\) 17.6647 + 3.88197i 0.908573 + 0.199667i
\(379\) 14.2429 0.731611 0.365805 0.930691i \(-0.380794\pi\)
0.365805 + 0.930691i \(0.380794\pi\)
\(380\) 0.713983 + 1.23666i 0.0366266 + 0.0634391i
\(381\) −14.8831 + 10.7611i −0.762485 + 0.551310i
\(382\) −4.80579 + 8.32387i −0.245886 + 0.425886i
\(383\) −12.9868 + 22.4938i −0.663595 + 1.14938i 0.316070 + 0.948736i \(0.397637\pi\)
−0.979664 + 0.200644i \(0.935697\pi\)
\(384\) −21.4049 9.58896i −1.09231 0.489335i
\(385\) −0.0560707 0.0971174i −0.00285763 0.00494956i
\(386\) −0.750903 −0.0382200
\(387\) 27.8372 5.78365i 1.41504 0.293999i
\(388\) 4.91902 0.249726
\(389\) −12.8953 22.3354i −0.653819 1.13245i −0.982189 0.187898i \(-0.939832\pi\)
0.328370 0.944549i \(-0.393501\pi\)
\(390\) 0.289384 + 2.81540i 0.0146535 + 0.142563i
\(391\) 6.11539 10.5922i 0.309269 0.535669i
\(392\) −2.67580 + 4.63461i −0.135148 + 0.234083i
\(393\) −2.86762 27.8989i −0.144652 1.40731i
\(394\) 1.88828 + 3.27060i 0.0951303 + 0.164771i
\(395\) 15.6156 0.785705
\(396\) −0.0331647 + 0.100499i −0.00166659 + 0.00505028i
\(397\) −19.2890 −0.968086 −0.484043 0.875044i \(-0.660832\pi\)
−0.484043 + 0.875044i \(0.660832\pi\)
\(398\) −19.9135 34.4913i −0.998176 1.72889i
\(399\) −7.17533 3.21440i −0.359216 0.160921i
\(400\) 2.44558 4.23586i 0.122279 0.211793i
\(401\) 8.23155 14.2575i 0.411064 0.711983i −0.583943 0.811795i \(-0.698491\pi\)
0.995006 + 0.0998116i \(0.0318240\pi\)
\(402\) −14.3022 + 10.3411i −0.713327 + 0.515767i
\(403\) −4.08030 7.06728i −0.203254 0.352046i
\(404\) 0.370458 0.0184310
\(405\) −8.25515 + 3.58505i −0.410202 + 0.178142i
\(406\) −8.65625 −0.429602
\(407\) −0.0294719 0.0510468i −0.00146087 0.00253030i
\(408\) 7.56593 5.47050i 0.374570 0.270830i
\(409\) 9.87631 17.1063i 0.488352 0.845850i −0.511558 0.859249i \(-0.670932\pi\)
0.999910 + 0.0133982i \(0.00426491\pi\)
\(410\) −4.47250 + 7.74660i −0.220881 + 0.382577i
\(411\) 32.8286 + 14.7066i 1.61932 + 0.725421i
\(412\) 2.62602 + 4.54840i 0.129375 + 0.224084i
\(413\) 15.9564 0.785164
\(414\) 7.57477 22.9539i 0.372280 1.12812i
\(415\) −0.489152 −0.0240115
\(416\) −1.82302 3.15756i −0.0893809 0.154812i
\(417\) −0.442876 4.30873i −0.0216877 0.210999i
\(418\) 0.0916617 0.158763i 0.00448332 0.00776533i
\(419\) 8.72915 15.1193i 0.426447 0.738628i −0.570107 0.821570i \(-0.693098\pi\)
0.996554 + 0.0829423i \(0.0264317\pi\)
\(420\) −0.252779 2.45927i −0.0123343 0.120000i
\(421\) 3.70798 + 6.42241i 0.180716 + 0.313009i 0.942125 0.335263i \(-0.108825\pi\)
−0.761409 + 0.648272i \(0.775492\pi\)
\(422\) 44.7625 2.17900
\(423\) −28.6842 + 5.95963i −1.39468 + 0.289767i
\(424\) 7.91222 0.384251
\(425\) 1.24024 + 2.14815i 0.0601603 + 0.104201i
\(426\) −6.45854 2.89330i −0.312917 0.140181i
