Properties

Label 585.2.i.e.391.1
Level $585$
Weight $2$
Character 585.391
Analytic conductor $4.671$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \( x^{16} - 5 x^{15} + 20 x^{14} - 44 x^{13} + 96 x^{12} - 107 x^{11} + 178 x^{10} - 19 x^{9} + 231 x^{8} + 326 x^{7} + 551 x^{6} + 859 x^{5} + 1118 x^{4} + 1215 x^{3} + 1103 x^{2} + \cdots + 268 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 391.1
Root \(-0.724143 + 0.165319i\) of defining polynomial
Character \(\chi\) \(=\) 585.391
Dual form 585.2.i.e.196.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.22414 - 2.12028i) q^{2} +(-1.71693 + 0.228383i) q^{3} +(-1.99705 + 3.45900i) q^{4} +(0.500000 - 0.866025i) q^{5} +(2.58600 + 3.36079i) q^{6} +(1.96726 + 3.40740i) q^{7} +4.88214 q^{8} +(2.89568 - 0.784233i) q^{9} +O(q^{10})\) \(q+(-1.22414 - 2.12028i) q^{2} +(-1.71693 + 0.228383i) q^{3} +(-1.99705 + 3.45900i) q^{4} +(0.500000 - 0.866025i) q^{5} +(2.58600 + 3.36079i) q^{6} +(1.96726 + 3.40740i) q^{7} +4.88214 q^{8} +(2.89568 - 0.784233i) q^{9} -2.44829 q^{10} +(-2.33643 - 4.04682i) q^{11} +(2.63882 - 6.39494i) q^{12} +(0.500000 - 0.866025i) q^{13} +(4.81642 - 8.34228i) q^{14} +(-0.660679 + 1.60109i) q^{15} +(-1.98233 - 3.43350i) q^{16} -7.96946 q^{17} +(-5.20752 - 5.17964i) q^{18} -0.120966 q^{19} +(1.99705 + 3.45900i) q^{20} +(-4.15583 - 5.40096i) q^{21} +(-5.72025 + 9.90777i) q^{22} +(-0.164078 + 0.284192i) q^{23} +(-8.38229 + 1.11500i) q^{24} +(-0.500000 - 0.866025i) q^{25} -2.44829 q^{26} +(-4.79257 + 2.00779i) q^{27} -15.7149 q^{28} +(0.136463 + 0.236360i) q^{29} +(4.20353 - 0.559146i) q^{30} +(3.28806 - 5.69509i) q^{31} +(0.0288185 - 0.0499151i) q^{32} +(4.93571 + 6.41450i) q^{33} +(9.75576 + 16.8975i) q^{34} +3.93452 q^{35} +(-3.07017 + 11.5823i) q^{36} -7.43198 q^{37} +(0.148079 + 0.256481i) q^{38} +(-0.660679 + 1.60109i) q^{39} +(2.44107 - 4.22806i) q^{40} +(-0.0455066 + 0.0788197i) q^{41} +(-6.36421 + 15.4231i) q^{42} +(-3.89835 - 6.75213i) q^{43} +18.6639 q^{44} +(0.768676 - 2.89985i) q^{45} +0.803421 q^{46} +(5.78798 + 10.0251i) q^{47} +(4.18768 + 5.44235i) q^{48} +(-4.24023 + 7.34429i) q^{49} +(-1.22414 + 2.12028i) q^{50} +(13.6830 - 1.82009i) q^{51} +(1.99705 + 3.45900i) q^{52} -11.1782 q^{53} +(10.1239 + 7.70376i) q^{54} -4.67286 q^{55} +(9.60445 + 16.6354i) q^{56} +(0.207690 - 0.0276265i) q^{57} +(0.334099 - 0.578677i) q^{58} +(-2.77780 + 4.81129i) q^{59} +(-4.21877 - 5.48276i) q^{60} +(-6.63270 - 11.4882i) q^{61} -16.1002 q^{62} +(8.36875 + 8.32395i) q^{63} -8.07045 q^{64} +(-0.500000 - 0.866025i) q^{65} +(7.55850 - 18.3173i) q^{66} +(-3.41069 + 5.90749i) q^{67} +(15.9154 - 27.5663i) q^{68} +(0.216806 - 0.525410i) q^{69} +(-4.81642 - 8.34228i) q^{70} -6.32442 q^{71} +(14.1371 - 3.82874i) q^{72} -7.37048 q^{73} +(9.09780 + 15.7579i) q^{74} +(1.05625 + 1.37271i) q^{75} +(0.241575 - 0.418420i) q^{76} +(9.19274 - 15.9223i) q^{77} +(4.20353 - 0.559146i) q^{78} +(5.95876 + 10.3209i) q^{79} -3.96467 q^{80} +(7.76996 - 4.54178i) q^{81} +0.222826 q^{82} +(-0.774276 - 1.34108i) q^{83} +(26.9813 - 3.58901i) q^{84} +(-3.98473 + 6.90175i) q^{85} +(-9.54427 + 16.5312i) q^{86} +(-0.288277 - 0.374648i) q^{87} +(-11.4068 - 19.7571i) q^{88} -3.59499 q^{89} +(-7.08946 + 1.92003i) q^{90} +3.93452 q^{91} +(-0.655346 - 1.13509i) q^{92} +(-4.34470 + 10.5290i) q^{93} +(14.1706 - 24.5442i) q^{94} +(-0.0604829 + 0.104759i) q^{95} +(-0.0380796 + 0.0922823i) q^{96} +(-2.63979 - 4.57224i) q^{97} +20.7626 q^{98} +(-9.93921 - 9.88600i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 3 q^{2} + q^{3} - 9 q^{4} + 8 q^{5} + 8 q^{6} + 11 q^{7} - 12 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 3 q^{2} + q^{3} - 9 q^{4} + 8 q^{5} + 8 q^{6} + 11 q^{7} - 12 q^{8} + q^{9} - 6 q^{10} - 6 q^{11} + 2 q^{12} + 8 q^{13} - 10 q^{14} + 5 q^{15} - 11 q^{16} - 4 q^{17} + 5 q^{18} - 20 q^{19} + 9 q^{20} + 11 q^{21} - 3 q^{22} - 6 q^{23} - 57 q^{24} - 8 q^{25} - 6 q^{26} - 14 q^{27} - 68 q^{28} - 14 q^{29} + 7 q^{30} + 31 q^{31} - q^{32} - 31 q^{33} + 7 q^{34} + 22 q^{35} + 2 q^{36} + 2 q^{37} - 9 q^{38} + 5 q^{39} - 6 q^{40} + 12 q^{41} - 26 q^{42} - 15 q^{43} + 32 q^{44} - 16 q^{45} - 64 q^{46} + 18 q^{47} - 4 q^{48} - 17 q^{49} - 3 q^{50} + 32 q^{51} + 9 q^{52} + 4 q^{53} + 2 q^{54} - 12 q^{55} - 16 q^{56} + 45 q^{57} + 42 q^{58} - 24 q^{59} - 8 q^{60} + 9 q^{61} - 40 q^{62} + 47 q^{63} - 60 q^{64} - 8 q^{65} + 55 q^{66} + 18 q^{67} + 14 q^{68} - 12 q^{69} + 10 q^{70} + 20 q^{71} - 9 q^{72} + 12 q^{73} + 37 q^{74} + 4 q^{75} + 53 q^{76} + 34 q^{77} + 7 q^{78} + 3 q^{79} - 22 q^{80} + 13 q^{81} - 68 q^{82} + 10 q^{83} + 22 q^{84} - 2 q^{85} - 60 q^{86} + 11 q^{87} + 14 q^{88} - 26 q^{89} + 19 q^{90} + 22 q^{91} - 5 q^{92} + 74 q^{93} - 17 q^{94} - 10 q^{95} + 13 q^{96} + 34 q^{97} - 60 q^{98} - 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22414 2.12028i −0.865600 1.49926i −0.866450 0.499263i \(-0.833604\pi\)
0.000850327 1.00000i \(-0.499729\pi\)
\(3\) −1.71693 + 0.228383i −0.991269 + 0.131857i
\(4\) −1.99705 + 3.45900i −0.998526 + 1.72950i
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 2.58600 + 3.36079i 1.05573 + 1.37204i
\(7\) 1.96726 + 3.40740i 0.743555 + 1.28787i 0.950867 + 0.309600i \(0.100195\pi\)
−0.207312 + 0.978275i \(0.566472\pi\)
\(8\) 4.88214 1.72610
\(9\) 2.89568 0.784233i 0.965228 0.261411i
\(10\) −2.44829 −0.774216
\(11\) −2.33643 4.04682i −0.704461 1.22016i −0.966886 0.255209i \(-0.917856\pi\)
0.262425 0.964952i \(-0.415478\pi\)
\(12\) 2.63882 6.39494i 0.761762 1.84606i
\(13\) 0.500000 0.866025i 0.138675 0.240192i
\(14\) 4.81642 8.34228i 1.28724 2.22957i
\(15\) −0.660679 + 1.60109i −0.170587 + 0.413401i
\(16\) −1.98233 3.43350i −0.495584 0.858376i
\(17\) −7.96946 −1.93288 −0.966439 0.256897i \(-0.917300\pi\)
−0.966439 + 0.256897i \(0.917300\pi\)
\(18\) −5.20752 5.17964i −1.22742 1.22085i
\(19\) −0.120966 −0.0277515 −0.0138757 0.999904i \(-0.504417\pi\)
−0.0138757 + 0.999904i \(0.504417\pi\)
\(20\) 1.99705 + 3.45900i 0.446555 + 0.773455i
