Properties

Label 585.2.i.e.196.6
Level $585$
Weight $2$
Character 585.196
Analytic conductor $4.671$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \( x^{16} - 5 x^{15} + 20 x^{14} - 44 x^{13} + 96 x^{12} - 107 x^{11} + 178 x^{10} - 19 x^{9} + 231 x^{8} + 326 x^{7} + 551 x^{6} + 859 x^{5} + 1118 x^{4} + 1215 x^{3} + 1103 x^{2} + \cdots + 268 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 196.6
Root \(0.466399 + 1.64781i\) of defining polynomial
Character \(\chi\) \(=\) 585.196
Dual form 585.2.i.e.391.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.0336011 + 0.0581988i) q^{2} +(-0.332146 - 1.69991i) q^{3} +(0.997742 + 1.72814i) q^{4} +(0.500000 + 0.866025i) q^{5} +(0.110093 + 0.0377882i) q^{6} +(-1.23179 + 2.13352i) q^{7} -0.268505 q^{8} +(-2.77936 + 1.12923i) q^{9} +O(q^{10})\) \(q+(-0.0336011 + 0.0581988i) q^{2} +(-0.332146 - 1.69991i) q^{3} +(0.997742 + 1.72814i) q^{4} +(0.500000 + 0.866025i) q^{5} +(0.110093 + 0.0377882i) q^{6} +(-1.23179 + 2.13352i) q^{7} -0.268505 q^{8} +(-2.77936 + 1.12923i) q^{9} -0.0672022 q^{10} +(-1.60607 + 2.78180i) q^{11} +(2.60628 - 2.27006i) q^{12} +(0.500000 + 0.866025i) q^{13} +(-0.0827788 - 0.143377i) q^{14} +(1.30609 - 1.13760i) q^{15} +(-1.98646 + 3.44065i) q^{16} -4.77678 q^{17} +(0.0276694 - 0.199699i) q^{18} -3.94903 q^{19} +(-0.997742 + 1.72814i) q^{20} +(4.03591 + 1.38528i) q^{21} +(-0.107932 - 0.186943i) q^{22} +(-2.13489 - 3.69773i) q^{23} +(0.0891830 + 0.456434i) q^{24} +(-0.500000 + 0.866025i) q^{25} -0.0672022 q^{26} +(2.84275 + 4.34957i) q^{27} -4.91602 q^{28} +(1.15314 - 1.99730i) q^{29} +(0.0223210 + 0.114237i) q^{30} +(3.81652 + 6.61041i) q^{31} +(-0.402000 - 0.696284i) q^{32} +(5.26224 + 1.80621i) q^{33} +(0.160505 - 0.278003i) q^{34} -2.46357 q^{35} +(-4.72456 - 3.67643i) q^{36} +4.87293 q^{37} +(0.132692 - 0.229829i) q^{38} +(1.30609 - 1.13760i) q^{39} +(-0.134253 - 0.232532i) q^{40} +(1.26518 + 2.19136i) q^{41} +(-0.216233 + 0.188338i) q^{42} +(2.28304 - 3.95433i) q^{43} -6.40978 q^{44} +(-2.36762 - 1.84238i) q^{45} +0.286938 q^{46} +(3.13284 - 5.42623i) q^{47} +(6.50858 + 2.23400i) q^{48} +(0.465404 + 0.806103i) q^{49} +(-0.0336011 - 0.0581988i) q^{50} +(1.58659 + 8.12007i) q^{51} +(-0.997742 + 1.72814i) q^{52} +12.4968 q^{53} +(-0.348659 + 0.0192939i) q^{54} -3.21214 q^{55} +(0.330741 - 0.572861i) q^{56} +(1.31166 + 6.71298i) q^{57} +(0.0774937 + 0.134223i) q^{58} +(-1.42509 - 2.46833i) q^{59} +(3.26907 + 1.12207i) q^{60} +(-6.35000 + 10.9985i) q^{61} -0.512957 q^{62} +(1.01433 - 7.32078i) q^{63} -7.89182 q^{64} +(-0.500000 + 0.866025i) q^{65} +(-0.281936 + 0.245566i) q^{66} +(6.75359 + 11.6976i) q^{67} +(-4.76599 - 8.25494i) q^{68} +(-5.57670 + 4.85729i) q^{69} +(0.0827788 - 0.143377i) q^{70} +7.79224 q^{71} +(0.746272 - 0.303205i) q^{72} +2.26796 q^{73} +(-0.163736 + 0.283599i) q^{74} +(1.63823 + 0.562306i) q^{75} +(-3.94012 - 6.82448i) q^{76} +(-3.95668 - 6.85316i) q^{77} +(0.0223210 + 0.114237i) q^{78} +(-4.56668 + 7.90972i) q^{79} -3.97292 q^{80} +(6.44966 - 6.27709i) q^{81} -0.170046 q^{82} +(-5.25595 + 9.10356i) q^{83} +(1.63284 + 8.35677i) q^{84} +(-2.38839 - 4.13681i) q^{85} +(0.153425 + 0.265740i) q^{86} +(-3.77824 - 1.29684i) q^{87} +(0.431239 - 0.746927i) q^{88} +0.966612 q^{89} +(0.186779 - 0.0758870i) q^{90} -2.46357 q^{91} +(4.26013 - 7.37876i) q^{92} +(9.96943 - 8.68335i) q^{93} +(0.210533 + 0.364655i) q^{94} +(-1.97452 - 3.41996i) q^{95} +(-1.05009 + 0.914630i) q^{96} +(9.39020 - 16.2643i) q^{97} -0.0625523 q^{98} +(1.32255 - 9.54524i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 3 q^{2} + q^{3} - 9 q^{4} + 8 q^{5} + 8 q^{6} + 11 q^{7} - 12 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 3 q^{2} + q^{3} - 9 q^{4} + 8 q^{5} + 8 q^{6} + 11 q^{7} - 12 q^{8} + q^{9} - 6 q^{10} - 6 q^{11} + 2 q^{12} + 8 q^{13} - 10 q^{14} + 5 q^{15} - 11 q^{16} - 4 q^{17} + 5 q^{18} - 20 q^{19} + 9 q^{20} + 11 q^{21} - 3 q^{22} - 6 q^{23} - 57 q^{24} - 8 q^{25} - 6 q^{26} - 14 q^{27} - 68 q^{28} - 14 q^{29} + 7 q^{30} + 31 q^{31} - q^{32} - 31 q^{33} + 7 q^{34} + 22 q^{35} + 2 q^{36} + 2 q^{37} - 9 q^{38} + 5 q^{39} - 6 q^{40} + 12 q^{41} - 26 q^{42} - 15 q^{43} + 32 q^{44} - 16 q^{45} - 64 q^{46} + 18 q^{47} - 4 q^{48} - 17 q^{49} - 3 q^{50} + 32 q^{51} + 9 q^{52} + 4 q^{53} + 2 q^{54} - 12 q^{55} - 16 q^{56} + 45 q^{57} + 42 q^{58} - 24 q^{59} - 8 q^{60} + 9 q^{61} - 40 q^{62} + 47 q^{63} - 60 q^{64} - 8 q^{65} + 55 q^{66} + 18 q^{67} + 14 q^{68} - 12 q^{69} + 10 q^{70} + 20 q^{71} - 9 q^{72} + 12 q^{73} + 37 q^{74} + 4 q^{75} + 53 q^{76} + 34 q^{77} + 7 q^{78} + 3 q^{79} - 22 q^{80} + 13 q^{81} - 68 q^{82} + 10 q^{83} + 22 q^{84} - 2 q^{85} - 60 q^{86} + 11 q^{87} + 14 q^{88} - 26 q^{89} + 19 q^{90} + 22 q^{91} - 5 q^{92} + 74 q^{93} - 17 q^{94} - 10 q^{95} + 13 q^{96} + 34 q^{97} - 60 q^{98} - 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0336011 + 0.0581988i −0.0237596 + 0.0411528i −0.877661 0.479282i \(-0.840897\pi\)
0.853901 + 0.520435i \(0.174230\pi\)
\(3\) −0.332146 1.69991i −0.191765 0.981441i
\(4\) 0.997742 + 1.72814i 0.498871 + 0.864070i