\(427\) 6.16034 10.6700i 0.298120 0.516358i
\(428\) −6.50556 + 11.2680i −0.314458 + 0.544657i
\(429\) 0.0738930 0.0534279i 0.00356759 0.00257952i
\(430\) −7.74307 13.4114i −0.373404 0.646755i
\(431\) 33.6097 1.61892 0.809461 0.587174i \(-0.199760\pi\)
0.809461 + 0.587174i \(0.199760\pi\)
\(432\) 17.1356 18.7697i 0.824438 0.903057i
\(433\) 30.2826 1.45529 0.727644 0.685955i \(-0.240615\pi\)
0.727644 + 0.685955i \(0.240615\pi\)
\(434\) 14.2022 + 24.5990i 0.681730 + 1.18079i
\(435\) 3.49064 2.52388i 0.167363 0.121011i
\(436\) 0.715315 1.23896i 0.0342574 0.0593355i
\(437\) −5.25391 + 9.10005i −0.251329 + 0.435314i
\(438\) 2.84752 + 1.27563i 0.136060 + 0.0609520i
\(439\) 14.3685 + 24.8870i 0.685772 + 1.18779i 0.973194 + 0.229987i \(0.0738685\pi\)
−0.287422 + 0.957804i \(0.592798\pi\)
\(440\) −0.114407 −0.00545412
\(441\) −4.91818 5.51283i −0.234199 0.262516i
\(442\) 4.05318 0.192790
\(443\) 11.2109 + 19.4179i 0.532646 + 0.922570i 0.999273 + 0.0381159i \(0.0121356\pi\)
−0.466627 + 0.884454i \(0.654531\pi\)
\(444\) −0.132865 1.29264i −0.00630552 0.0613461i
\(445\) −2.32450 + 4.02616i −0.110192 + 0.190858i
\(446\) −20.6999 + 35.8532i −0.980167 + 1.69770i
\(447\) −0.334759 3.25686i −0.0158336 0.154044i
\(448\) −4.07336 7.05526i −0.192448 0.333330i
\(449\) 16.0149 0.755791 0.377895 0.925848i \(-0.376648\pi\)
0.377895 + 0.925848i \(0.376648\pi\)
\(450\) 3.26341 + 3.65799i 0.153839 + 0.172439i
\(451\) 0.288192 0.0135704
\(452\) 2.08907 + 3.61837i 0.0982614 + 0.170194i
\(453\) 7.72458 + 3.46046i 0.362933 + 0.162586i
\(454\) 17.3549 30.0595i 0.814505 1.41076i
\(455\) −1.06506 + 1.84473i −0.0499307 + 0.0864825i
\(456\) −6.50012 + 4.69987i −0.304396 + 0.220092i
\(457\) −0.532780 0.922803i −0.0249224 0.0431669i 0.853295 0.521428i \(-0.174601\pi\)
−0.878218 + 0.478261i \(0.841267\pi\)
\(458\) 19.9904 0.934089
\(459\) 3.89845 + 12.2852i 0.181964 + 0.573424i
\(460\) −3.30404 −0.154052
\(461\) −12.3193 21.3377i −0.573769 0.993798i −0.996174 0.0873903i \(-0.972147\pi\)
0.422405 0.906407i \(-0.361186\pi\)
\(462\) −0.257198 + 0.185966i −0.0119660 + 0.00865191i
\(463\) −3.56164 + 6.16895i −0.165524 + 0.286695i −0.936841 0.349755i \(-0.886265\pi\)
0.771318 + 0.636451i \(0.219598\pi\)
\(464\) −6.08199 + 10.5343i −0.282349 + 0.489043i
\(465\) −12.8993 5.77865i −0.598193 0.267978i
\(466\) −9.31794 16.1391i −0.431645 0.747631i
\(467\) 20.4662 0.947063 0.473531 0.880777i \(-0.342979\pi\)
0.473531 + 0.880777i \(0.342979\pi\)
\(468\) 1.96820 0.408927i 0.0909801 0.0189027i
\(469\) −13.2832 −0.613361
\(470\) 7.97868 + 13.8195i 0.368029 + 0.637445i
\(471\) −3.18771 31.0131i −0.146882 1.42901i
\(472\) 8.13936 14.0978i 0.374645 0.648903i
\(473\) −0.249468 + 0.432090i −0.0114705 + 0.0198675i