\(21\) −4.15583 5.40096i −0.906877 1.17859i
\(22\) −5.72025 + 9.90777i −1.21956 + 2.11234i
\(23\) −0.164078 + 0.284192i −0.0342127 + 0.0592581i −0.882625 0.470078i \(-0.844226\pi\)
0.848412 + 0.529336i \(0.177559\pi\)
\(24\) −8.38229 + 1.11500i −1.71103 + 0.227598i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) −2.44829 −0.480148
\(27\) −4.79257 + 2.00779i −0.922331 + 0.386400i
\(28\) −15.7149 −2.96984
\(29\) 0.136463 + 0.236360i 0.0253405 + 0.0438910i 0.878418 0.477894i \(-0.158600\pi\)
−0.853077 + 0.521785i \(0.825266\pi\)
\(30\) 4.20353 0.559146i 0.767456 0.102086i
\(31\) 3.28806 5.69509i 0.590553 1.02287i −0.403605 0.914933i \(-0.632243\pi\)
0.994158 0.107934i \(-0.0344237\pi\)
\(32\) 0.0288185 0.0499151i 0.00509444 0.00882383i
\(33\) 4.93571 + 6.41450i 0.859197 + 1.11662i
\(34\) 9.75576 + 16.8975i 1.67310 + 2.89789i
\(35\) 3.93452 0.665055
\(36\) −3.07017 + 11.5823i −0.511695 + 1.93039i
\(37\) −7.43198 −1.22181 −0.610905 0.791704i \(-0.709194\pi\)
−0.610905 + 0.791704i \(0.709194\pi\)
\(38\) 0.148079 + 0.256481i 0.0240217 + 0.0416067i
\(39\) −0.660679 + 1.60109i −0.105793 + 0.256380i
\(40\) 2.44107 4.22806i 0.385967 0.668515i
\(41\) −0.0455066 + 0.0788197i −0.00710694 + 0.0123096i −0.869557 0.493833i \(-0.835596\pi\)
0.862450 + 0.506142i \(0.168929\pi\)
\(42\) −6.36421 + 15.4231i −0.982019 + 2.37983i
\(43\) −3.89835 6.75213i −0.594492 1.02969i −0.993618 0.112795i \(-0.964020\pi\)
0.399126 0.916896i \(-0.369314\pi\)
\(44\) 18.6639 2.81369
\(45\) 0.768676 2.89985i 0.114587 0.432284i
\(46\) 0.803421 0.118458
\(47\) 5.78798 + 10.0251i 0.844263 + 1.46231i 0.886260 + 0.463189i \(0.153295\pi\)
−0.0419967 + 0.999118i \(0.513372\pi\)
\(48\) 4.18768 + 5.44235i 0.604439 + 0.785536i
\(49\) −4.24023 + 7.34429i −0.605747 + 1.04918i
\(50\) −1.22414 + 2.12028i −0.173120 + 0.299853i
\(51\) 13.6830 1.82009i 1.91600 0.254863i
\(52\) 1.99705 + 3.45900i 0.276941 + 0.479677i
\(53\) −11.1782 −1.53544 −0.767721 0.640784i \(-0.778609\pi\)
−0.767721 + 0.640784i \(0.778609\pi\)
\(54\) 10.1239 + 7.70376i 1.37769 + 1.04835i
\(55\) −4.67286 −0.630089
\(56\) 9.60445 + 16.6354i 1.28345 + 2.22300i
\(57\) 0.207690 0.0276265i 0.0275092 0.00365922i
\(58\) 0.334099 0.578677i 0.0438694 0.0759840i
\(59\) −2.77780 + 4.81129i −0.361639 + 0.626376i −0.988231 0.152971i \(-0.951116\pi\)
0.626592 + 0.779347i \(0.284449\pi\)
\(60\) −4.21877 5.48276i −0.544641 0.707821i
\(61\) −6.63270 11.4882i −0.849230 1.47091i −0.881897 0.471443i \(-0.843733\pi\)
0.0326669 0.999466i \(-0.489600\pi\)
\(62\) −16.1002 −2.04473
\(63\) 8.36875 + 8.32395i 1.05436 + 1.04872i
\(64\) −8.07045 −1.00881
\(65\) −0.500000 0.866025i −0.0620174 0.107417i
\(66\) 7.55850 18.3173i 0.930387 2.25471i
\(67\) −3.41069 + 5.90749i −0.416682 + 0.721715i −0.995603 0.0936686i \(-0.970141\pi\)
0.578921 + 0.815384i \(0.303474\pi\)
\(68\) 15.9154 27.5663i 1.93003 3.34291i
\(69\) 0.216806 0.525410i 0.0261004 0.0632519i
\(70\) −4.81642 8.34228i −0.575672 0.997093i
\(71\) −6.32442 −0.750570 −0.375285 0.926909i \(-0.622455\pi\)
−0.375285 + 0.926909i \(0.622455\pi\)
\(72\) 14.1371 3.82874i 1.66608 0.451221i
\(73\) −7.37048 −0.862649 −0.431324 0.902197i \(-0.641954\pi\)
−0.431324 + 0.902197i \(0.641954\pi\)
\(74\) 9.09780 + 15.7579i 1.05760 + 1.83181i
\(75\) 1.05625 + 1.37271i 0.121965 + 0.158507i
\(76\) 0.241575 0.418420i 0.0277106 0.0479961i
\(77\) 9.19274 15.9223i 1.04761 1.81451i
\(78\) 4.20353 0.559146i 0.475956 0.0633108i
\(79\) 5.95876 + 10.3209i 0.670413 + 1.16119i 0.977787 + 0.209601i \(0.0672166\pi\)
−0.307374 + 0.951589i \(0.599450\pi\)
\(80\) −3.96467 −0.443264
\(81\) 7.76996 4.54178i 0.863329 0.504642i
\(82\) 0.222826 0.0246071
\(83\) −0.774276 1.34108i −0.0849878 0.147203i 0.820398 0.571793i \(-0.193752\pi\)
−0.905386 + 0.424589i \(0.860418\pi\)
\(84\) 26.9813 3.58901i 2.94391 0.391593i
\(85\) −3.98473 + 6.90175i −0.432205 + 0.748600i
\(86\) −9.54427 + 16.5312i −1.02918 + 1.78260i
\(87\) −0.288277 0.374648i −0.0309065 0.0401664i
\(88\) −11.4068 19.7571i −1.21597 2.10612i
\(89\) −3.59499 −0.381068 −0.190534 0.981681i \(-0.561022\pi\)
−0.190534 + 0.981681i \(0.561022\pi\)
\(90\) −7.08946 + 1.92003i −0.747295 + 0.202389i
\(91\) 3.93452 0.412450
\(92\) −0.655346 1.13509i −0.0683245 0.118342i
\(93\) −4.34470 + 10.5290i −0.450525 + 1.09181i
\(94\) 14.1706 24.5442i 1.46159 2.53154i
\(95\) −0.0604829 + 0.104759i −0.00620542 + 0.0107481i
\(96\) −0.0380796 + 0.0922823i −0.00388648 + 0.00941852i
\(97\) −2.63979 4.57224i −0.268030 0.464241i 0.700323 0.713826i \(-0.253039\pi\)
−0.968353 + 0.249585i \(0.919706\pi\)
\(98\) 20.7626 2.09734
\(99\) −9.93921 9.88600i −0.998929 0.993580i
\(100\) 3.99411 0.399411
\(101\) 0.178545 + 0.309250i 0.0177659 + 0.0307715i 0.874772 0.484535i \(-0.161011\pi\)
−0.857006 + 0.515307i \(0.827678\pi\)
\(102\) −20.6090 26.7837i −2.04060 2.65198i
\(103\) 2.30623 3.99450i 0.227239 0.393590i −0.729750 0.683714i \(-0.760363\pi\)
0.956989 + 0.290125i \(0.0936968\pi\)
\(104\) 2.44107 4.22806i 0.239367 0.414595i
\(105\) −6.75529 + 0.898576i −0.659249 + 0.0876920i
\(106\) 13.6837 + 23.7009i 1.32908 + 2.30203i
\(107\) 1.48003 0.143080 0.0715399 0.997438i \(-0.477209\pi\)
0.0715399 + 0.997438i \(0.477209\pi\)
\(108\) 2.62607 20.5872i 0.252693 1.98100i
\(109\) −14.6820 −1.40628 −0.703140 0.711051i \(-0.748219\pi\)
−0.703140 + 0.711051i \(0.748219\pi\)
\(110\) 5.72025 + 9.90777i 0.545405 + 0.944669i
\(111\) 12.7602 1.69733i 1.21114 0.161104i
\(112\) 7.79954 13.5092i 0.736987 1.27650i
\(113\) −3.53690 + 6.12609i −0.332724 + 0.576294i −0.983045 0.183365i \(-0.941301\pi\)
0.650321 + 0.759659i \(0.274634\pi\)
\(114\) −0.312818 0.406541i −0.0292981 0.0380760i
\(115\) 0.164078 + 0.284192i 0.0153004 + 0.0265010i
\(116\) −1.09009 −0.101212
\(117\) 0.768676 2.89985i 0.0710641 0.268091i
\(118\) 13.6017 1.25214
\(119\) −15.6780 27.1551i −1.43720 2.48930i
\(120\) −3.22553 + 7.81677i −0.294449 + 0.713570i
\(121\) −5.41783 + 9.38396i −0.492530 + 0.853087i
\(122\) −16.2387 + 28.1263i −1.47019 + 2.54644i