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0.110093 + 0.0377882i 0.0449453 + 0.0154270i
\(7\) −1.23179 + 2.13352i −0.465572 + 0.806394i −0.999227 0.0393083i \(-0.987485\pi\)
0.533656 + 0.845702i \(0.320818\pi\)
\(8\) −0.268505 −0.0949309
\(9\) −2.77936 + 1.12923i −0.926453 + 0.376412i
\(10\) −0.0672022 −0.0212512
\(11\) −1.60607 + 2.78180i −0.484249 + 0.838744i −0.999836 0.0180933i \(-0.994240\pi\)
0.515587 + 0.856837i \(0.327574\pi\)
\(12\) 2.60628 2.27006i 0.752368 0.655311i
\(13\) 0.500000 + 0.866025i 0.138675 + 0.240192i
\(14\) −0.0827788 0.143377i −0.0221236 0.0383191i
\(15\) 1.30609 1.13760i 0.337231 0.293727i
\(16\) −1.98646 + 3.44065i −0.496615 + 0.860163i
\(17\) −4.77678 −1.15854 −0.579269 0.815136i \(-0.696662\pi\)
−0.579269 + 0.815136i \(0.696662\pi\)
\(18\) 0.0276694 0.199699i 0.00652173 0.0470695i
\(19\) −3.94903 −0.905970 −0.452985 0.891518i \(-0.649641\pi\)
−0.452985 + 0.891518i \(0.649641\pi\)
\(20\) −0.997742 + 1.72814i −0.223102 + 0.386424i
\(21\) 4.03591 + 1.38528i 0.880708 + 0.302293i
\(22\) −0.107932 0.186943i −0.0230111 0.0398564i
\(23\) −2.13489 3.69773i −0.445154 0.771030i 0.552908 0.833242i \(-0.313518\pi\)
−0.998063 + 0.0622118i \(0.980185\pi\)
\(24\) 0.0891830 + 0.456434i 0.0182044 + 0.0931691i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −0.0672022 −0.0131794
\(27\) 2.84275 + 4.34957i 0.547087 + 0.837076i
\(28\) −4.91602 −0.929040
\(29\) 1.15314 1.99730i 0.214133 0.370890i −0.738871 0.673847i \(-0.764641\pi\)
0.953004 + 0.302957i \(0.0979740\pi\)
\(30\) 0.0223210 + 0.114237i 0.00407523 + 0.0208568i
\(31\) 3.81652 + 6.61041i 0.685468 + 1.18726i 0.973290 + 0.229581i \(0.0737356\pi\)
−0.287822 + 0.957684i \(0.592931\pi\)
\(32\) −0.402000 0.696284i −0.0710642 0.123087i
\(33\) 5.26224 + 1.80621i 0.916039 + 0.314420i
\(34\) 0.160505 0.278003i 0.0275264 0.0476771i
\(35\) −2.46357 −0.416420
\(36\) −4.72456 3.67643i −0.787426 0.612739i
\(37\) 4.87293 0.801105 0.400553 0.916274i \(-0.368818\pi\)
0.400553 + 0.916274i \(0.368818\pi\)
\(38\) 0.132692 0.229829i 0.0215255 0.0372832i
\(39\) 1.30609 1.13760i 0.209142 0.182162i
\(40\) −0.134253 0.232532i −0.0212272 0.0367666i
\(41\) 1.26518 + 2.19136i 0.197588 + 0.342233i 0.947746 0.319026i \(-0.103356\pi\)
−0.750158 + 0.661259i \(0.770022\pi\)
\(42\) −0.216233 + 0.188338i −0.0333654 + 0.0290612i
\(43\) 2.28304 3.95433i 0.348160 0.603030i −0.637763 0.770233i \(-0.720140\pi\)
0.985923 + 0.167202i \(0.0534734\pi\)
\(44\) −6.40978 −0.966311
\(45\) −2.36762 1.84238i −0.352945 0.274645i
\(46\) 0.286938 0.0423067
\(47\) 3.13284 5.42623i 0.456971 0.791497i −0.541828 0.840489i \(-0.682268\pi\)
0.998799 + 0.0489922i \(0.0156009\pi\)
\(48\) 6.50858 + 2.23400i 0.939433 + 0.322450i
\(49\) 0.465404 + 0.806103i 0.0664863 + 0.115158i
\(50\) −0.0336011 0.0581988i −0.00475191 0.00823055i
\(51\) 1.58659 + 8.12007i 0.222167 + 1.13704i
\(52\) −0.997742 + 1.72814i −0.138362 + 0.239650i
\(53\) 12.4968 1.71657 0.858286 0.513172i \(-0.171530\pi\)
0.858286 + 0.513172i \(0.171530\pi\)
\(54\) −0.348659 + 0.0192939i −0.0474465 + 0.00262557i
\(55\) −3.21214 −0.433125
\(56\) 0.330741 0.572861i 0.0441971 0.0765517i
\(57\) 1.31166 + 6.71298i 0.173733 + 0.889156i
\(58\) 0.0774937 + 0.134223i 0.0101754 + 0.0176244i
\(59\) −1.42509 2.46833i −0.185531 0.321350i 0.758224 0.651994i \(-0.226067\pi\)
−0.943755 + 0.330644i \(0.892734\pi\)
\(60\) 3.26907 + 1.12207i 0.422035 + 0.144859i
\(61\) −6.35000 + 10.9985i −0.813034 + 1.40822i 0.0976967 + 0.995216i \(0.468852\pi\)
−0.910731 + 0.413000i \(0.864481\pi\)
\(62\) −0.512957 −0.0651457
\(63\) 1.01433 7.32078i 0.127794 0.922332i
\(64\) −7.89182 −0.986477
\(65\) −0.500000 + 0.866025i −0.0620174 + 0.107417i
\(66\) −0.281936 + 0.245566i −0.0347040 + 0.0302271i
\(67\) 6.75359 + 11.6976i 0.825082 + 1.42908i 0.901856 + 0.432036i \(0.142205\pi\)
−0.0767741 + 0.997049i \(0.524462\pi\)
\(68\) −4.76599 8.25494i −0.577961 1.00106i
\(69\) −5.57670 + 4.85729i −0.671356 + 0.584749i
\(70\) 0.0827788 0.143377i 0.00989395 0.0171368i
\(71\) 7.79224 0.924769 0.462384 0.886680i \(-0.346994\pi\)
0.462384 + 0.886680i \(0.346994\pi\)
\(72\) 0.746272 0.303205i 0.0879490 0.0357331i
\(73\) 2.26796 0.265444 0.132722 0.991153i \(-0.457628\pi\)
0.132722 + 0.991153i \(0.457628\pi\)
\(74\) −0.163736 + 0.283599i −0.0190339 + 0.0329677i
\(75\) 1.63823 + 0.562306i 0.189167 + 0.0649295i
\(76\) −3.94012 6.82448i −0.451962 0.782822i
\(77\) −3.95668 6.85316i −0.450905 0.780990i
\(78\) 0.0223210 + 0.114237i 0.00252735 + 0.0129348i
\(79\) −4.56668 + 7.90972i −0.513791 + 0.889913i 0.486081 + 0.873914i \(0.338426\pi\)
−0.999872 + 0.0159988i \(0.994907\pi\)
\(80\) −3.97292 −0.444186
\(81\) 6.44966 6.27709i 0.716629 0.697455i
\(82\) −0.170046 −0.0187784
\(83\) −5.25595 + 9.10356i −0.576915 + 0.999246i 0.418916 + 0.908025i \(0.362410\pi\)
−0.995831 + 0.0912209i \(0.970923\pi\)
\(84\) 1.63284 + 8.35677i 0.178157 + 0.911798i
\(85\) −2.38839 4.13681i −0.259057 0.448700i
\(86\) 0.153425 + 0.265740i 0.0165442 + 0.0286555i
\(87\) −3.77824 1.29684i −0.405070 0.139036i
\(88\) 0.431239 0.746927i 0.0459702 0.0796227i
\(89\) 0.966612 0.102461 0.0512303 0.998687i \(-0.483686\pi\)