\(474\) −4.51889 43.9641i −0.207560 2.01934i
\(475\) −1.06552 1.84554i −0.0488895 0.0846792i
\(476\) −3.54048 −0.162278
\(477\) −3.42293 + 10.3725i −0.156725 + 0.474926i
\(478\) 24.2770 1.11041
\(479\) 7.23493 + 12.5313i 0.330573 + 0.572568i 0.982624 0.185606i \(-0.0594248\pi\)
−0.652052 + 0.758175i \(0.726092\pi\)
\(480\) −5.76325 2.58182i −0.263055 0.117843i
\(481\) −0.559815 + 0.969629i −0.0255254 + 0.0442113i
\(482\) 15.1890 26.3081i 0.691840 1.19830i
\(483\) 14.7422 10.6593i 0.670796 0.485015i
\(484\) 3.68450 + 6.38174i 0.167477 + 0.290079i
\(485\) −7.34097 −0.333336
\(486\) 12.4823 + 22.2041i 0.566207 + 1.00720i
\(487\) 29.8595 1.35306 0.676531 0.736414i \(-0.263483\pi\)
0.676531 + 0.736414i \(0.263483\pi\)
\(488\) −6.28477 10.8855i −0.284498 0.492765i
\(489\) 13.2183 9.55740i 0.597751 0.432200i
\(490\) −2.01199 + 3.48488i −0.0908926 + 0.157431i
\(491\) −11.0235 + 19.0932i −0.497483 + 0.861665i −0.999996 0.00290444i \(-0.999075\pi\)
0.502513 + 0.864570i \(0.332409\pi\)
\(492\) 5.79815 + 2.59745i 0.261401 + 0.117102i
\(493\) −3.08439 5.34231i −0.138914 0.240606i
\(494\) −3.48221 −0.156672
\(495\) 0.0494938 0.149982i 0.00222458 0.00674117i
\(496\) 39.9147 1.79222
\(497\) −2.66318 4.61276i −0.119460 0.206910i
\(498\) 0.141552 + 1.37716i 0.00634312 + 0.0617119i
\(499\) −10.5861 + 18.3357i −0.473901 + 0.820820i −0.999554 0.0298789i \(-0.990488\pi\)
0.525653 + 0.850699i \(0.323821\pi\)
\(500\) 0.335039 0.580304i 0.0149834 0.0259520i
\(501\) −2.74332 26.6896i −0.122562 1.19241i
\(502\) −24.5696 42.5558i −1.09660 1.89936i
\(503\) −40.3143 −1.79752 −0.898762 0.438436i \(-0.855533\pi\)
−0.898762 + 0.438436i \(0.855533\pi\)
\(504\) 13.5968 2.82496i 0.605648 0.125834i
\(505\) −0.552859 −0.0246019
\(506\) 0.212088 + 0.367346i 0.00942844 + 0.0163305i
\(507\) −1.58069 0.708116i −0.0702008 0.0314485i
\(508\) 3.55262 6.15332i 0.157622 0.273009i
\(509\) −9.50834 + 16.4689i −0.421450 + 0.729973i −0.996082 0.0884396i \(-0.971812\pi\)
0.574632 + 0.818412i \(0.305145\pi\)
\(510\) 5.68901 4.11340i 0.251913 0.182144i
\(511\) 1.17417 + 2.03373i 0.0519423 + 0.0899667i
\(512\) −3.42501 −0.151366
\(513\) −3.34928 10.5546i −0.147874 0.465996i
\(514\) 4.96851 0.219152
\(515\) −3.91898 6.78787i −0.172691 0.299109i
\(516\) −8.91347 + 6.44483i −0.392393 + 0.283718i
\(517\) 0.257059 0.445238i 0.0113054 0.0195816i
\(518\) 1.94854 3.37498i 0.0856141 0.148288i
\(519\) 15.2957 + 6.85217i 0.671408 + 0.300777i
\(520\) 1.08657 + 1.88200i 0.0476493 + 0.0825310i
\(521\) −33.4407 −1.46507 −0.732533 0.680732i \(-0.761662\pi\)
−0.732533 + 0.680732i \(0.761662\pi\)
\(522\) −8.11588 9.09718i −0.355223 0.398173i
\(523\) −6.40250 −0.279962 −0.139981 0.990154i \(-0.544704\pi\)
−0.139981 + 0.990154i \(0.544704\pi\)