\(123\) 0.0601305 0.145721i 0.00542178 0.0131392i
\(124\) 13.1329 + 22.7468i 1.17937 + 2.04272i
\(125\) −1.00000 −0.0894427
\(126\) 7.40453 27.9338i 0.659648 2.48854i
\(127\) 1.23715 0.109779 0.0548896 0.998492i \(-0.482519\pi\)
0.0548896 + 0.998492i \(0.482519\pi\)
\(128\) 9.82175 + 17.0118i 0.868128 + 1.50364i
\(129\) 8.23525 + 10.7026i 0.725073 + 0.942312i
\(130\) −1.22414 + 2.12028i −0.107364 + 0.185961i
\(131\) −6.37638 + 11.0442i −0.557107 + 0.964938i 0.440629 + 0.897689i \(0.354755\pi\)
−0.997736 + 0.0672484i \(0.978578\pi\)
\(132\) −32.0446 + 4.26251i −2.78912 + 0.371004i
\(133\) −0.237971 0.412178i −0.0206347 0.0357404i
\(134\) 16.7007 1.44272
\(135\) −0.657486 + 5.15439i −0.0565874 + 0.443619i
\(136\) −38.9080 −3.33634
\(137\) −3.66450 6.34709i −0.313079 0.542269i 0.665948 0.745998i \(-0.268027\pi\)
−0.979027 + 0.203729i \(0.934694\pi\)
\(138\) −1.37942 + 0.183487i −0.117424 + 0.0156195i
\(139\) 8.42736 14.5966i 0.714799 1.23807i −0.248237 0.968699i \(-0.579851\pi\)
0.963037 0.269370i \(-0.0868154\pi\)
\(140\) −7.85745 + 13.6095i −0.664075 + 1.15021i
\(141\) −12.2271 15.8904i −1.02971 1.33822i
\(142\) 7.74199 + 13.4095i 0.649694 + 1.12530i
\(143\) −4.67286 −0.390765
\(144\) −8.43288 8.38773i −0.702740 0.698977i
\(145\) 0.272925 0.0226652
\(146\) 9.02252 + 15.6275i 0.746709 + 1.29334i
\(147\) 5.60286 13.5780i 0.462116 1.11990i
\(148\) 14.8421 25.7072i 1.22001 2.11312i
\(149\) 4.11039 7.11941i 0.336737 0.583245i −0.647080 0.762422i \(-0.724010\pi\)
0.983817 + 0.179177i \(0.0573435\pi\)
\(150\) 1.61753 3.91994i 0.132071 0.320062i
\(151\) −7.70059 13.3378i −0.626665 1.08542i −0.988216 0.153063i \(-0.951086\pi\)
0.361551 0.932352i \(-0.382247\pi\)
\(152\) −0.590572 −0.0479017
\(153\) −23.0770 + 6.24991i −1.86567 + 0.505275i
\(154\) −45.0129 −3.62725
\(155\) −3.28806 5.69509i −0.264103 0.457440i
\(156\) −4.21877 5.48276i −0.337772 0.438972i
\(157\) 10.0899 17.4763i 0.805264 1.39476i −0.110848 0.993837i \(-0.535357\pi\)
0.916112 0.400921i \(-0.131310\pi\)
\(158\) 14.5888 25.2685i 1.16062 2.01025i
\(159\) 19.1921 2.55290i 1.52204 0.202458i
\(160\) −0.0288185 0.0499151i −0.00227830 0.00394614i
\(161\) −1.29114 −0.101756
\(162\) −19.1414 10.9147i −1.50389 0.857539i
\(163\) 8.27259 0.647959 0.323980 0.946064i \(-0.394979\pi\)
0.323980 + 0.946064i \(0.394979\pi\)
\(164\) −0.181758 0.314814i −0.0141929 0.0245829i
\(165\) 8.02297 1.06720i 0.624587 0.0830815i
\(166\) −1.89565 + 3.28336i −0.147131 + 0.254838i
\(167\) 6.81626 11.8061i 0.527458 0.913584i −0.472030 0.881583i \(-0.656479\pi\)
0.999488 0.0320015i \(-0.0101881\pi\)
\(168\) −20.2894 26.3683i −1.56536 2.03436i
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 19.5115 1.49646
\(171\) −0.350279 + 0.0948654i −0.0267865 + 0.00725454i
\(172\) 31.1408 2.37446
\(173\) −1.73239 3.00059i −0.131711 0.228130i 0.792625 0.609709i \(-0.208714\pi\)
−0.924336 + 0.381579i \(0.875380\pi\)
\(174\) −0.441465 + 1.06985i −0.0334674 + 0.0811051i
\(175\) 1.96726 3.40740i 0.148711 0.257575i
\(176\) −9.26318 + 16.0443i −0.698239 + 1.20938i
\(177\) 3.67047 8.89504i 0.275889 0.668592i
\(178\) 4.40078 + 7.62237i 0.329852 + 0.571321i
\(179\) −6.80739 −0.508808 −0.254404 0.967098i \(-0.581879\pi\)
−0.254404 + 0.967098i \(0.581879\pi\)
\(180\) 8.49549 + 8.45000i 0.633216 + 0.629826i
\(181\) −8.23721 −0.612267 −0.306133 0.951989i \(-0.599035\pi\)
−0.306133 + 0.951989i \(0.599035\pi\)
\(182\) −4.81642 8.34228i −0.357017 0.618371i
\(183\) 14.0116 + 18.2096i 1.03576 + 1.34609i
\(184\) −0.801054 + 1.38747i −0.0590544 + 0.102285i
\(185\) −3.71599 + 6.43628i −0.273205 + 0.473205i
\(186\) 27.6429 3.67701i 2.02688 0.269611i
\(187\) 18.6201 + 32.2510i 1.36164 + 2.35842i
\(188\) −46.2356 −3.37208
\(189\) −16.2696 12.3803i −1.18344 0.900537i
\(190\) 0.296159 0.0214856
\(191\) −8.86345 15.3519i −0.641337 1.11083i −0.985135 0.171784i \(-0.945047\pi\)
0.343798 0.939044i \(-0.388286\pi\)
\(192\) 13.8564 1.84315i 0.999998 0.133018i
\(193\) −5.80167 + 10.0488i −0.417613 + 0.723328i −0.995699 0.0926485i \(-0.970467\pi\)
0.578085 + 0.815976i \(0.303800\pi\)
\(194\) −6.46295 + 11.1942i −0.464013 + 0.803694i
\(195\) 1.05625 + 1.37271i 0.0756396 + 0.0983019i
\(196\) −16.9359 29.3339i −1.20971 2.09528i
\(197\) 2.00369 0.142757 0.0713783 0.997449i \(-0.477260\pi\)
0.0713783 + 0.997449i \(0.477260\pi\)
\(198\) −8.79404 + 33.1758i −0.624965 + 2.35770i
\(199\) 11.2572 0.798004 0.399002 0.916950i \(-0.369357\pi\)
0.399002 + 0.916950i \(0.369357\pi\)
\(200\) −2.44107 4.22806i −0.172610 0.298969i
\(201\) 4.50674 10.9217i 0.317881 0.770356i
\(202\) 0.437130 0.757132i 0.0307564 0.0532716i
\(203\) −0.536915 + 0.929964i −0.0376840 + 0.0652707i
\(204\) −21.0300 + 50.9642i −1.47239 + 3.56821i
\(205\) 0.0455066 + 0.0788197i 0.00317832 + 0.00550501i
\(206\) −11.2926 −0.786793
\(207\) −0.252246 + 0.951605i −0.0175323 + 0.0661411i
\(208\) −3.96467 −0.274900
\(209\) 0.282628 + 0.489527i 0.0195498 + 0.0338613i
\(210\) 10.1747 + 13.2231i 0.702119 + 0.912481i
\(211\) 2.43205 4.21244i 0.167429 0.289996i −0.770086 0.637940i \(-0.779787\pi\)
0.937515 + 0.347944i \(0.113120\pi\)
\(212\) 22.3234 38.6653i 1.53318 2.65555i
\(213\) 10.8586 1.44439i 0.744017 0.0989678i
\(214\) −1.81177 3.13807i −0.123850 0.214514i
\(215\) −7.79669 −0.531730
\(216\) −23.3980 + 9.80234i −1.59203 + 0.666965i
\(217\) 25.8739 1.75643
\(218\) 17.9729 + 31.1299i 1.21728 + 2.10838i
\(219\) 12.6546 1.68329i 0.855117 0.113746i
\(220\) 9.33196 16.1634i 0.629160 1.08974i
\(221\) −3.98473 + 6.90175i −0.268042 + 0.464262i
\(222\) −19.2191 24.9773i −1.28990 1.67637i
\(223\) 7.04118 + 12.1957i 0.471513 + 0.816684i 0.999469 0.0325878i \(-0.0103749\pi\)
−0.527956 + 0.849272i \(0.677042\pi\)
\(224\) 0.226774 0.0151520
\(225\) −2.12701 2.11562i −0.141800 0.141041i
\(226\) 17.3187 1.15202
\(227\) 3.98166 + 6.89644i 0.264272 + 0.457733i 0.967373 0.253358i \(-0.0815350\pi\)
−0.703101 + 0.711090i \(0.748202\pi\)
\(228\) −0.319207 + 0.773569i −0.0211400 + 0.0512309i