0.0512303 + 0.998687i \(0.483686\pi\)
\(90\) 0.186779 0.0758870i 0.0196882 0.00799920i
\(91\) −2.46357 −0.258253
\(92\) 4.26013 7.37876i 0.444149 0.769289i
\(93\) 9.96943 8.68335i 1.03378 0.900422i
\(94\) 0.210533 + 0.364655i 0.0217149 + 0.0376113i
\(95\) −1.97452 3.41996i −0.202581 0.350881i
\(96\) −1.05009 + 0.914630i −0.107175 + 0.0933490i
\(97\) 9.39020 16.2643i 0.953431 1.65139i 0.215511 0.976501i \(-0.430858\pi\)
0.737919 0.674889i \(-0.235809\pi\)
\(98\) −0.0625523 −0.00631874
\(99\) 1.32255 9.54524i 0.132921 0.959333i
\(100\) −1.99548 −0.199548
\(101\) 9.27873 16.0712i 0.923268 1.59915i 0.128944 0.991652i \(-0.458841\pi\)
0.794324 0.607495i \(-0.207825\pi\)
\(102\) −0.525890 0.180506i −0.0520708 0.0178727i
\(103\) −5.12815 8.88222i −0.505292 0.875191i −0.999981 0.00612110i \(-0.998052\pi\)
0.494690 0.869070i \(-0.335282\pi\)
\(104\) −0.134253 0.232532i −0.0131646 0.0228017i
\(105\) 0.818267 + 4.18784i 0.0798546 + 0.408691i
\(106\) −0.419907 + 0.727300i −0.0407850 + 0.0706417i
\(107\) −13.3729 −1.29281 −0.646403 0.762996i \(-0.723727\pi\)
−0.646403 + 0.762996i \(0.723727\pi\)
\(108\) −4.68035 + 9.25241i −0.450367 + 0.890314i
\(109\) −1.35788 −0.130061 −0.0650306 0.997883i \(-0.520715\pi\)
−0.0650306 + 0.997883i \(0.520715\pi\)
\(110\) 0.107932 0.186943i 0.0102909 0.0178243i
\(111\) −1.61853 8.28353i −0.153624 0.786238i
\(112\) −4.89379 8.47630i −0.462420 0.800935i
\(113\) 3.67848 + 6.37132i 0.346042 + 0.599363i 0.985543 0.169428i \(-0.0541920\pi\)
−0.639500 + 0.768791i \(0.720859\pi\)
\(114\) −0.434761 0.149227i −0.0407191 0.0139764i
\(115\) 2.13489 3.69773i 0.199079 0.344815i
\(116\) 4.60216 0.427300
\(117\) −2.36762 1.84238i −0.218887 0.170328i
\(118\) 0.191539 0.0176326
\(119\) 5.88397 10.1913i 0.539383 0.934238i
\(120\) −0.350692 + 0.305452i −0.0320136 + 0.0278838i
\(121\) 0.341067 + 0.590745i 0.0310061 + 0.0537041i
\(122\) −0.426734 0.739125i −0.0386347 0.0669172i
\(123\) 3.30488 2.87854i 0.297991 0.259549i
\(124\) −7.61581 + 13.1910i −0.683920 + 1.18458i
\(125\) −1.00000 −0.0894427
\(126\) 0.391978 + 0.305019i 0.0349202 + 0.0271733i
\(127\) −5.97693 −0.530367 −0.265183 0.964198i \(-0.585433\pi\)
−0.265183 + 0.964198i \(0.585433\pi\)
\(128\) 1.06917 1.85186i 0.0945025 0.163683i
\(129\) −7.48030 2.56753i −0.658603 0.226058i
\(130\) −0.0336011 0.0581988i −0.00294701 0.00510437i
\(131\) −8.93670 15.4788i −0.780803 1.35239i −0.931475 0.363806i \(-0.881477\pi\)
0.150672 0.988584i \(-0.451856\pi\)
\(132\) 2.12898 + 10.8960i 0.185304 + 0.948377i
\(133\) 4.86436 8.42533i 0.421794 0.730568i
\(134\) −0.907712 −0.0784144
\(135\) −2.34547 + 4.63668i −0.201866 + 0.399062i
\(136\) 1.28259 0.109981
\(137\) −5.24653 + 9.08726i −0.448241 + 0.776377i −0.998272 0.0587679i \(-0.981283\pi\)
0.550030 + 0.835145i \(0.314616\pi\)
\(138\) −0.0953054 0.487768i −0.00811293 0.0415215i
\(139\) 5.35343 + 9.27241i 0.454072 + 0.786475i 0.998634 0.0522449i \(-0.0166376\pi\)
−0.544563 + 0.838720i \(0.683304\pi\)
\(140\) −2.45801 4.25740i −0.207740 0.359816i
\(141\) −10.2646 3.52322i −0.864439 0.296709i
\(142\) −0.261828 + 0.453499i −0.0219721 + 0.0380568i
\(143\) −3.21214 −0.268613
\(144\) 1.63578 11.8060i 0.136315 0.983832i
\(145\) 2.30629 0.191527
\(146\) −0.0762058 + 0.131992i −0.00630684 + 0.0109238i
\(147\) 1.21572 1.05889i 0.100271 0.0873355i
\(148\) 4.86193 + 8.42111i 0.399648 + 0.692211i
\(149\) 10.1595 + 17.5968i 0.832300 + 1.44159i 0.896210 + 0.443631i \(0.146310\pi\)
−0.0639091 + 0.997956i \(0.520357\pi\)
\(150\) −0.0877720 + 0.0764492i −0.00716655 + 0.00624205i
\(151\) 8.51099 14.7415i 0.692615 1.19964i −0.278363 0.960476i \(-0.589792\pi\)
0.970978 0.239168i \(-0.0768747\pi\)
\(152\) 1.06034 0.0860046
\(153\) 13.2764 5.39410i 1.07333 0.436087i
\(154\) 0.531794 0.0428532
\(155\) −3.81652 + 6.61041i −0.306550 + 0.530961i
\(156\) 3.26907 + 1.12207i 0.261735 + 0.0898376i
\(157\) 0.653935 + 1.13265i 0.0521897 + 0.0903952i 0.890940 0.454121i \(-0.150047\pi\)
−0.838750 + 0.544516i \(0.816713\pi\)
\(158\) −0.306891 0.531550i −0.0244149 0.0422879i
\(159\) −4.15078 21.2434i −0.329178 1.68471i
\(160\) 0.402000 0.696284i 0.0317809 0.0550461i
\(161\) 10.5189 0.829005
\(162\) 0.148604 + 0.586280i 0.0116754 + 0.0460625i
\(163\) −9.81120 −0.768473 −0.384236 0.923235i \(-0.625535\pi\)
−0.384236 + 0.923235i \(0.625535\pi\)
\(164\) −2.52465 + 4.37282i −0.197142 + 0.341460i
\(165\) 1.06690 + 5.46034i 0.0830582 + 0.425087i
\(166\) −0.353211 0.611779i −0.0274145 0.0474833i
\(167\) −4.08745 7.07968i −0.316297 0.547842i 0.663416 0.748251i \(-0.269106\pi\)
−0.979712 + 0.200409i \(0.935773\pi\)
\(168\) −1.08366 0.371955i −0.0836064 0.0286970i
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) 0.321010 0.0246203
\(171\) 10.9758 4.45938i 0.839338 0.341018i
\(172\) 9.11152 0.694747
\(173\) 3.19885 5.54058i 0.243204 0.421242i −0.718421 0.695609i \(-0.755135\pi\)
0.961625 + 0.274366i \(0.0884681\pi\)
\(174\) 0.202427 0.176314i 0.0153460 0.0133663i
\(175\) −1.23179 2.13352i −0.0931143 0.161279i
\(176\) −6.38080 11.0519i −0.480971 0.833066i
\(177\) −3.72260 + 3.24237i −0.279807 + 0.243712i