\(524\) 5.42505 + 9.39647i 0.236995 + 0.410487i
\(525\) 0.377238 + 3.67013i 0.0164640 + 0.160178i
\(526\) 3.92252 6.79401i 0.171030 0.296233i
\(527\) −10.1211 + 17.5302i −0.440880 + 0.763627i
\(528\) 0.0456022 + 0.443662i 0.00198458 + 0.0193079i
\(529\) −0.656552 1.13718i −0.0285457 0.0494426i
\(530\) 5.94939 0.258425
\(531\) 14.9603 + 16.7692i 0.649224 + 0.727722i
\(532\) 3.04173 0.131876
\(533\) −2.73708 4.74077i −0.118556 0.205346i
\(534\) 12.0079 + 5.37931i 0.519634 + 0.232785i
\(535\) 9.70866 16.8159i 0.419742 0.727015i
\(536\) −6.77576 + 11.7360i −0.292668 + 0.506916i
\(537\) −4.65473 + 3.36557i −0.200866 + 0.145235i
\(538\) 13.7850 + 23.8764i 0.594315 + 1.02938i
\(539\) 0.129646 0.00558423
\(540\) 2.34755 2.57141i 0.101022 0.110656i
\(541\) −17.4745 −0.751286 −0.375643 0.926764i \(-0.622578\pi\)
−0.375643 + 0.926764i \(0.622578\pi\)
\(542\) 1.91264 + 3.31278i 0.0821547 + 0.142296i
\(543\) −31.7476 + 22.9549i −1.36242 + 0.985089i
\(544\) −4.52195 + 7.83224i −0.193877 + 0.335805i
\(545\) −1.06751 + 1.84898i −0.0457271 + 0.0792017i
\(546\) 5.50188 + 2.46473i 0.235459 + 0.105481i
\(547\) 5.03733 + 8.72491i 0.215381 + 0.373050i 0.953390 0.301740i \(-0.0975675\pi\)
−0.738010 + 0.674790i \(0.764234\pi\)
\(548\) −13.9166 −0.594486
\(549\) 16.9893 3.52981i 0.725085 0.150649i
\(550\) −0.0860250 −0.00366812
\(551\) 2.64989 + 4.58974i 0.112889 + 0.195529i
\(552\) −1.89767 18.4623i −0.0807701 0.785810i
\(553\) 16.6315 28.8066i 0.707243 1.22498i
\(554\) 3.08206 5.33829i 0.130944 0.226802i
\(555\) 0.198284 + 1.92909i 0.00841667 + 0.0818855i
\(556\) 0.837849 + 1.45120i 0.0355327 + 0.0615444i
\(557\) 21.2315 0.899607 0.449804 0.893127i \(-0.351494\pi\)
0.449804 + 0.893127i \(0.351494\pi\)
\(558\) −12.5364 + 37.9891i −0.530706 + 1.60821i
\(559\) 9.47722 0.400844
\(560\) −5.20936 9.02288i −0.220136 0.381286i
\(561\) −0.206416 0.0924701i −0.00871488 0.00390409i
\(562\) −8.95122 + 15.5040i −0.377584 + 0.653995i
\(563\) −6.17245 + 10.6910i −0.260138 + 0.450572i −0.966278 0.257500i \(-0.917101\pi\)
0.706140 + 0.708072i \(0.250435\pi\)
\(564\) 9.18469 6.64094i 0.386745 0.279634i
\(565\) −3.11765 5.39992i −0.131160 0.227176i
\(566\) 28.7095 1.20675
\(567\) −2.17875 + 19.0468i −0.0914989 + 0.799892i
\(568\) −5.43394 −0.228003
\(569\) −3.87874 6.71817i −0.162605 0.281640i 0.773197 0.634166i \(-0.218656\pi\)
−0.935802 + 0.352526i \(0.885323\pi\)
\(570\) −4.88759 + 3.53394i −0.204719 + 0.148021i
\(571\) 5.10696 8.84552i 0.213720 0.370173i −0.739156 0.673534i \(-0.764775\pi\)
0.952876 + 0.303361i \(0.0981087\pi\)
\(572\) −0.0176384 + 0.0305505i −0.000737497 + 0.00127738i
\(573\) −9.29777 4.16521i −0.388420 0.174004i
\(574\) 9.52694 + 16.5011i 0.397647 + 0.688745i
\(575\) 4.93083 0.205630