\(229\) −6.81425 + 11.8026i −0.450298 + 0.779940i −0.998404 0.0564691i \(-0.982016\pi\)
0.548106 + 0.836409i \(0.315349\pi\)
\(230\) 0.401711 0.695783i 0.0264880 0.0458786i
\(231\) −12.1469 + 29.4369i −0.799207 + 1.93681i
\(232\) 0.666230 + 1.15394i 0.0437401 + 0.0757601i
\(233\) 6.76769 0.443366 0.221683 0.975119i \(-0.428845\pi\)
0.221683 + 0.975119i \(0.428845\pi\)
\(234\) −7.08946 + 1.92003i −0.463453 + 0.125516i
\(235\) 11.5760 0.755132
\(236\) −11.0948 19.2168i −0.722211 1.25091i
\(237\) −12.5879 16.3593i −0.817671 1.06265i
\(238\) −38.3842 + 66.4834i −2.48808 + 4.30948i
\(239\) −12.7338 + 22.0556i −0.823681 + 1.42666i 0.0792425 + 0.996855i \(0.474750\pi\)
−0.902923 + 0.429802i \(0.858583\pi\)
\(240\) 6.80705 0.905461i 0.439393 0.0584473i
\(241\) 10.0813 + 17.4613i 0.649392 + 1.12478i 0.983268 + 0.182163i \(0.0583098\pi\)
−0.333877 + 0.942617i \(0.608357\pi\)
\(242\) 26.5288 1.70534
\(243\) −12.3032 + 9.57243i −0.789250 + 0.614072i
\(244\) 52.9834 3.39191
\(245\) 4.24023 + 7.34429i 0.270898 + 0.469210i
\(246\) −0.382577 + 0.0508897i −0.0243922 + 0.00324461i
\(247\) −0.0604829 + 0.104759i −0.00384844 + 0.00666569i
\(248\) 16.0528 27.8042i 1.01935 1.76557i
\(249\) 1.63566 + 2.12571i 0.103655 + 0.134712i
\(250\) 1.22414 + 2.12028i 0.0774216 + 0.134098i
\(251\) 22.3167 1.40862 0.704308 0.709894i \(-0.251257\pi\)
0.704308 + 0.709894i \(0.251257\pi\)
\(252\) −45.5053 + 12.3241i −2.86657 + 0.776348i
\(253\) 1.53343 0.0964060
\(254\) −1.51445 2.62310i −0.0950249 0.164588i
\(255\) 5.26525 12.7599i 0.329723 0.799053i
\(256\) 15.9760 27.6713i 0.998500 1.72945i
\(257\) 1.72736 2.99187i 0.107750 0.186628i −0.807109 0.590403i \(-0.798969\pi\)
0.914858 + 0.403775i \(0.132302\pi\)
\(258\) 12.6114 30.5625i 0.785151 1.90274i
\(259\) −14.6206 25.3237i −0.908482 1.57354i
\(260\) 3.99411 0.247704
\(261\) 0.580514 + 0.577405i 0.0359329 + 0.0357405i
\(262\) 31.2224 1.92893
\(263\) −7.48718 12.9682i −0.461680 0.799652i 0.537365 0.843350i \(-0.319420\pi\)
−0.999045 + 0.0436971i \(0.986086\pi\)
\(264\) 24.0968 + 31.3165i 1.48306 + 1.92740i
\(265\) −5.58909 + 9.68059i −0.343335 + 0.594674i
\(266\) −0.582622 + 1.00913i −0.0357228 + 0.0618738i
\(267\) 6.17233 0.821032i 0.377741 0.0502464i
\(268\) −13.6227 23.5951i −0.832137 1.44130i
\(269\) 10.5996 0.646269 0.323135 0.946353i \(-0.395263\pi\)
0.323135 + 0.946353i \(0.395263\pi\)
\(270\) 11.7336 4.91566i 0.714084 0.299157i
\(271\) −9.73751 −0.591512 −0.295756 0.955264i \(-0.595571\pi\)
−0.295756 + 0.955264i \(0.595571\pi\)
\(272\) 15.7981 + 27.3632i 0.957903 + 1.65914i
\(273\) −6.75529 + 0.898576i −0.408849 + 0.0543843i
\(274\) −8.97173 + 15.5395i −0.542002 + 0.938776i
\(275\) −2.33643 + 4.04682i −0.140892 + 0.244032i
\(276\) 1.38442 + 1.79920i 0.0833321 + 0.108299i
\(277\) 5.52080 + 9.56230i 0.331713 + 0.574543i 0.982848 0.184419i \(-0.0590403\pi\)
−0.651135 + 0.758962i \(0.725707\pi\)
\(278\) −41.2652 −2.47492
\(279\) 5.05490 19.0698i 0.302629 1.14168i
\(280\) 19.2089 1.14795
\(281\) 10.6532 + 18.4519i 0.635519 + 1.10075i 0.986405 + 0.164333i \(0.0525471\pi\)
−0.350886 + 0.936418i \(0.614120\pi\)
\(282\) −18.7245 + 45.3770i −1.11503 + 2.70216i
\(283\) 1.63526 2.83235i 0.0972060 0.168366i −0.813321 0.581815i \(-0.802343\pi\)
0.910527 + 0.413449i \(0.135676\pi\)
\(284\) 12.6302 21.8761i 0.749464 1.29811i
\(285\) 0.0799196 0.193678i 0.00473403 0.0114725i
\(286\) 5.72025 + 9.90777i 0.338246 + 0.585859i
\(287\) −0.358093 −0.0211376
\(288\) 0.0443042 0.167139i 0.00261065 0.00984875i
\(289\) 46.5123 2.73602
\(290\) −0.334099 0.578677i −0.0196190 0.0339811i
\(291\) 5.57654 + 7.24733i 0.326903 + 0.424846i
\(292\) 14.7192 25.4945i 0.861378 1.49195i
\(293\) 14.4984 25.1119i 0.847004 1.46705i −0.0368649 0.999320i \(-0.511737\pi\)
0.883869 0.467734i \(-0.154930\pi\)
\(294\) −35.6479 + 4.74181i −2.07903 + 0.276548i
\(295\) 2.77780 + 4.81129i 0.161730 + 0.280124i
\(296\) −36.2840 −2.10896
\(297\) 19.3227 + 14.7036i 1.12122 + 0.853190i
\(298\) −20.1268 −1.16592
\(299\) 0.164078 + 0.284192i 0.00948889 + 0.0164352i
\(300\) −6.85759 + 0.912184i −0.395923 + 0.0526650i
\(301\) 15.3381 26.5664i 0.884075 1.53126i
\(302\) −18.8532 + 32.6548i −1.08488 + 1.87907i
\(303\) −0.377177 0.490183i −0.0216682 0.0281603i
\(304\) 0.239795 + 0.415337i 0.0137532 + 0.0238212i
\(305\) −13.2654 −0.759574
\(306\) 41.5011 + 41.2789i 2.37246 + 2.35976i
\(307\) 7.67485 0.438027 0.219013 0.975722i \(-0.429716\pi\)
0.219013 + 0.975722i \(0.429716\pi\)
\(308\) 36.7168 + 63.5953i 2.09213 + 3.62368i
\(309\) −3.04735 + 7.38497i −0.173358 + 0.420116i
\(310\) −8.05011 + 13.9432i −0.457216 + 0.791921i
\(311\) 3.29475 5.70667i 0.186828 0.323596i −0.757363 0.652994i \(-0.773513\pi\)
0.944191 + 0.329399i \(0.106846\pi\)
\(312\) −3.22553 + 7.81677i −0.182610 + 0.442537i
\(313\) 4.06651 + 7.04341i 0.229853 + 0.398117i 0.957764 0.287554i \(-0.0928422\pi\)
−0.727911 + 0.685671i \(0.759509\pi\)
\(314\) −49.4061 −2.78815
\(315\) 11.3931 3.08558i 0.641930 0.173853i
\(316\) −47.5999 −2.67770
\(317\) −11.6731 20.2183i −0.655624 1.13557i −0.981737 0.190243i \(-0.939072\pi\)
0.326113 0.945331i \(-0.394261\pi\)
\(318\) −28.9068 37.5676i −1.62101 2.10668i
\(319\) 0.637671 1.10448i 0.0357027 0.0618389i
\(320\) −4.03523 + 6.98922i −0.225576 + 0.390709i
\(321\) −2.54110 + 0.338013i −0.141831 + 0.0188660i
\(322\) 1.58054 + 2.73757i 0.0880800 + 0.152559i
\(323\) 0.964032 0.0536402
\(324\) 0.192982 + 35.9464i 0.0107212 + 1.99702i
\(325\) −1.00000 −0.0554700
\(326\) −10.1268 17.5402i −0.560874 0.971462i
\(327\) 25.2079 3.35311i 1.39400 0.185428i
\(328\) −0.222170 + 0.384809i −0.0122673 + 0.0212475i
\(329\) −22.7729 + 39.4438i −1.25551 + 2.17461i
\(330\) −12.0840 15.7045i −0.665204 0.864506i
\(331\) 2.24022 + 3.88018i 0.123134 + 0.213274i 0.921002 0.389558i \(-0.127372\pi\)
−0.797868 + 0.602832i \(0.794039\pi\)
\(332\) 6.18508 0.339450
\(333\) −21.5206 + 5.82840i −1.17932 + 0.319394i
\(334\) −33.3763 −1.82627
\(335\) 3.41069 + 5.90749i 0.186346 + 0.322761i
\(336\) −10.3060 + 24.9756i −0.562237 + 1.36253i