\(178\) −0.0324792 + 0.0562557i −0.00243442 + 0.00421654i
\(179\) −15.6316 −1.16836 −0.584180 0.811624i \(-0.698584\pi\)
−0.584180 + 0.811624i \(0.698584\pi\)
\(180\) 0.821607 5.92980i 0.0612389 0.441981i
\(181\) 11.1033 0.825299 0.412650 0.910890i \(-0.364603\pi\)
0.412650 + 0.910890i \(0.364603\pi\)
\(182\) 0.0827788 0.143377i 0.00613597 0.0106278i
\(183\) 20.8056 + 7.14128i 1.53799 + 0.527899i
\(184\) 0.573228 + 0.992860i 0.0422589 + 0.0731946i
\(185\) 2.43647 + 4.22008i 0.179133 + 0.310267i
\(186\) 0.170377 + 0.871979i 0.0124926 + 0.0639366i
\(187\) 7.67185 13.2880i 0.561021 0.971717i
\(188\) 12.5030 0.911878
\(189\) −12.7815 + 0.707298i −0.929721 + 0.0514484i
\(190\) 0.265384 0.0192530
\(191\) −7.79123 + 13.4948i −0.563753 + 0.976450i 0.433411 + 0.901196i \(0.357310\pi\)
−0.997164 + 0.0752533i \(0.976023\pi\)
\(192\) 2.62124 + 13.4153i 0.189172 + 0.968169i
\(193\) 9.34800 + 16.1912i 0.672884 + 1.16547i 0.977083 + 0.212860i \(0.0682780\pi\)
−0.304199 + 0.952609i \(0.598389\pi\)
\(194\) 0.631042 + 1.09300i 0.0453062 + 0.0784726i
\(195\) 1.63823 + 0.562306i 0.117316 + 0.0402675i
\(196\) −0.928706 + 1.60857i −0.0663362 + 0.114898i
\(197\) −10.2024 −0.726893 −0.363447 0.931615i \(-0.618400\pi\)
−0.363447 + 0.931615i \(0.618400\pi\)
\(198\) 0.511083 + 0.397701i 0.0363211 + 0.0282634i
\(199\) −16.4798 −1.16822 −0.584112 0.811673i \(-0.698557\pi\)
−0.584112 + 0.811673i \(0.698557\pi\)
\(200\) 0.134253 0.232532i 0.00949309 0.0164425i
\(201\) 17.6416 15.3658i 1.24434 1.08382i
\(202\) 0.623551 + 1.08002i 0.0438729 + 0.0759900i
\(203\) 2.84085 + 4.92050i 0.199389 + 0.345351i
\(204\) −12.4496 + 10.8436i −0.871647 + 0.759203i
\(205\) −1.26518 + 2.19136i −0.0883641 + 0.153051i
\(206\) 0.689246 0.0480220
\(207\) 10.1092 + 7.86653i 0.702639 + 0.546762i
\(208\) −3.97292 −0.275473
\(209\) 6.34243 10.9854i 0.438715 0.759877i
\(210\) −0.271222 0.0930939i −0.0187161 0.00642409i
\(211\) 12.5991 + 21.8223i 0.867359 + 1.50231i 0.864686 + 0.502313i \(0.167517\pi\)
0.00267240 + 0.999996i \(0.499149\pi\)
\(212\) 12.4686 + 21.5963i 0.856348 + 1.48324i
\(213\) −2.58816 13.2461i −0.177338 0.907606i
\(214\) 0.449344 0.778286i 0.0307165 0.0532025i
\(215\) 4.56607 0.311403
\(216\) −0.763292 1.16788i −0.0519355 0.0794644i
\(217\) −18.8046 −1.27654
\(218\) 0.0456262 0.0790270i 0.00309020 0.00535238i
\(219\) −0.753293 3.85531i −0.0509029 0.260518i
\(220\) −3.20489 5.55103i −0.216074 0.374251i
\(221\) −2.38839 4.13681i −0.160660 0.278272i
\(222\) 0.536476 + 0.184139i 0.0360059 + 0.0123586i
\(223\) −3.79219 + 6.56827i −0.253944 + 0.439844i −0.964608 0.263688i \(-0.915061\pi\)
0.710664 + 0.703531i \(0.248395\pi\)
\(224\) 1.98071 0.132342
\(225\) 0.411733 2.97161i 0.0274489 0.198107i
\(226\) −0.494404 −0.0328873
\(227\) −0.150519 + 0.260706i −0.00999028 + 0.0173037i −0.870977 0.491323i \(-0.836513\pi\)
0.860987 + 0.508627i \(0.169847\pi\)
\(228\) −10.2923 + 8.96455i −0.681623 + 0.593692i
\(229\) 2.31658 + 4.01244i 0.153084 + 0.265149i 0.932360 0.361532i \(-0.117746\pi\)
−0.779276 + 0.626681i \(0.784413\pi\)
\(230\) 0.143469 + 0.248496i 0.00946007 + 0.0163853i
\(231\) −10.3355 + 9.00223i −0.680028 + 0.592303i
\(232\) −0.309625 + 0.536286i −0.0203279 + 0.0352089i
\(233\) 5.62440 0.368466 0.184233 0.982883i \(-0.441020\pi\)
0.184233 + 0.982883i \(0.441020\pi\)
\(234\) 0.186779 0.0758870i 0.0122101 0.00496089i
\(235\) 6.26567 0.408727
\(236\) 2.84375 4.92552i 0.185112 0.320624i
\(237\) 14.9626 + 5.13574i 0.971924 + 0.333602i
\(238\) 0.395416 + 0.684880i 0.0256310 + 0.0443942i
\(239\) −1.28093 2.21863i −0.0828562 0.143511i 0.821619 0.570036i \(-0.193071\pi\)
−0.904476 + 0.426525i \(0.859738\pi\)
\(240\) 1.31959 + 6.75359i 0.0851793 + 0.435943i
\(241\) 7.49149 12.9756i 0.482569 0.835835i −0.517230 0.855846i \(-0.673037\pi\)
0.999800 + 0.0200114i \(0.00637025\pi\)
\(242\) −0.0458409 −0.00294676
\(243\) −12.8127 8.87890i −0.821935 0.569582i
\(244\) −25.3426 −1.62240
\(245\) −0.465404 + 0.806103i −0.0297336 + 0.0515001i
\(246\) 0.0564801 + 0.289062i 0.00360104 + 0.0184299i
\(247\) −1.97452 3.41996i −0.125635 0.217607i
\(248\) −1.02476 1.77493i −0.0650721 0.112708i
\(249\) 17.2209 + 5.91090i 1.09133 + 0.374588i
\(250\) 0.0336011 0.0581988i 0.00212512 0.00368082i
\(251\) −7.27387 −0.459123 −0.229561 0.973294i \(-0.573729\pi\)
−0.229561 + 0.973294i \(0.573729\pi\)
\(252\) 13.6634 5.55134i 0.860712 0.349702i
\(253\) 13.7151 0.862262
\(254\) 0.200831 0.347850i 0.0126013 0.0218261i
\(255\) −6.23889 + 5.43406i −0.390695 + 0.340294i
\(256\) −7.81997 13.5446i −0.488748 0.846536i
\(257\) 4.53307 + 7.85150i 0.282765 + 0.489763i 0.972065 0.234713i \(-0.0754150\pi\)
−0.689300 + 0.724476i \(0.742082\pi\)
\(258\) 0.400773 0.349073i 0.0249510 0.0217323i
\(259\) −6.00241 + 10.3965i −0.372972 + 0.646006i
\(260\) −1.99548 −0.123755
\(261\) −0.949574 + 6.85339i −0.0587772 + 0.424214i
\(262\) 1.20113 0.0742061
\(263\) −13.7692 + 23.8490i −0.849045 + 1.47059i 0.0330158 + 0.999455i \(0.489489\pi\)
−0.882061 + 0.471135i \(0.843844\pi\)
\(264\) −1.41294 0.484976i −0.0869605 0.0298482i
\(265\) 6.24841 + 10.8226i 0.383837 + 0.664825i
\(266\) 0.326896 + 0.566200i 0.0200433 + 0.0347160i