\(576\) 3.59556 10.8957i 0.149815 0.453987i
\(577\) −44.5539 −1.85480 −0.927402 0.374065i \(-0.877964\pi\)
−0.927402 + 0.374065i \(0.877964\pi\)
\(578\) 8.86242 + 15.3502i 0.368628 + 0.638482i
\(579\) −0.0813831 0.791773i −0.00338217 0.0329050i
\(580\) −0.833220 + 1.44318i −0.0345976 + 0.0599248i
\(581\) −0.520975 + 0.902355i −0.0216137 + 0.0374360i
\(582\) 2.12436 + 20.6678i 0.0880575 + 0.856708i
\(583\) −0.0958392 0.165998i −0.00396925 0.00687495i
\(584\) 2.39578 0.0991380
\(585\) −2.93727 + 0.610268i −0.121441 + 0.0252315i
\(586\) 40.1066 1.65679
\(587\) −10.4535 18.1059i −0.431461 0.747312i 0.565539 0.824722i \(-0.308668\pi\)
−0.996999 + 0.0774099i \(0.975335\pi\)
\(588\) 2.60835 + 1.16849i 0.107567 + 0.0481876i
\(589\) 8.69530 15.0607i 0.358284 0.620565i
\(590\) 6.12018 10.6005i 0.251964 0.436414i
\(591\) −3.24396 + 2.34553i −0.133439 + 0.0964820i
\(592\) −2.73814 4.74260i −0.112537 0.194920i
\(593\) −7.48843 −0.307513 −0.153756 0.988109i \(-0.549137\pi\)
−0.153756 + 0.988109i \(0.549137\pi\)
\(594\) −0.436581 0.0959426i −0.0179132 0.00393657i
\(595\) 5.28369 0.216610
\(596\) 0.633309 + 1.09692i 0.0259413 + 0.0449317i
\(597\) 34.2103 24.7356i 1.40013 1.01236i
\(598\) 4.02858 6.97771i 0.164741 0.285340i
\(599\) 13.9657 24.1893i 0.570623 0.988349i −0.425879 0.904780i \(-0.640035\pi\)
0.996502 0.0835684i \(-0.0266317\pi\)
\(600\) 3.43506 + 1.53884i 0.140236 + 0.0628227i
\(601\) −16.3890 28.3866i −0.668521 1.15791i −0.978318 0.207110i \(-0.933594\pi\)
0.309796 0.950803i \(-0.399739\pi\)
\(602\) −32.9873 −1.34446
\(603\) −12.4540 13.9598i −0.507166 0.568488i
\(604\) −3.27457 −0.133240
\(605\) −5.49861 9.52388i −0.223550 0.387201i
\(606\) 0.159988 + 1.55652i 0.00649908 + 0.0632293i
\(607\) −19.5852 + 33.9226i −0.794940 + 1.37688i 0.127938 + 0.991782i \(0.459164\pi\)
−0.922878 + 0.385093i \(0.874169\pi\)
\(608\) 3.88494 6.72891i 0.157555 0.272893i
\(609\) −0.938166 9.12738i −0.0380164 0.369860i
\(610\) −4.72567 8.18509i −0.191337 0.331405i
\(611\) −9.76560 −0.395074
\(612\) −3.31947 3.72083i −0.134182 0.150406i
\(613\) −10.2019 −0.412051 −0.206026 0.978547i \(-0.566053\pi\)
−0.206026 + 0.978547i \(0.566053\pi\)
\(614\) 9.04350 + 15.6638i 0.364966 + 0.632139i
\(615\) −8.65295 3.87635i −0.348921 0.156309i
\(616\) −0.121850 + 0.211050i −0.00490946 + 0.00850344i
\(617\) 4.84474 8.39133i 0.195042 0.337822i −0.751872 0.659309i \(-0.770849\pi\)
0.946914 + 0.321486i \(0.104182\pi\)
\(618\) −17.9765 + 12.9978i −0.723120 + 0.522848i
\(619\) 9.93748 + 17.2122i 0.399421 + 0.691818i 0.993655 0.112475i \(-0.0358778\pi\)
−0.594233 + 0.804293i \(0.702544\pi\)
\(620\) 5.46823 0.219610
\(621\) 25.0242 + 5.49929i 1.00419 + 0.220679i
\(622\) 24.1728 0.969243