\(337\) 2.32337 4.02420i 0.126562 0.219212i −0.795780 0.605585i \(-0.792939\pi\)
0.922342 + 0.386373i \(0.126272\pi\)
\(338\) −1.22414 + 2.12028i −0.0665846 + 0.115328i
\(339\) 4.67351 11.3258i 0.253830 0.615134i
\(340\) −15.9154 27.5663i −0.863135 1.49499i
\(341\) −30.7293 −1.66409
\(342\) 0.629932 + 0.626559i 0.0340628 + 0.0338805i
\(343\) −5.82489 −0.314514
\(344\) −19.0323 32.9649i −1.02615 1.77735i
\(345\) −0.346615 0.450464i −0.0186611 0.0242522i
\(346\) −4.24139 + 7.34630i −0.228018 + 0.394939i
\(347\) 2.21262 3.83236i 0.118779 0.205732i −0.800505 0.599326i \(-0.795435\pi\)
0.919284 + 0.393594i \(0.128769\pi\)
\(348\) 1.87161 0.248958i 0.100329 0.0133455i
\(349\) 0.00675754 + 0.0117044i 0.000361723 + 0.000626522i 0.866206 0.499687i \(-0.166552\pi\)
−0.865844 + 0.500313i \(0.833218\pi\)
\(350\) −9.63283 −0.514897
\(351\) −0.657486 + 5.15439i −0.0350940 + 0.275121i
\(352\) −0.269330 −0.0143553
\(353\) −14.8536 25.7272i −0.790578 1.36932i −0.925609 0.378481i \(-0.876447\pi\)
0.135031 0.990841i \(-0.456887\pi\)
\(354\) −23.3531 + 3.10639i −1.24120 + 0.165103i
\(355\) −3.16221 + 5.47711i −0.167833 + 0.290695i
\(356\) 7.17938 12.4351i 0.380506 0.659056i
\(357\) 33.1197 + 43.0428i 1.75288 + 2.27806i
\(358\) 8.33322 + 14.4336i 0.440425 + 0.762838i
\(359\) 35.9145 1.89550 0.947748 0.319020i \(-0.103354\pi\)
0.947748 + 0.319020i \(0.103354\pi\)
\(360\) 3.75279 14.1575i 0.197789 0.746165i
\(361\) −18.9854 −0.999230
\(362\) 10.0835 + 17.4652i 0.529978 + 0.917949i
\(363\) 7.15889 17.3489i 0.375744 0.910582i
\(364\) −7.85745 + 13.6095i −0.411842 + 0.713331i
\(365\) −3.68524 + 6.38302i −0.192894 + 0.334103i
\(366\) 21.4572 51.9995i 1.12158 2.71806i
\(367\) −1.47986 2.56319i −0.0772481 0.133798i 0.824814 0.565405i \(-0.191280\pi\)
−0.902062 + 0.431607i \(0.857947\pi\)
\(368\) 1.30103 0.0678210
\(369\) −0.0699597 + 0.263925i −0.00364195 + 0.0137394i
\(370\) 18.1956 0.945945
\(371\) −21.9904 38.0885i −1.14169 1.97746i
\(372\) −27.7431 36.0553i −1.43841 1.86938i
\(373\) −2.28220 + 3.95289i −0.118168 + 0.204673i −0.919042 0.394160i \(-0.871035\pi\)
0.800874 + 0.598833i \(0.204369\pi\)
\(374\) 45.5873 78.9596i 2.35726 4.08290i
\(375\) 1.71693 0.228383i 0.0886618 0.0117936i
\(376\) 28.2577 + 48.9438i 1.45728 + 2.52408i
\(377\) 0.272925 0.0140564
\(378\) −6.33345 + 49.6514i −0.325758 + 2.55379i
\(379\) −22.9852 −1.18067 −0.590336 0.807158i \(-0.701005\pi\)
−0.590336 + 0.807158i \(0.701005\pi\)
\(380\) −0.241575 0.418420i −0.0123925 0.0214645i
\(381\) −2.12410 + 0.282543i −0.108821 + 0.0144751i
\(382\) −21.7003 + 37.5860i −1.11028 + 1.92306i
\(383\) −4.60271 + 7.97213i −0.235187 + 0.407357i −0.959327 0.282297i \(-0.908904\pi\)
0.724140 + 0.689653i \(0.242237\pi\)
\(384\) −20.7484 26.9649i −1.05881 1.37605i
\(385\) −9.19274 15.9223i −0.468505 0.811475i
\(386\) 28.4083 1.44594
\(387\) −16.5836 16.4948i −0.842993 0.838479i
\(388\) 21.0872 1.07054
\(389\) 13.0121 + 22.5376i 0.659738 + 1.14270i 0.980683 + 0.195603i \(0.0626662\pi\)
−0.320945 + 0.947098i \(0.604000\pi\)
\(390\) 1.61753 3.91994i 0.0819069 0.198494i
\(391\) 1.30762 2.26486i 0.0661289 0.114539i
\(392\) −20.7014 + 35.8559i −1.04558 + 1.81100i
\(393\) 8.42548 20.4184i 0.425009 1.02997i
\(394\) −2.45280 4.24837i −0.123570 0.214030i
\(395\) 11.9175 0.599636
\(396\) 54.0448 14.6369i 2.71585 0.735530i
\(397\) −32.0420 −1.60814 −0.804071 0.594533i \(-0.797337\pi\)
−0.804071 + 0.594533i \(0.797337\pi\)
\(398\) −13.7805 23.8685i −0.690752 1.19642i
\(399\) 0.502714 + 0.653332i 0.0251672 + 0.0327075i
\(400\) −1.98233 + 3.43350i −0.0991167 + 0.171675i
\(401\) −0.412295 + 0.714116i −0.0205890 + 0.0356612i −0.876136 0.482063i \(-0.839887\pi\)
0.855547 + 0.517725i \(0.173221\pi\)
\(402\) −28.6739 + 3.81415i −1.43012 + 0.190232i
\(403\) −3.28806 5.69509i −0.163790 0.283692i
\(404\) −1.42626 −0.0709590
\(405\) −0.0483167 8.99987i −0.00240088 0.447207i
\(406\) 2.62904 0.130477
\(407\) 17.3643 + 30.0759i 0.860717 + 1.49081i
\(408\) 66.8023 8.88592i 3.30721 0.439918i
\(409\) −14.1096 + 24.4385i −0.697675 + 1.20841i 0.271596 + 0.962411i \(0.412449\pi\)
−0.969271 + 0.245997i \(0.920885\pi\)
\(410\) 0.111413 0.192973i 0.00550231 0.00953027i
\(411\) 7.74124 + 10.0606i 0.381847 + 0.496252i
\(412\) 9.21131 + 15.9545i 0.453809 + 0.786019i
\(413\) −21.8586 −1.07559
\(414\) 2.32645 0.630069i 0.114339 0.0309662i
\(415\) −1.54855 −0.0760154
\(416\) −0.0288185 0.0499151i −0.00141294 0.00244729i
\(417\) −11.1356 + 26.9860i −0.545311 + 1.32151i
\(418\) 0.691955 1.19850i 0.0338446 0.0586206i
\(419\) −12.4112 + 21.4968i −0.606327 + 1.05019i 0.385514 + 0.922702i \(0.374024\pi\)
−0.991840 + 0.127486i \(0.959309\pi\)
\(420\) 10.3825 25.1610i 0.506614 1.22773i
\(421\) −16.4032 28.4112i −0.799444 1.38468i −0.919978 0.391969i \(-0.871794\pi\)
0.120534 0.992709i \(-0.461539\pi\)
\(422\) −11.9087 −0.579707
\(423\) 24.6221 + 24.4903i 1.19717 + 1.19076i
\(424\) −54.5735 −2.65032
\(425\) 3.98473 + 6.90175i 0.193288 + 0.334784i
\(426\) −16.3549 21.2551i −0.792400 1.02981i
\(427\) 26.0965 45.2004i 1.26290 2.18740i
\(428\) −2.95570 + 5.11942i −0.142869 + 0.247456i
\(429\) 8.02297 1.06720i 0.387353 0.0515249i
\(430\) 9.54427 + 16.5312i 0.460265 + 0.797203i
\(431\) 4.17377 0.201043 0.100522 0.994935i \(-0.467949\pi\)
0.100522 + 0.994935i \(0.467949\pi\)
\(432\) 16.3943 + 12.4752i 0.788769 + 0.600214i
\(433\) 20.3832 0.979555 0.489777 0.871848i \(-0.337078\pi\)
0.489777 + 0.871848i \(0.337078\pi\)
\(434\) −31.6733 54.8598i −1.52037 2.63336i
\(435\) −0.468593 + 0.0623313i −0.0224673 + 0.00298856i
\(436\) 29.3207 50.7850i 1.40421 2.43216i
\(437\) 0.0198479 0.0343775i 0.000949452 0.00164450i
\(438\) −19.0601 24.7706i −0.910724 1.18359i
\(439\) −9.11140 15.7814i −0.434864 0.753206i 0.562421 0.826851i \(-0.309870\pi\)
−0.997284 + 0.0736453i \(0.976537\pi\)
\(440\) −22.8136 −1.08760
\(441\) −6.51872 + 24.5921i −0.310415 + 1.17105i
\(442\) 19.5115 0.928068
\(443\) −3.47615 6.02087i −0.165157 0.286060i 0.771554 0.636164i \(-0.219480\pi\)