\(267\) −0.321057 1.64315i −0.0196483 0.100559i
\(268\) −13.4767 + 23.3423i −0.823219 + 1.42586i
\(269\) −6.82403 −0.416069 −0.208034 0.978122i \(-0.566707\pi\)
−0.208034 + 0.978122i \(0.566707\pi\)
\(270\) −0.191039 0.292301i −0.0116262 0.0177889i
\(271\) 1.91734 0.116470 0.0582352 0.998303i \(-0.481453\pi\)
0.0582352 + 0.998303i \(0.481453\pi\)
\(272\) 9.48889 16.4352i 0.575348 0.996532i
\(273\) 0.818267 + 4.18784i 0.0495237 + 0.253460i
\(274\) −0.352578 0.610684i −0.0213000 0.0368927i
\(275\) −1.60607 2.78180i −0.0968498 0.167749i
\(276\) −13.9582 4.79099i −0.840184 0.288384i
\(277\) 13.6495 23.6416i 0.820119 1.42049i −0.0854740 0.996340i \(-0.527240\pi\)
0.905593 0.424148i \(-0.139426\pi\)
\(278\) −0.719524 −0.0431542
\(279\) −18.0722 14.0629i −1.08195 0.841927i
\(280\) 0.661482 0.0395311
\(281\) 0.328412 0.568826i 0.0195914 0.0339333i −0.856063 0.516871i \(-0.827097\pi\)
0.875655 + 0.482937i \(0.160430\pi\)
\(282\) 0.549950 0.479006i 0.0327491 0.0285244i
\(283\) 2.50989 + 4.34726i 0.149198 + 0.258418i 0.930931 0.365195i \(-0.118998\pi\)
−0.781734 + 0.623613i \(0.785664\pi\)
\(284\) 7.77464 + 13.4661i 0.461340 + 0.799065i
\(285\) −5.15778 + 4.49242i −0.305521 + 0.266108i
\(286\) 0.107932 0.186943i 0.00638213 0.0110542i
\(287\) −6.23373 −0.367966
\(288\) 1.90357 + 1.48127i 0.112169 + 0.0872847i
\(289\) 5.81760 0.342212
\(290\) −0.0774937 + 0.134223i −0.00455059 + 0.00788185i
\(291\) −30.7667 10.5603i −1.80358 0.619057i
\(292\) 2.26284 + 3.91935i 0.132422 + 0.229362i
\(293\) 6.11183 + 10.5860i 0.357057 + 0.618441i 0.987468 0.157821i \(-0.0504468\pi\)
−0.630411 + 0.776262i \(0.717113\pi\)
\(294\) 0.0207765 + 0.106333i 0.00121171 + 0.00620147i
\(295\) 1.42509 2.46833i 0.0829722 0.143712i
\(296\) −1.30841 −0.0760497
\(297\) −16.6653 + 0.922214i −0.967018 + 0.0535123i
\(298\) −1.36548 −0.0791004
\(299\) 2.13489 3.69773i 0.123464 0.213845i
\(300\) 0.662793 + 3.39213i 0.0382663 + 0.195845i
\(301\) 5.62443 + 9.74179i 0.324186 + 0.561507i
\(302\) 0.571957 + 0.990659i 0.0329124 + 0.0570060i
\(303\) −30.4015 10.4350i −1.74652 0.599473i
\(304\) 7.84460 13.5872i 0.449919 0.779282i
\(305\) −12.7000 −0.727200
\(306\) −0.132170 + 0.953917i −0.00755568 + 0.0545318i
\(307\) −1.01733 −0.0580619 −0.0290309 0.999579i \(-0.509242\pi\)
−0.0290309 + 0.999579i \(0.509242\pi\)
\(308\) 7.89548 13.6754i 0.449887 0.779227i
\(309\) −13.3956 + 11.6676i −0.762051 + 0.663745i
\(310\) −0.256479 0.444234i −0.0145670 0.0252308i
\(311\) 11.1446 + 19.3030i 0.631952 + 1.09457i 0.987152 + 0.159783i \(0.0510793\pi\)
−0.355200 + 0.934790i \(0.615587\pi\)
\(312\) −0.350692 + 0.305452i −0.0198540 + 0.0172928i
\(313\) 11.8874 20.5896i 0.671915 1.16379i −0.305445 0.952210i \(-0.598805\pi\)
0.977360 0.211581i \(-0.0678613\pi\)
\(314\) −0.0878917 −0.00496001
\(315\) 6.84715 2.78195i 0.385793 0.156745i
\(316\) −18.2255 −1.02526
\(317\) −14.0187 + 24.2810i −0.787366 + 1.36376i 0.140209 + 0.990122i \(0.455223\pi\)
−0.927575 + 0.373637i \(0.878111\pi\)
\(318\) 1.37581 + 0.472232i 0.0771517 + 0.0264815i
\(319\) 3.70406 + 6.41562i 0.207388 + 0.359206i
\(320\) −3.94591 6.83451i −0.220583 0.382061i
\(321\) 4.44175 + 22.7326i 0.247915 + 1.26881i
\(322\) −0.353446 + 0.612187i −0.0196968 + 0.0341159i
\(323\) 18.8636 1.04960
\(324\) 17.2828 + 4.88299i 0.960155 + 0.271277i
\(325\) −1.00000 −0.0554700
\(326\) 0.329667 0.571000i 0.0182586 0.0316248i
\(327\) 0.451015 + 2.30827i 0.0249412 + 0.127647i
\(328\) −0.339708 0.588391i −0.0187572 0.0324885i
\(329\) 7.71797 + 13.3679i 0.425505 + 0.736997i
\(330\) −0.353634 0.121381i −0.0194669 0.00668181i
\(331\) 8.93018 15.4675i 0.490847 0.850172i −0.509098 0.860709i \(-0.670021\pi\)
0.999944 + 0.0105370i \(0.00335410\pi\)
\(332\) −20.9763 −1.15122
\(333\) −13.5436 + 5.50269i −0.742186 + 0.301545i
\(334\) 0.549372 0.0300603
\(335\) −6.75359 + 11.6976i −0.368988 + 0.639106i
\(336\) −12.7835 + 11.1344i −0.697395 + 0.607429i
\(337\) −4.88581 8.46246i −0.266147 0.460980i 0.701717 0.712456i \(-0.252417\pi\)
−0.967863 + 0.251476i \(0.919084\pi\)
\(338\) −0.0336011 0.0581988i −0.00182766 0.00316560i
\(339\) 9.60884 8.36928i 0.521881 0.454557i
\(340\) 4.76599 8.25494i 0.258472 0.447687i
\(341\) −24.5184 −1.32775
\(342\) −0.109267 + 0.788617i −0.00590849 + 0.0426435i
\(343\) −19.5381 −1.05496
\(344\) −0.613007 + 1.06176i −0.0330511 + 0.0572462i
\(345\) −6.99489 2.40092i −0.376592 0.129261i
\(346\) 0.214970 + 0.372339i 0.0115569 + 0.0200171i
\(347\) −10.5073 18.1991i −0.564059 0.976978i −0.997137 0.0756219i \(-0.975906\pi\)
0.433078 0.901357i \(-0.357428\pi\)
\(348\) −1.52859 7.82323i −0.0819410 0.419369i
\(349\) 4.61976 8.00166i 0.247290 0.428319i −0.715483 0.698630i \(-0.753793\pi\)
0.962773 + 0.270311i \(0.0871266\pi\)
\(350\) 0.165558 0.00884942
\(351\) −2.34547 + 4.63668i −0.125192 + 0.247488i
\(352\) 2.58256 0.137651
\(353\) −2.25362 + 3.90339i −0.119948 + 0.207756i −0.919747 0.392512i \(-0.871606\pi\)
0.799799 + 0.600268i \(0.204940\pi\)
\(354\) −0.0636189 0.325598i −0.00338131 0.0173053i
\(355\) 3.89612 + 6.74828i 0.206785 + 0.358161i
\(356\) 0.964429 + 1.67044i 0.0511146 + 0.0885332i