\(623\) 4.95146 + 8.57618i 0.198376 + 0.343598i
\(624\) 6.86517 4.96382i 0.274827 0.198712i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) −22.1024 + 38.2824i −0.883388 + 1.53007i
\(627\) 0.177338 + 0.0794438i 0.00708219 + 0.00317268i
\(628\) 6.03062 + 10.4453i 0.240648 + 0.416815i
\(629\) 2.77721 0.110735
\(630\) 10.2237 2.12415i 0.407323 0.0846283i
\(631\) −38.9270 −1.54966 −0.774830 0.632170i \(-0.782165\pi\)
−0.774830 + 0.632170i \(0.782165\pi\)
\(632\) −16.9674 29.3885i −0.674928 1.16901i
\(633\) 4.85137 + 47.1988i 0.192825 + 1.87598i
\(634\) −0.472235 + 0.817935i −0.0187548 + 0.0324843i
\(635\) −5.30180 + 9.18299i −0.210396 + 0.364416i
\(636\) −0.432063 4.20353i −0.0171324 0.166681i
\(637\) −1.23130 2.13268i −0.0487860 0.0844998i
\(638\) 0.213939 0.00846991
\(639\) 2.35079 7.12364i 0.0929959 0.281807i
\(640\) −13.5415 −0.535275
\(641\) 3.94706 + 6.83651i 0.155899 + 0.270026i 0.933386 0.358874i \(-0.116839\pi\)
−0.777487 + 0.628899i \(0.783506\pi\)
\(642\) −50.1531 22.4675i −1.97938 0.886723i
\(643\) −17.8875 + 30.9821i −0.705415 + 1.22182i 0.261126 + 0.965305i \(0.415906\pi\)
−0.966541 + 0.256511i \(0.917427\pi\)
\(644\) −3.51900 + 6.09508i −0.138668 + 0.240180i
\(645\) 13.3021 9.61803i 0.523771 0.378710i
\(646\) 4.31876 + 7.48031i 0.169919 + 0.294309i
\(647\) −1.47889 −0.0581412 −0.0290706 0.999577i \(-0.509255\pi\)
−0.0290706 + 0.999577i \(0.509255\pi\)
\(648\) 15.7169 + 11.6407i 0.617416 + 0.457292i
\(649\) −0.394362 −0.0154801
\(650\) 0.817019 + 1.41512i 0.0320461 + 0.0555055i
\(651\) −24.3986 + 17.6413i −0.956258 + 0.691416i
\(652\) −3.15522 + 5.46500i −0.123568 + 0.214026i
\(653\) 3.47523 6.01927i 0.135996 0.235552i −0.789981 0.613131i \(-0.789910\pi\)
0.925978 + 0.377579i \(0.123243\pi\)
\(654\) 5.51455 + 2.47041i 0.215636 + 0.0966005i
\(655\) −8.09616 14.0230i −0.316343 0.547922i
\(656\) 26.7750 1.04539
\(657\) −1.03644 + 3.14075i −0.0404355 + 0.122532i
\(658\) 33.9910 1.32511
\(659\) −15.4773 26.8075i −0.602910 1.04427i −0.992378 0.123230i \(-0.960675\pi\)
0.389469 0.921040i \(-0.372659\pi\)
\(660\) 0.00624741 + 0.0607808i 0.000243180 + 0.00236589i
\(661\) −1.78839 + 3.09758i −0.0695603 + 0.120482i −0.898708 0.438548i \(-0.855493\pi\)
0.829147 + 0.559030i \(0.188826\pi\)
\(662\) 19.7016 34.1241i 0.765724 1.32627i
\(663\) 0.439285 + 4.27379i 0.0170604 + 0.165980i
\(664\) 0.531498 + 0.920582i 0.0206261 + 0.0357255i
\(665\) −4.53938 −0.176029
\(666\) 5.37380 1.11650i 0.208230 0.0432634i
\(667\) −12.2627 −0.474812
\(668\) 5.18991 + 8.98918i 0.200804 + 0.347802i
\(669\) −40.0481 17.9407i −1.54835 0.693629i
\(670\) −5.09485 + 8.82454i −0.196831 + 0.340922i
\(671\) −0.152252 + 0.263709i −0.00587764 + 0.0101804i
\(672\) −10.9010 + 7.88188i −0.420514 + 0.304050i