−0.936711 + 0.350104i \(0.886146\pi\)
\(444\) −19.6117 + 47.5271i −0.930728 + 2.25553i
\(445\) −1.79749 + 3.11335i −0.0852094 + 0.147587i
\(446\) 17.2388 29.8585i 0.816282 1.41384i
\(447\) −5.43130 + 13.1623i −0.256892 + 0.622554i
\(448\) −15.8767 27.4992i −0.750103 1.29922i
\(449\) 13.6819 0.645687 0.322843 0.946452i \(-0.395361\pi\)
0.322843 + 0.946452i \(0.395361\pi\)
\(450\) −1.88194 + 7.09967i −0.0887154 + 0.334681i
\(451\) 0.425292 0.0200262
\(452\) −14.1268 24.4683i −0.664466 1.15089i
\(453\) 16.2675 + 21.1414i 0.764313 + 0.993308i
\(454\) 9.74825 16.8845i 0.457508 0.792427i
\(455\) 1.96726 3.40740i 0.0922266 0.159741i
\(456\) 1.01397 0.134876i 0.0474835 0.00631617i
\(457\) −8.41934 14.5827i −0.393840 0.682151i 0.599112 0.800665i \(-0.295520\pi\)
−0.992952 + 0.118514i \(0.962187\pi\)
\(458\) 33.3665 1.55911
\(459\) 38.1942 16.0010i 1.78275 0.746864i
\(460\) −1.31069 −0.0611113
\(461\) 19.6855 + 34.0962i 0.916844 + 1.58802i 0.804180 + 0.594386i \(0.202605\pi\)
0.112664 + 0.993633i \(0.464062\pi\)
\(462\) 77.2839 10.2802i 3.59557 0.478277i
\(463\) 1.44170 2.49710i 0.0670016 0.116050i −0.830579 0.556902i \(-0.811990\pi\)
0.897580 + 0.440851i \(0.145323\pi\)
\(464\) 0.541029 0.937090i 0.0251166 0.0435033i
\(465\) 6.94602 + 9.02712i 0.322114 + 0.418623i
\(466\) −8.28462 14.3494i −0.383778 0.664723i
\(467\) 25.1278 1.16278 0.581388 0.813626i \(-0.302510\pi\)
0.581388 + 0.813626i \(0.302510\pi\)
\(468\) 8.49549 + 8.45000i 0.392704 + 0.390602i
\(469\) −26.8389 −1.23930
\(470\) −14.1706 24.5442i −0.653642 1.13214i
\(471\) −13.3324 + 32.3099i −0.614325 + 1.48876i
\(472\) −13.5616 + 23.4894i −0.624224 + 1.08119i
\(473\) −18.2164 + 31.5518i −0.837593 + 1.45075i
\(474\) −19.2770 + 46.7160i −0.885421 + 2.14574i
\(475\) 0.0604829 + 0.104759i 0.00277515 + 0.00480669i
\(476\) 125.239 5.74033
\(477\) −32.3685 + 8.76630i −1.48205 + 0.401381i
\(478\) 62.3520 2.85191
\(479\) −10.7329 18.5899i −0.490399 0.849396i 0.509540 0.860447i \(-0.329816\pi\)
−0.999939 + 0.0110508i \(0.996482\pi\)
\(480\) 0.0608790 + 0.0791190i 0.00277874 + 0.00361127i
\(481\) −3.71599 + 6.43628i −0.169434 + 0.293469i
\(482\) 24.6818 42.7502i 1.12423 1.94722i
\(483\) 2.21679 0.294874i 0.100868 0.0134172i
\(484\) −21.6394 37.4805i −0.983608 1.70366i
\(485\) −5.27957 −0.239733
\(486\) 35.3571 + 14.3682i 1.60383 + 0.651753i
\(487\) −32.0627 −1.45290 −0.726450 0.687220i \(-0.758831\pi\)
−0.726450 + 0.687220i \(0.758831\pi\)
\(488\) −32.3818 56.0869i −1.46585 2.53893i
\(489\) −14.2034 + 1.88932i −0.642302 + 0.0854378i
\(490\) 10.3813 17.9809i 0.468979 0.812295i
\(491\) 4.87000 8.43508i 0.219780 0.380670i −0.734961 0.678110i \(-0.762799\pi\)
0.954741 + 0.297440i \(0.0961328\pi\)
\(492\) 0.383964 + 0.499003i 0.0173104 + 0.0224968i
\(493\) −1.08753 1.88366i −0.0489800 0.0848359i
\(494\) 0.296159 0.0133248
\(495\) −13.5311 + 3.66461i −0.608179 + 0.164712i
\(496\) −26.0721 −1.17067
\(497\) −12.4418 21.5498i −0.558090 0.966640i
\(498\) 2.50483 6.07022i 0.112244 0.272013i
\(499\) −15.8859 + 27.5151i −0.711149 + 1.23175i 0.253277 + 0.967394i \(0.418491\pi\)
−0.964426 + 0.264352i \(0.914842\pi\)
\(500\) 1.99705 3.45900i 0.0893109 0.154691i
\(501\) −9.00672 + 21.8270i −0.402390 + 0.975156i
\(502\) −27.3188 47.3176i −1.21930 2.11189i
\(503\) −7.30099 −0.325535 −0.162768 0.986664i \(-0.552042\pi\)
−0.162768 + 0.986664i \(0.552042\pi\)
\(504\) 40.8574 + 40.6387i 1.81994 + 1.81019i
\(505\) 0.357091 0.0158903
\(506\) −1.87714 3.25130i −0.0834490 0.144538i
\(507\) 1.05625 + 1.37271i 0.0469097 + 0.0609643i
\(508\) −2.47065 + 4.27930i −0.109617 + 0.189863i
\(509\) 5.39561 9.34547i 0.239156 0.414231i −0.721316 0.692606i \(-0.756463\pi\)
0.960472 + 0.278375i \(0.0897959\pi\)
\(510\) −33.4999 + 4.45609i −1.48340 + 0.197319i
\(511\) −14.4996 25.1141i −0.641427 1.11098i
\(512\) −38.9407 −1.72095
\(513\) 0.579738 0.242875i 0.0255960 0.0107232i
\(514\) −8.45813 −0.373072
\(515\) −2.30623 3.99450i −0.101624 0.176019i
\(516\) −53.4665 + 7.11202i −2.35373 + 0.313089i
\(517\) 27.0464 46.8458i 1.18950 2.06027i
\(518\) −35.7955 + 61.9996i −1.57276 + 2.72411i
\(519\) 3.65967 + 4.75614i 0.160642 + 0.208772i
\(520\) −2.44107 4.22806i −0.107048 0.185413i
\(521\) −3.58465 −0.157046 −0.0785231 0.996912i \(-0.525020\pi\)
−0.0785231 + 0.996912i \(0.525020\pi\)
\(522\) 0.513628 1.93768i 0.0224809 0.0848098i
\(523\) 4.70071 0.205548 0.102774 0.994705i \(-0.467228\pi\)
0.102774 + 0.994705i \(0.467228\pi\)
\(524\) −25.4679 44.1118i −1.11257 1.92703i
\(525\) −2.59945 + 6.29954i −0.113450 + 0.274934i
\(526\) −18.3308 + 31.7498i −0.799260 + 1.38436i
\(527\) −26.2041 + 45.3868i −1.14147 + 1.97708i
\(528\) 12.2400 29.6625i 0.532677 1.29089i
\(529\) 11.4462 + 19.8253i 0.497659 + 0.861971i
\(530\) 27.3674 1.18876
\(531\) −4.27045 + 16.1104i −0.185322 + 0.699132i
\(532\) 1.90097 0.0824173
\(533\) 0.0455066 + 0.0788197i 0.00197111 + 0.00341406i
\(534\) −9.29664 12.0820i −0.402305 0.522839i
\(535\) 0.740014 1.28174i 0.0319936 0.0554146i
\(536\) −16.6515 + 28.8412i −0.719235 + 1.24575i
\(537\) 11.6878 1.55469i 0.504366 0.0670898i
\(538\) −12.9754 22.4741i −0.559410 0.968927i
\(539\) 39.6280 1.70690
\(540\) −16.5160 12.5678i −0.710735 0.540833i
\(541\) 31.2736 1.34456 0.672278 0.740299i \(-0.265316\pi\)
0.672278 + 0.740299i \(0.265316\pi\)
\(542\) 11.9201 + 20.6462i 0.512013 + 0.886832i
\(543\) 14.1427 1.88123i 0.606921 0.0807315i
\(544\) −0.229668 + 0.397796i −0.00984693 + 0.0170554i
\(545\) −7.34100 + 12.7150i −0.314454 + 0.544650i
\(546\) 10.1747 + 13.2231i 0.435436 + 0.565897i
\(547\) 1.72662 + 2.99059i 0.0738249 + 0.127868i 0.900575 0.434701i \(-0.143146\pi\)
−0.826750 + 0.562570i \(0.809813\pi\)
\(548\) 29.2728 1.25047
\(549\) −28.2156 28.0645i −1.20421 1.19776i
\(550\) 11.4405 0.487825
\(551\) −0.0165073 0.0285915i −0.000703235 0.00121804i
\(552\) 1.05848 2.56512i 0.0450518 0.109179i
\(553\) −23.4449 + 40.6077i −0.996978 + 1.72682i
\(554\) 13.5165 23.4113i 0.574261 0.994649i
\(555\) 4.91015 11.8993i 0.208424 0.505097i