\(357\) −19.2786 6.61718i −1.02033 0.350218i
\(358\) 0.525239 0.909741i 0.0277597 0.0480813i
\(359\) 25.2752 1.33397 0.666986 0.745070i \(-0.267584\pi\)
0.666986 + 0.745070i \(0.267584\pi\)
\(360\) 0.635720 + 0.494688i 0.0335054 + 0.0260723i
\(361\) −3.40514 −0.179218
\(362\) −0.373082 + 0.646197i −0.0196087 + 0.0339633i
\(363\) 0.890927 0.775995i 0.0467615 0.0407292i
\(364\) −2.45801 4.25740i −0.128835 0.223148i
\(365\) 1.13398 + 1.96411i 0.0593551 + 0.102806i
\(366\) −1.11470 + 0.970905i −0.0582665 + 0.0507500i
\(367\) 5.55336 9.61871i 0.289883 0.502092i −0.683898 0.729577i \(-0.739717\pi\)
0.973782 + 0.227485i \(0.0730502\pi\)
\(368\) 16.9635 0.884282
\(369\) −5.99095 4.66188i −0.311876 0.242688i
\(370\) −0.327472 −0.0170244
\(371\) −15.3934 + 26.6622i −0.799187 + 1.38423i
\(372\) 24.9530 + 8.56483i 1.29375 + 0.444066i
\(373\) 3.86823 + 6.69997i 0.200289 + 0.346911i 0.948622 0.316413i \(-0.102478\pi\)
−0.748332 + 0.663324i \(0.769145\pi\)
\(374\) 0.515565 + 0.892985i 0.0266592 + 0.0461751i
\(375\) 0.332146 + 1.69991i 0.0171520 + 0.0877827i
\(376\) −0.841183 + 1.45697i −0.0433807 + 0.0751376i
\(377\) 2.30629 0.118780
\(378\) 0.388310 0.767637i 0.0199725 0.0394830i
\(379\) 26.0870 1.34000 0.669999 0.742362i \(-0.266295\pi\)
0.669999 + 0.742362i \(0.266295\pi\)
\(380\) 3.94012 6.82448i 0.202124 0.350088i
\(381\) 1.98522 + 10.1602i 0.101706 + 0.520524i
\(382\) −0.523588 0.906880i −0.0267891 0.0464000i
\(383\) 0.421284 + 0.729686i 0.0215266 + 0.0372852i 0.876588 0.481242i \(-0.159814\pi\)
−0.855061 + 0.518527i \(0.826481\pi\)
\(384\) −3.50311 1.20240i −0.178768 0.0613599i
\(385\) 3.95668 6.85316i 0.201651 0.349269i
\(386\) −1.25641 −0.0639497
\(387\) −1.88000 + 13.5686i −0.0955659 + 0.689730i
\(388\) 37.4760 1.90256
\(389\) 4.37726 7.58163i 0.221936 0.384404i −0.733460 0.679733i \(-0.762096\pi\)
0.955396 + 0.295329i \(0.0954291\pi\)
\(390\) −0.0877720 + 0.0764492i −0.00444451 + 0.00387116i
\(391\) 10.1979 + 17.6632i 0.515729 + 0.893268i
\(392\) −0.124963 0.216443i −0.00631161 0.0109320i
\(393\) −23.3442 + 20.3328i −1.17756 + 1.02565i
\(394\) 0.342813 0.593769i 0.0172707 0.0299137i
\(395\) −9.13335 −0.459549
\(396\) 17.8151 7.23815i 0.895241 0.363731i
\(397\) −6.72904 −0.337721 −0.168860 0.985640i \(-0.554009\pi\)
−0.168860 + 0.985640i \(0.554009\pi\)
\(398\) 0.553740 0.959106i 0.0277565 0.0480757i
\(399\) −15.9379 5.47052i −0.797895 0.273869i
\(400\) −1.98646 3.44065i −0.0993231 0.172033i
\(401\) 14.4471 + 25.0231i 0.721453 + 1.24959i 0.960417 + 0.278565i \(0.0898589\pi\)
−0.238964 + 0.971028i \(0.576808\pi\)
\(402\) 0.301493 + 1.54302i 0.0150371 + 0.0769591i
\(403\) −3.81652 + 6.61041i −0.190115 + 0.329288i
\(404\) 37.0311 1.84237
\(405\) 8.66095 + 2.44702i 0.430366 + 0.121593i
\(406\) −0.381823 −0.0189496
\(407\) −7.82628 + 13.5555i −0.387934 + 0.671922i
\(408\) −0.426007 2.18028i −0.0210905 0.107940i
\(409\) 9.19426 + 15.9249i 0.454627 + 0.787437i 0.998667 0.0516225i \(-0.0164392\pi\)
−0.544040 + 0.839059i \(0.683106\pi\)
\(410\) −0.0850230 0.147264i −0.00419898 0.00727285i
\(411\) 17.1901 + 5.90031i 0.847925 + 0.291041i
\(412\) 10.2331 17.7243i 0.504151 0.873215i
\(413\) 7.02164 0.345513
\(414\) −0.797503 + 0.324020i −0.0391952 + 0.0159247i
\(415\) −10.5119 −0.516008
\(416\) 0.402000 0.696284i 0.0197097 0.0341381i
\(417\) 13.9841 12.1801i 0.684804 0.596463i
\(418\) 0.426225 + 0.738244i 0.0208474 + 0.0361087i
\(419\) 12.6003 + 21.8244i 0.615567 + 1.06619i 0.990285 + 0.139054i \(0.0444061\pi\)
−0.374718 + 0.927139i \(0.622261\pi\)
\(420\) −6.42076 + 5.59246i −0.313301 + 0.272884i
\(421\) 8.93227 15.4711i 0.435332 0.754017i −0.561991 0.827144i \(-0.689964\pi\)
0.997323 + 0.0731263i \(0.0232976\pi\)
\(422\) −1.69338 −0.0824322
\(423\) −2.57978 + 18.6191i −0.125433 + 0.905294i
\(424\) −3.35546 −0.162956
\(425\) 2.38839 4.13681i 0.115854 0.200665i
\(426\) 0.857870 + 0.294454i 0.0415640 + 0.0142664i
\(427\) −15.6437 27.0957i −0.757051 1.31125i
\(428\) −13.3427 23.1102i −0.644943 1.11707i
\(429\) 1.06690 + 5.46034i 0.0515105 + 0.263628i
\(430\) −0.153425 + 0.265740i −0.00739881 + 0.0128151i
\(431\) 28.4290 1.36937 0.684687 0.728837i \(-0.259939\pi\)
0.684687 + 0.728837i \(0.259939\pi\)
\(432\) −20.6124 + 1.14064i −0.991714 + 0.0548789i
\(433\) −20.4163 −0.981146 −0.490573 0.871400i \(-0.663212\pi\)
−0.490573 + 0.871400i \(0.663212\pi\)
\(434\) 0.631854 1.09440i 0.0303300 0.0525330i
\(435\) −0.766024 3.92047i −0.0367281 0.187972i
\(436\) −1.35481 2.34661i −0.0648838 0.112382i
\(437\) 8.43073 + 14.6025i 0.403297 + 0.698530i
\(438\) 0.249686 + 0.0857019i 0.0119305 + 0.00409500i
\(439\) −4.91252 + 8.50874i −0.234462 + 0.406100i −0.959116 0.283013i \(-0.908666\pi\)
0.724654 + 0.689113i \(0.241999\pi\)
\(440\) 0.862477 0.0411170
\(441\) −2.20380 1.71490i −0.104943 0.0816619i
\(442\) 0.321010 0.0152689
\(443\) 9.82384 17.0154i 0.466745 0.808425i −0.532534 0.846409i \(-0.678760\pi\)
0.999278 + 0.0379835i \(0.0120934\pi\)
\(444\) 12.7002 11.0619i 0.602726 0.524973i
\(445\) 0.483306 + 0.837110i 0.0229109 + 0.0396828i
\(446\) −0.254844 0.441402i −0.0120672 0.0209010i