\(673\) 14.0497 + 24.3347i 0.541575 + 0.938035i 0.998814 + 0.0486913i \(0.0155051\pi\)
−0.457239 + 0.889344i \(0.651162\pi\)
\(674\) 10.0247 0.386136
\(675\) −3.50339 + 3.83748i −0.134846 + 0.147705i
\(676\) 0.670078 0.0257722
\(677\) −22.1467 38.3592i −0.851167 1.47426i −0.880156 0.474685i \(-0.842562\pi\)
0.0289890 0.999580i \(-0.490771\pi\)
\(678\) −14.3008 + 10.3401i −0.549217 + 0.397108i
\(679\) −7.81856 + 13.5422i −0.300049 + 0.519700i
\(680\) 2.69521 4.66824i 0.103357 0.179019i
\(681\) 33.5765 + 15.0416i 1.28665 + 0.576395i
\(682\) −0.351008 0.607963i −0.0134408 0.0232801i
\(683\) −1.69041 −0.0646816 −0.0323408 0.999477i \(-0.510296\pi\)
−0.0323408 + 0.999477i \(0.510296\pi\)
\(684\) 2.85185 + 3.19667i 0.109043 + 0.122228i
\(685\) 20.7686 0.793526
\(686\) 16.4682 + 28.5237i 0.628759 + 1.08904i
\(687\) 2.16656 + 21.0784i 0.0826594 + 0.804191i
\(688\) −23.1773 + 40.1442i −0.883625 + 1.53048i
\(689\) −1.82046 + 3.15312i −0.0693538 + 0.120124i
\(690\) −1.42690 13.8823i −0.0543212 0.528489i
\(691\) 5.40719 + 9.36552i 0.205699 + 0.356281i 0.950355 0.311167i \(-0.100720\pi\)
−0.744656 + 0.667448i \(0.767387\pi\)
\(692\) −6.48409 −0.246488
\(693\) −0.223963 0.251042i −0.00850764 0.00953630i
\(694\) −6.08514 −0.230989
\(695\) −1.25038 2.16571i −0.0474294 0.0821502i
\(696\) −8.54277 3.82699i −0.323813 0.145062i
\(697\) −6.78926 + 11.7593i −0.257162 + 0.445417i
\(698\) 2.73591 4.73874i 0.103556 0.179364i
\(699\) 16.0077 11.5743i 0.605466 0.437778i
\(700\) −0.713672 1.23612i −0.0269743 0.0467208i
\(701\) −32.1755 −1.21525 −0.607626 0.794224i \(-0.707878\pi\)
−0.607626 + 0.794224i \(0.707878\pi\)
\(702\) 2.56815 + 8.09300i 0.0969285 + 0.305451i
\(703\) −2.38598 −0.0899891
\(704\) 0.100673 + 0.174370i 0.00379425 + 0.00657183i
\(705\) −13.7069 + 9.91069i −0.516232 + 0.373258i
\(706\) 29.0553 50.3253i 1.09351 1.89402i
\(707\) −0.588827 + 1.01988i −0.0221451 + 0.0383565i
\(708\) −7.93421 3.55436i −0.298186 0.133581i
\(709\) −15.9560 27.6366i −0.599240 1.03791i −0.992934 0.118672i \(-0.962136\pi\)
0.393694 0.919242i \(-0.371197\pi\)
\(710\) −4.08591 −0.153341
\(711\) 45.8672 9.52968i 1.72015 0.357391i
\(712\) 10.1030 0.378624
\(713\) 20.1193 + 34.8476i 0.753472 + 1.30505i
\(714\) −1.52901 14.8757i −0.0572219 0.556710i
\(715\) 0.0263229 0.0455925i 0.000984419 0.00170506i
\(716\) 1.11109 1.92446i 0.0415234 0.0719206i
\(717\) 2.63115 + 25.5984i 0.0982621 + 0.955988i
\(718\) −7.40956 12.8337i −0.276522 0.478951i
\(719\) 20.6891 0.771572 0.385786 0.922588i \(-0.373930\pi\)
0.385786 + 0.922588i \(0.373930\pi\)
\(720\) 4.59831 13.9343i 0.171369 0.519302i
\(721\) −16.6958 −0.621782
\(722\) 11.8130 + 20.4607i 0.439634 + 0.761468i
\(723\) 29.3862 + 13.1644i 1.09288 + 0.489590i