\(556\) 33.6598 + 58.3004i 1.42749 + 2.47249i
\(557\) 12.5254 0.530720 0.265360 0.964149i \(-0.414509\pi\)
0.265360 + 0.964149i \(0.414509\pi\)
\(558\) −46.6211 + 12.6263i −1.97363 + 0.534515i
\(559\) −7.79669 −0.329765
\(560\) −7.79954 13.5092i −0.329591 0.570868i
\(561\) −39.3349 51.1201i −1.66072 2.15829i
\(562\) 26.0822 45.1756i 1.10021 1.90562i
\(563\) 13.2158 22.8905i 0.556981 0.964719i −0.440766 0.897622i \(-0.645293\pi\)
0.997746 0.0670966i \(-0.0213736\pi\)
\(564\) 79.3831 10.5594i 3.34263 0.444631i
\(565\) 3.53690 + 6.12609i 0.148798 + 0.257727i
\(566\) −8.00716 −0.336566
\(567\) 30.7612 + 17.5405i 1.29185 + 0.736630i
\(568\) −30.8767 −1.29556
\(569\) −11.1862 19.3750i −0.468949 0.812244i 0.530421 0.847735i \(-0.322034\pi\)
−0.999370 + 0.0354904i \(0.988701\pi\)
\(570\) −0.508484 + 0.0676375i −0.0212980 + 0.00283302i
\(571\) 7.47062 12.9395i 0.312636 0.541501i −0.666297 0.745687i \(-0.732121\pi\)
0.978932 + 0.204186i \(0.0654548\pi\)
\(572\) 9.33196 16.1634i 0.390189 0.675827i
\(573\) 18.7240 + 24.3339i 0.782207 + 1.01656i
\(574\) 0.438358 + 0.759258i 0.0182967 + 0.0316908i
\(575\) 0.328157 0.0136851
\(576\) −23.3695 + 6.32911i −0.973728 + 0.263713i
\(577\) −2.65841 −0.110671 −0.0553355 0.998468i \(-0.517623\pi\)
−0.0553355 + 0.998468i \(0.517623\pi\)
\(578\) −56.9377 98.6190i −2.36830 4.10201i
\(579\) 7.66608 18.5780i 0.318592 0.772077i
\(580\) −0.545046 + 0.944047i −0.0226318 + 0.0391994i
\(581\) 3.04640 5.27653i 0.126386 0.218907i
\(582\) 8.53987 20.6956i 0.353989 0.857860i
\(583\) 26.1171 + 45.2361i 1.08166 + 1.87349i
\(584\) −35.9837 −1.48902
\(585\) −2.12701 2.11562i −0.0879409 0.0874701i
\(586\) −70.9924 −2.93267
\(587\) 5.74909 + 9.95772i 0.237291 + 0.410999i 0.959936 0.280220i \(-0.0904073\pi\)
−0.722645 + 0.691219i \(0.757074\pi\)
\(588\) 35.7771 + 46.4963i 1.47542 + 1.91747i
\(589\) −0.397743 + 0.688911i −0.0163887 + 0.0283861i
\(590\) 6.80085 11.7794i 0.279986 0.484951i
\(591\) −3.44018 + 0.457607i −0.141510 + 0.0188234i
\(592\) 14.7327 + 25.5177i 0.605509 + 1.04877i
\(593\) −22.0373 −0.904964 −0.452482 0.891774i \(-0.649461\pi\)
−0.452482 + 0.891774i \(0.649461\pi\)
\(594\) 7.52197 58.9688i 0.308630 2.41952i
\(595\) −31.3560 −1.28547
\(596\) 16.4174 + 28.4357i 0.672481 + 1.16477i
\(597\) −19.3279 + 2.57096i −0.791036 + 0.105222i
\(598\) 0.401711 0.695783i 0.0164272 0.0284527i
\(599\) −12.0613 + 20.8909i −0.492813 + 0.853577i −0.999966 0.00827908i \(-0.997365\pi\)
0.507153 + 0.861856i \(0.330698\pi\)
\(600\) 5.15676 + 6.70177i 0.210524 + 0.273599i
\(601\) −0.171419 0.296906i −0.00699232 0.0121111i 0.862508 0.506043i \(-0.168892\pi\)
−0.869500 + 0.493932i \(0.835559\pi\)
\(602\) −75.1042 −3.06102
\(603\) −5.24343 + 19.7810i −0.213529 + 0.805545i
\(604\) 61.5139 2.50297
\(605\) 5.41783 + 9.38396i 0.220266 + 0.381512i
\(606\) −0.577605 + 1.39977i −0.0234636 + 0.0568619i
\(607\) 18.5443 32.1196i 0.752688 1.30369i −0.193827 0.981036i \(-0.562090\pi\)
0.946515 0.322659i \(-0.104577\pi\)
\(608\) −0.00348605 + 0.00603802i −0.000141378 + 0.000244874i
\(609\) 0.709456 1.71930i 0.0287486 0.0696697i
\(610\) 16.2387 + 28.1263i 0.657487 + 1.13880i
\(611\) 11.5760 0.468313
\(612\) 24.4676 92.3048i 0.989045 3.73120i
\(613\) 38.1878 1.54239 0.771194 0.636600i \(-0.219660\pi\)
0.771194 + 0.636600i \(0.219660\pi\)
\(614\) −9.39511 16.2728i −0.379156 0.656717i
\(615\) −0.0961326 0.124935i −0.00387644 0.00503786i
\(616\) 44.8803 77.7349i 1.80828 3.13203i
\(617\) 6.45863 11.1867i 0.260015 0.450359i −0.706231 0.707982i \(-0.749606\pi\)
0.966246 + 0.257623i \(0.0829392\pi\)
\(618\) 19.3886 2.57903i 0.779923 0.103744i
\(619\) 3.24865 + 5.62683i 0.130574 + 0.226161i 0.923898 0.382639i \(-0.124985\pi\)
−0.793324 + 0.608800i \(0.791651\pi\)
\(620\) 26.2657 1.05486
\(621\) 0.215758 1.69145i 0.00865808 0.0678754i
\(622\) −16.1330 −0.646873
\(623\) −7.07228 12.2495i −0.283345 0.490768i
\(624\) 6.80705 0.905461i 0.272500 0.0362475i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 9.95599 17.2443i 0.397921 0.689220i
\(627\) −0.597052 0.775935i −0.0238440 0.0309879i
\(628\) 40.3003 + 69.8021i 1.60816 + 2.78541i
\(629\) 59.2288 2.36161
\(630\) −20.4891 20.3794i −0.816305 0.811935i
\(631\) −37.1832 −1.48024 −0.740119 0.672476i \(-0.765231\pi\)
−0.740119 + 0.672476i \(0.765231\pi\)
\(632\) 29.0915 + 50.3880i 1.15720 + 2.00433i
\(633\) −3.21361 + 7.78789i −0.127729 + 0.309541i
\(634\) −28.5790 + 49.5002i −1.13502 + 1.96591i
\(635\) 0.618575 1.07140i 0.0245474 0.0425173i
\(636\) −29.4972 + 71.4839i −1.16964 + 2.83452i
\(637\) 4.24023 + 7.34429i 0.168004 + 0.290991i
\(638\) −3.12240 −0.123617
\(639\) −18.3135 + 4.95982i −0.724471 + 0.196207i
\(640\) 19.6435 0.776478
\(641\) −20.7912 36.0114i −0.821203 1.42237i −0.904787 0.425865i \(-0.859970\pi\)
0.0835833 0.996501i \(-0.473364\pi\)
\(642\) 3.82735 + 4.97407i 0.151054 + 0.196311i
\(643\) 7.24965 12.5568i 0.285898 0.495190i −0.686928 0.726725i \(-0.741041\pi\)
0.972827 + 0.231535i \(0.0743748\pi\)
\(644\) 2.57847 4.46605i 0.101606 0.175987i
\(645\) 13.3864 1.78063i 0.527087 0.0701122i
\(646\) −1.18011 2.04402i −0.0464309 0.0804207i
\(647\) −4.64226 −0.182506 −0.0912531 0.995828i \(-0.529087\pi\)
−0.0912531 + 0.995828i \(0.529087\pi\)
\(648\) 37.9340 22.1736i 1.49019 0.871062i
\(649\) 25.9606 1.01904
\(650\) 1.22414 + 2.12028i 0.0480148 + 0.0831642i
\(651\) −44.4236 + 5.90914i −1.74110 + 0.231598i
\(652\) −16.5208 + 28.6149i −0.647005 + 1.12065i
\(653\) −5.28711 + 9.15755i −0.206901 + 0.358362i −0.950737 0.310000i \(-0.899671\pi\)
0.743836 + 0.668362i \(0.233004\pi\)
\(654\) −37.9677 49.3432i −1.48465 1.92947i
\(655\) 6.37638 + 11.0442i 0.249146 + 0.431533i
\(656\) 0.360837 0.0140883
\(657\) −21.3426 + 5.78017i −0.832653 + 0.225506i
\(658\) 111.509 4.34708
\(659\) 15.6513 + 27.1089i 0.609690 + 1.05601i 0.991291 + 0.131687i \(0.0420393\pi\)
−0.381602 + 0.924327i \(0.624627\pi\)
\(660\) −12.3309 + 29.8827i −0.479978 + 1.16318i
\(661\) 6.52034 11.2936i 0.253612 0.439269i −0.710906 0.703287i \(-0.751715\pi\)