\(447\) 26.5385 23.1149i 1.25523 1.09330i
\(448\) 9.72103 16.8373i 0.459276 0.795489i
\(449\) 27.3713 1.29173 0.645866 0.763451i \(-0.276496\pi\)
0.645866 + 0.763451i \(0.276496\pi\)
\(450\) 0.159110 + 0.123812i 0.00750050 + 0.00583654i
\(451\) −8.12789 −0.382727
\(452\) −7.34035 + 12.7139i −0.345261 + 0.598010i
\(453\) −27.8860 9.57156i −1.31020 0.449711i
\(454\) −0.0101152 0.0175200i −0.000474729 0.000822255i
\(455\) −1.23179 2.13352i −0.0577470 0.100021i
\(456\) −0.352187 1.80247i −0.0164927 0.0844084i
\(457\) 12.2292 21.1815i 0.572056 0.990830i −0.424299 0.905522i \(-0.639479\pi\)
0.996355 0.0853077i \(-0.0271873\pi\)
\(458\) −0.311359 −0.0145488
\(459\) −13.5792 20.7770i −0.633821 0.969785i
\(460\) 8.52026 0.397259
\(461\) −4.38036 + 7.58701i −0.204014 + 0.353362i −0.949818 0.312803i \(-0.898732\pi\)
0.745804 + 0.666165i \(0.232065\pi\)
\(462\) −0.176634 0.904000i −0.00821774 0.0420579i
\(463\) −7.55160 13.0797i −0.350952 0.607867i 0.635464 0.772130i \(-0.280809\pi\)
−0.986417 + 0.164263i \(0.947475\pi\)
\(464\) 4.58135 + 7.93513i 0.212684 + 0.368379i
\(465\) 12.5047 + 4.29210i 0.579892 + 0.199042i
\(466\) −0.188986 + 0.327333i −0.00875460 + 0.0151634i
\(467\) −19.5484 −0.904591 −0.452296 0.891868i \(-0.649395\pi\)
−0.452296 + 0.891868i \(0.649395\pi\)
\(468\) 0.821607 5.92980i 0.0379788 0.274105i
\(469\) −33.2759 −1.53654
\(470\) −0.210533 + 0.364655i −0.00971118 + 0.0168203i
\(471\) 1.70819 1.48783i 0.0787094 0.0685557i
\(472\) 0.382645 + 0.662761i 0.0176127 + 0.0305060i
\(473\) 7.33344 + 12.7019i 0.337192 + 0.584033i
\(474\) −0.801653 + 0.698238i −0.0368211 + 0.0320711i
\(475\) 1.97452 3.41996i 0.0905970 0.156919i
\(476\) 23.4827 1.07633
\(477\) −34.7332 + 14.1119i −1.59032 + 0.646137i
\(478\) 0.172162 0.00787451
\(479\) −0.653565 + 1.13201i −0.0298621 + 0.0517227i −0.880570 0.473916i \(-0.842840\pi\)
0.850708 + 0.525638i \(0.176173\pi\)
\(480\) −1.31714 0.452094i −0.0601189 0.0206352i
\(481\) 2.43647 + 4.22008i 0.111093 + 0.192419i
\(482\) 0.503445 + 0.871992i 0.0229313 + 0.0397181i
\(483\) −3.49381 17.8811i −0.158974 0.813619i
\(484\) −0.680593 + 1.17882i −0.0309361 + 0.0535828i
\(485\) 18.7804 0.852774
\(486\) 0.947262 0.447343i 0.0429687 0.0202919i
\(487\) 30.3533 1.37544 0.687719 0.725977i \(-0.258612\pi\)
0.687719 + 0.725977i \(0.258612\pi\)
\(488\) 1.70501 2.95316i 0.0771821 0.133683i
\(489\) 3.25875 + 16.6781i 0.147366 + 0.754211i
\(490\) −0.0312762 0.0541719i −0.00141291 0.00244724i
\(491\) −4.18858 7.25484i −0.189028 0.327406i 0.755898 0.654689i \(-0.227200\pi\)
−0.944926 + 0.327283i \(0.893867\pi\)
\(492\) 8.27193 + 2.83925i 0.372928 + 0.128003i
\(493\) −5.50831 + 9.54067i −0.248082 + 0.429690i
\(494\) 0.265384 0.0119402
\(495\) 8.92770 3.62726i 0.401270 0.163033i
\(496\) −30.3255 −1.36166
\(497\) −9.59837 + 16.6249i −0.430546 + 0.745727i
\(498\) −0.922650 + 0.803626i −0.0413449 + 0.0360113i
\(499\) −6.43013 11.1373i −0.287852 0.498574i 0.685445 0.728125i \(-0.259608\pi\)
−0.973297 + 0.229550i \(0.926274\pi\)
\(500\) −0.997742 1.72814i −0.0446204 0.0772848i
\(501\) −10.6772 + 9.29977i −0.477020 + 0.415483i
\(502\) 0.244410 0.423331i 0.0109086 0.0188942i
\(503\) 5.22447 0.232947 0.116474 0.993194i \(-0.462841\pi\)
0.116474 + 0.993194i \(0.462841\pi\)
\(504\) −0.272354 + 1.96567i −0.0121316 + 0.0875578i
\(505\) 18.5575 0.825796
\(506\) −0.460843 + 0.798204i −0.0204870 + 0.0354845i
\(507\) 1.63823 + 0.562306i 0.0727565 + 0.0249729i
\(508\) −5.96344 10.3290i −0.264585 0.458274i
\(509\) −5.01119 8.67964i −0.222117 0.384718i 0.733334 0.679869i \(-0.237963\pi\)
−0.955451 + 0.295151i \(0.904630\pi\)
\(510\) −0.106622 0.545687i −0.00472131 0.0241634i
\(511\) −2.79364 + 4.83872i −0.123583 + 0.214053i
\(512\) 5.32773 0.235455
\(513\) −11.2261 17.1766i −0.495644 0.758366i
\(514\) −0.609264 −0.0268735
\(515\) 5.12815 8.88222i 0.225973 0.391397i
\(516\) −3.02636 15.4887i −0.133228 0.681853i
\(517\) 10.0631 + 17.4298i 0.442575 + 0.766563i
\(518\) −0.403375 0.698667i −0.0177233 0.0306976i
\(519\) −10.4809 3.59747i −0.460062 0.157911i
\(520\) 0.134253 0.232532i 0.00588737 0.0101972i
\(521\) 20.3192 0.890202 0.445101 0.895480i \(-0.353168\pi\)
0.445101 + 0.895480i \(0.353168\pi\)
\(522\) −0.366952 0.285545i −0.0160611 0.0124980i
\(523\) −0.572523 −0.0250347 −0.0125173 0.999922i \(-0.503984\pi\)
−0.0125173 + 0.999922i \(0.503984\pi\)
\(524\) 17.8330 30.8877i 0.779040 1.34934i
\(525\) −3.21764 + 2.80256i −0.140429 + 0.122314i
\(526\) −0.925321 1.60270i −0.0403459 0.0698811i
\(527\) −18.2307 31.5765i −0.794141 1.37549i
\(528\) −16.6678 + 14.5176i −0.725372 + 0.631797i
\(529\) 2.38452 4.13012i 0.103675 0.179570i
\(530\) −0.839814 −0.0364792
\(531\) 6.74817 + 5.25112i 0.292846 + 0.227879i
\(532\) 19.4135 0.841683
\(533\) −1.26518 + 2.19136i −0.0548011 + 0.0949183i
\(534\) 0.106417 + 0.0365265i 0.00460512 + 0.00158066i
\(535\) −6.68644 11.5813i −0.289080 0.500702i
\(536\) −1.81337 3.14086i −0.0783258 0.135664i
\(537\) 5.19198 + 26.5723i 0.224050 + 1.14668i
\(538\) 0.229295 0.397151i 0.00988561 0.0171224i
\(539\) −2.98989 −0.128784
\(540\) −10.3530 + 0.572908i −0.445522 + 0.0246541i