\(724\) 7.57820 13.1258i 0.281641 0.487817i
\(725\) 1.24347 2.15375i 0.0461812 0.0799882i
\(726\) −25.2223 + 18.2369i −0.936089 + 0.676834i
\(727\) 12.3396 + 21.3728i 0.457649 + 0.792672i 0.998836 0.0482305i \(-0.0153582\pi\)
−0.541187 + 0.840902i \(0.682025\pi\)
\(728\) 4.62905 0.171564
\(729\) −22.0598 + 15.5681i −0.817029 + 0.576597i
\(730\) 1.80144 0.0666744
\(731\) −11.7540 20.3585i −0.434737 0.752987i
\(732\) −5.43997 + 3.93334i −0.201067 + 0.145380i
\(733\) 10.8729 18.8325i 0.401602 0.695594i −0.592318 0.805704i \(-0.701787\pi\)
0.993919 + 0.110110i \(0.0351203\pi\)
\(734\) 20.1139 34.8382i 0.742416 1.28590i
\(735\) −3.89261 1.74381i −0.143581 0.0643214i
\(736\) 8.98900 + 15.5694i 0.331339 + 0.573896i
\(737\) 0.328294 0.0120929
\(738\) −8.40945 + 25.4833i −0.309556 + 0.938053i
\(739\) 43.0460 1.58347 0.791736 0.610864i \(-0.209178\pi\)
0.791736 + 0.610864i \(0.209178\pi\)
\(740\) −0.375120 0.649727i −0.0137897 0.0238844i
\(741\) −0.377403 3.67173i −0.0138642 0.134885i
\(742\) 6.33644 10.9750i 0.232618 0.402906i
\(743\) −3.94908 + 6.84001i −0.144878 + 0.250936i −0.929327 0.369257i \(-0.879612\pi\)
0.784450 + 0.620193i \(0.212946\pi\)
\(744\) 3.14067 + 30.5554i 0.115142 + 1.12022i
\(745\) −0.945127 1.63701i −0.0346268 0.0599754i
\(746\) 44.0794 1.61386
\(747\) −1.43677 + 0.298513i −0.0525687 + 0.0109220i
\(748\) 0.0875029 0.00319942
\(749\) −20.6806 35.8198i −0.755652 1.30883i
\(750\) 2.58290 + 1.15709i 0.0943142 + 0.0422509i
\(751\) −19.3225 + 33.4676i −0.705089 + 1.22125i 0.261571 + 0.965184i \(0.415759\pi\)
−0.966660 + 0.256065i \(0.917574\pi\)
\(752\) 23.8825 41.3657i 0.870906 1.50845i
\(753\) 42.2091 30.5191i 1.53819 1.11218i
\(754\) −2.03187 3.51931i −0.0739964 0.128166i
\(755\) 4.88685 0.177851
\(756\) −2.24330 7.06930i −0.0815879 0.257108i
\(757\) −15.3437 −0.557678 −0.278839 0.960338i \(-0.589950\pi\)
−0.278839 + 0.960338i \(0.589950\pi\)
\(758\) −11.6367 20.1554i −0.422666 0.732078i
\(759\) −0.364354 + 0.263444i −0.0132252 + 0.00956241i
\(760\) −2.31553 + 4.01062i −0.0839932 + 0.145481i
\(761\) −24.3585 + 42.1902i −0.882995 + 1.52939i −0.0350009 + 0.999387i \(0.511143\pi\)
−0.847994 + 0.530005i \(0.822190\pi\)
\(762\) 27.3881 + 12.2693i 0.992165 + 0.444470i
\(763\) 2.27392 + 3.93855i 0.0823215 + 0.142585i
\(764\) 3.94147 0.142597
\(765\) 4.95386 + 5.55283i 0.179107 + 0.200763i
\(766\) 42.4418 1.53349
\(767\) 3.74544 + 6.48728i 0.135240 + 0.234242i
\(768\) 2.56406 + 24.9457i 0.0925226 + 0.900149i
\(769\) −3.18555 + 5.51753i −0.114874 + 0.198967i −0.917729 0.397206i \(-0.869980\pi\)
0.802856 + 0.596174i \(0.203313\pi\)
\(770\) −0.0916217 + 0.158693i −0.00330182 + 0.00571891i
\(771\) 0.538488 + 5.23893i 0.0193932 + 0.188676i
\(772\) 0.153963 +