0.964518 + 0.264019i \(0.0850480\pi\)
\(662\) 5.48471 9.49979i 0.213169 0.369220i
\(663\) 5.26525 12.7599i 0.204485 0.495552i
\(664\) −3.78012 6.54737i −0.146697 0.254087i
\(665\) −0.475943 −0.0184563
\(666\) 38.7022 + 38.4950i 1.49968 + 1.49165i
\(667\) −0.0895622 −0.00346786
\(668\) 27.2249 + 47.1548i 1.05336 + 1.82448i
\(669\) −14.8745 19.3310i −0.575081 0.747381i
\(670\) 8.35035 14.4632i 0.322602 0.558763i
\(671\) −30.9937 + 53.6826i −1.19650 + 2.07240i
\(672\) −0.389355 + 0.0517912i −0.0150197 + 0.00199789i
\(673\) 6.13953 + 10.6340i 0.236661 + 0.409910i 0.959754 0.280841i \(-0.0906134\pi\)
−0.723093 + 0.690751i \(0.757280\pi\)
\(674\) −11.3766 −0.438209
\(675\) 4.13509 + 3.14659i 0.159160 + 0.121112i
\(676\) 3.99411 0.153619
\(677\) −18.1421 31.4231i −0.697258 1.20769i −0.969413 0.245434i \(-0.921070\pi\)
0.272155 0.962253i \(-0.412264\pi\)
\(678\) −29.7349 + 3.95529i −1.14196 + 0.151902i
\(679\) 10.3863 17.9896i 0.398589 0.690377i
\(680\) −19.4540 + 33.6953i −0.746027 + 1.29216i
\(681\) −8.41125 10.9313i −0.322320 0.418890i
\(682\) 37.6171 + 65.1547i 1.44043 + 2.49490i
\(683\) −25.2755 −0.967141 −0.483571 0.875305i \(-0.660660\pi\)
−0.483571 + 0.875305i \(0.660660\pi\)
\(684\) 0.371386 1.40106i 0.0142003 0.0535710i
\(685\) −7.32899 −0.280026
\(686\) 7.13050 + 12.3504i 0.272244 + 0.471540i
\(687\) 9.00406 21.8205i 0.343527 0.832505i
\(688\) −15.4557 + 26.7700i −0.589241 + 1.02060i
\(689\) −5.58909 + 9.68059i −0.212928 + 0.368801i
\(690\) −0.530803 + 1.28635i −0.0202073 + 0.0489706i
\(691\) 24.3378 + 42.1543i 0.925854 + 1.60363i 0.790181 + 0.612873i \(0.209986\pi\)
0.135673 + 0.990754i \(0.456680\pi\)
\(692\) 13.8387 0.526068
\(693\) 14.1325 53.3152i 0.536848 2.02528i
\(694\) −10.8342 −0.411262
\(695\) −8.42736 14.5966i −0.319668 0.553681i
\(696\) −1.40741 1.82908i −0.0533477 0.0693312i
\(697\) 0.362663 0.628151i 0.0137368 0.0237929i
\(698\) 0.0165444 0.0286557i 0.000626215 0.00108464i
\(699\) −11.6196 + 1.54562i −0.439495 + 0.0584608i
\(700\) 7.85745 + 13.6095i 0.296984 + 0.514391i
\(701\) 22.9449 0.866615 0.433308 0.901246i \(-0.357346\pi\)
0.433308 + 0.901246i \(0.357346\pi\)
\(702\) 11.7336 4.91566i 0.442856 0.185529i
\(703\) 0.899015 0.0339070
\(704\) 18.8561 + 32.6597i 0.710665 + 1.23091i
\(705\) −19.8751 + 2.64375i −0.748539 + 0.0995692i
\(706\) −36.3659 + 62.9876i −1.36865 + 2.37057i
\(707\) −0.702490 + 1.21675i −0.0264199 + 0.0457606i
\(708\) 23.4378 + 30.4600i 0.880846 + 1.14476i
\(709\) 11.0072 + 19.0649i 0.413382 + 0.715999i 0.995257 0.0972792i \(-0.0310140\pi\)
−0.581875 + 0.813278i \(0.697681\pi\)
\(710\) 15.4840 0.581104
\(711\) 25.3487 + 25.2129i 0.950649 + 0.945559i
\(712\) −17.5512 −0.657761
\(713\) 1.07900 + 1.86888i 0.0404088 + 0.0699901i
\(714\) 50.7193 122.914i 1.89812 4.59993i
\(715\) −2.33643 + 4.04682i −0.0873776 + 0.151342i
\(716\) 13.5947 23.5468i 0.508059 0.879984i
\(717\) 16.8259 40.7760i 0.628375 1.52281i
\(718\) −43.9645 76.1488i −1.64074 2.84185i
\(719\) 35.7966 1.33499 0.667494 0.744615i \(-0.267367\pi\)
0.667494 + 0.744615i \(0.267367\pi\)
\(720\) −11.4804 + 3.10922i −0.427850 + 0.115874i
\(721\) 18.1478 0.675859
\(722\) 23.2408 + 40.2543i 0.864933 + 1.49811i
\(723\) −21.2967 27.6774i −0.792031 1.02933i
\(724\) 16.4501 28.4925i 0.611364 1.05891i
\(725\) 0.136463 0.236360i 0.00506809 0.00877819i
\(726\) −45.5480 + 6.05871i −1.69045 + 0.224860i
\(727\) 15.5687 + 26.9657i 0.577410 + 1.00010i 0.995775 + 0.0918250i \(0.0292700\pi\)
−0.418365 + 0.908279i \(0.637397\pi\)
\(728\) 19.2089 0.711929
\(729\) 18.9375 19.2450i 0.701390 0.712778i
\(730\) 18.0450 0.667877
\(731\) 31.0677 + 53.8108i 1.14908 + 1.99027i
\(732\) −90.9687 + 12.1005i −3.36230 + 0.447247i
\(733\) 11.6605 20.1967i 0.430692 0.745980i −0.566241 0.824240i \(-0.691603\pi\)
0.996933 + 0.0782593i \(0.0249362\pi\)
\(734\) −3.62312 + 6.27543i −0.133732 + 0.231630i
\(735\) −8.95747 11.6412i −0.330401 0.429393i
\(736\) 0.00945698 + 0.0163800i 0.000348589 + 0.000603774i
\(737\) 31.8754 1.17415
\(738\) 0.645235 0.174748i 0.0237514 0.00643255i
\(739\) −23.4244 −0.861682 −0.430841 0.902428i \(-0.641783\pi\)
−0.430841 + 0.902428i \(0.641783\pi\)
\(740\) −14.8421 25.7072i −0.545605 0.945015i
\(741\) 0.0799196 0.193678i 0.00293592 0.00711493i
\(742\) −53.8388 + 93.2516i −1.97649 + 3.42337i
\(743\) −19.8360 + 34.3570i −0.727713 + 1.26044i 0.230135 + 0.973159i \(0.426083\pi\)
−0.957848 + 0.287276i \(0.907250\pi\)
\(744\) −21.2115 + 51.4040i −0.777650 + 1.88456i
\(745\) −4.11039 7.11941i −0.150593 0.260835i
\(746\) 11.1750 0.409145
\(747\) −3.29378 3.27614i −0.120513 0.119868i
\(748\) −148.741 −5.43852
\(749\) 2.91160 + 5.04304i 0.106388 + 0.184269i
\(750\) −2.58600 3.36079i −0.0944274 0.122719i
\(751\) 10.5836 18.3314i 0.386203 0.668922i −0.605733 0.795668i \(-0.707120\pi\)
0.991935 + 0.126746i \(0.0404533\pi\)
\(752\) 22.9474 39.7461i 0.836806 1.44939i
\(753\) −38.3161 + 5.09674i −1.39632 + 0.185736i
\(754\) −0.334099 0.578677i −0.0121672 0.0210742i
\(755\) −15.4012 −0.560506
\(756\) 75.3148 31.5523i 2.73917 1.14755i
\(757\) −6.75801 −0.245624 −0.122812 0.992430i \(-0.539191\pi\)
−0.122812 + 0.992430i \(0.539191\pi\)
\(758\) 28.1372 + 48.7351i 1.02199 + 1.77014i
\(759\) −2.63279 + 0.350209i −0.0955642 + 0.0127118i
\(760\) −0.295286 + 0.511451i −0.0107112 + 0.0185523i
\(761\) 19.1813 33.2229i 0.695320 1.20433i −0.274752 0.961515i \(-0.588596\pi\)
0.970073 0.242815i \(-0.0780708\pi\)
\(762\) 3.19927 + 4.15780i 0.115897 + 0.150621i
\(763\) −28.8833 50.0274i −1.04565 1.81111i
\(764\) 70.8031 2.56157
\(765\) −6.12593 + 23.1102i −0.221483 + 0.835553i
\(766\) 22.5375 0.814313
\(767\) 2.77780 + 4.81129i 0.100301 + 0.173726i
\(768\) −21.1100 + 51.1582i −0.761742 + 1.84601i
\(769\) 8.50812 14.7365i 0.306811 0.531412i −0.670852 0.741591i \(-0.734072\pi\)
0.977663 + 0.210180i \(0.0674049\pi\)
\(770\) −22.5065 + 38.9823i −0.811077 + 1.40483i
\(771\) −2.28246 + 5.53132i −0.0822007 + 0.199206i
\(772\) −23.1725 40.1359i −0.833996 1.44452i