\(541\) −23.5766 −1.01364 −0.506819 0.862052i \(-0.669179\pi\)
−0.506819 + 0.862052i \(0.669179\pi\)
\(542\) −0.0644248 + 0.111587i −0.00276728 + 0.00479308i
\(543\) −3.68791 18.8745i −0.158263 0.809982i
\(544\) 1.92026 + 3.32599i 0.0823306 + 0.142601i
\(545\) −0.678940 1.17596i −0.0290826 0.0503725i
\(546\) −0.271222 0.0930939i −0.0116072 0.00398405i
\(547\) 1.87854 3.25373i 0.0803205 0.139119i −0.823067 0.567944i \(-0.807739\pi\)
0.903388 + 0.428825i \(0.141072\pi\)
\(548\) −20.9387 −0.894458
\(549\) 5.22901 37.7395i 0.223169 1.61068i
\(550\) 0.215863 0.00920443
\(551\) −4.55380 + 7.88741i −0.193998 + 0.336015i
\(552\) 1.49737 1.30421i 0.0637324 0.0555108i
\(553\) −11.2503 19.4862i −0.478413 0.828636i
\(554\) 0.917276 + 1.58877i 0.0389713 + 0.0675003i
\(555\) 6.36448 5.54345i 0.270157 0.235306i
\(556\) −10.6827 + 18.5029i −0.453046 + 0.784699i
\(557\) −39.9225 −1.69157 −0.845785 0.533523i \(-0.820868\pi\)
−0.845785 + 0.533523i \(0.820868\pi\)
\(558\) 1.42569 0.579249i 0.0603544 0.0245216i
\(559\) 4.56607 0.193124
\(560\) 4.89379 8.47630i 0.206801 0.358189i
\(561\) −25.1366 8.62785i −1.06127 0.364268i
\(562\) 0.0220700 + 0.0382264i 0.000930967 + 0.00161248i
\(563\) −16.7785 29.0612i −0.707130 1.22478i −0.965917 0.258850i \(-0.916656\pi\)
0.258788 0.965934i \(-0.416677\pi\)
\(564\) −4.15284 21.2540i −0.174866 0.894955i
\(565\) −3.67848 + 6.37132i −0.154755 + 0.268043i
\(566\) −0.337340 −0.0141795
\(567\) 5.44768 + 21.4925i 0.228781 + 0.902600i
\(568\) −2.09226 −0.0877892
\(569\) −7.71687 + 13.3660i −0.323508 + 0.560332i −0.981209 0.192946i \(-0.938196\pi\)
0.657701 + 0.753279i \(0.271529\pi\)
\(570\) −0.0881462 0.451127i −0.00369204 0.0188956i
\(571\) −19.9691 34.5875i −0.835681 1.44744i −0.893475 0.449114i \(-0.851740\pi\)
0.0577933 0.998329i \(-0.481594\pi\)
\(572\) −3.20489 5.55103i −0.134003 0.232100i
\(573\) 25.5277 + 8.76210i 1.06644 + 0.366042i
\(574\) 0.209460 0.362796i 0.00874270 0.0151428i
\(575\) 4.26977 0.178062
\(576\) 21.9342 8.91171i 0.913924 0.371321i
\(577\) 25.4359 1.05891 0.529455 0.848338i \(-0.322396\pi\)
0.529455 + 0.848338i \(0.322396\pi\)
\(578\) −0.195478 + 0.338578i −0.00813081 + 0.0140830i
\(579\) 24.4186 21.2686i 1.01480 0.883892i
\(580\) 2.30108 + 3.98558i 0.0955471 + 0.165492i
\(581\) −12.9484 22.4273i −0.537190 0.930441i
\(582\) 1.64839 1.43575i 0.0683281 0.0595136i
\(583\) −20.0708 + 34.7637i −0.831248 + 1.43976i
\(584\) −0.608958 −0.0251989
\(585\) 0.411733 2.97161i 0.0170231 0.122861i
\(586\) −0.821457 −0.0339341
\(587\) 20.4639 35.4446i 0.844637 1.46295i −0.0412991 0.999147i \(-0.513150\pi\)
0.885936 0.463807i \(-0.153517\pi\)
\(588\) 3.04288 + 1.04443i 0.125486 + 0.0430717i
\(589\) −15.0716 26.1047i −0.621013 1.07563i
\(590\) 0.0957694 + 0.165877i 0.00394276 + 0.00682907i
\(591\) 3.38870 + 17.3432i 0.139393 + 0.713403i
\(592\) −9.67990 + 16.7661i −0.397841 + 0.689081i
\(593\) −1.00808 −0.0413971 −0.0206985 0.999786i \(-0.506589\pi\)
−0.0206985 + 0.999786i \(0.506589\pi\)
\(594\) 0.506300 1.00089i 0.0207738 0.0410669i
\(595\) 11.7679 0.482439
\(596\) −20.2732 + 35.1141i −0.830421 + 1.43833i
\(597\) 5.47371 + 28.0141i 0.224024 + 1.14654i
\(598\) 0.143469 + 0.248496i 0.00586688 + 0.0101617i
\(599\) −0.939758 1.62771i −0.0383975 0.0665064i 0.846188 0.532884i \(-0.178892\pi\)
−0.884585 + 0.466378i \(0.845559\pi\)
\(600\) −0.439875 0.150982i −0.0179578 0.00616382i
\(601\) 1.47264 2.55068i 0.0600702 0.104045i −0.834426 0.551119i \(-0.814201\pi\)
0.894497 + 0.447075i \(0.147534\pi\)
\(602\) −0.755947 −0.0308101
\(603\) −31.9799 24.8853i −1.30232 1.01341i
\(604\) 33.9671 1.38210
\(605\) −0.341067 + 0.590745i −0.0138663 + 0.0240172i
\(606\) 1.62882 1.41870i 0.0661665 0.0576308i
\(607\) −0.670347 1.16108i −0.0272085 0.0471266i 0.852101 0.523378i \(-0.175328\pi\)
−0.879309 + 0.476252i \(0.841995\pi\)
\(608\) 1.58751 + 2.74965i 0.0643820 + 0.111513i
\(609\) 7.42081 6.46351i 0.300706 0.261914i
\(610\) 0.426734 0.739125i 0.0172780 0.0299263i
\(611\) 6.26567 0.253482
\(612\) 22.5682 + 17.5615i 0.912264 + 0.709882i
\(613\) −20.1796 −0.815046 −0.407523 0.913195i \(-0.633607\pi\)
−0.407523 + 0.913195i \(0.633607\pi\)
\(614\) 0.0341833 0.0592072i 0.00137952 0.00238941i
\(615\) 4.14533 + 1.42284i 0.167156 + 0.0573743i
\(616\) 1.06239 + 1.84011i 0.0428048 + 0.0741402i
\(617\) 3.56739 + 6.17890i 0.143618 + 0.248753i 0.928856 0.370440i \(-0.120793\pi\)
−0.785239 + 0.619193i \(0.787460\pi\)
\(618\) −0.228930 1.17165i −0.00920893 0.0471308i
\(619\) 15.4477 26.7562i 0.620895 1.07542i −0.368424 0.929658i \(-0.620103\pi\)
0.989319 0.145764i \(-0.0465640\pi\)
\(620\) −15.2316 −0.611717
\(621\) 10.0146 19.7976i 0.401873 0.794448i
\(622\) −1.49788 −0.0600596
\(623\) −1.19066 + 2.06228i −0.0477028 + 0.0826236i
\(624\) 1.31959 + 6.75359i 0.0528259 + 0.270360i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0.798859 + 1.38366i 0.0319288 + 0.0553023i
\(627\) −20.7808 7.13277i −0.829904 0.284855i
\(628\) −1.30492 + 2.26018i −0.0520718 + 0.0901910i
\(629\) −23.2769 −0.928112
\(630\) −0.0681655 + 0.491973i −0.00271578 + 0.0196007i
\(631\) 11.8799 0.472932 0.236466 0.971640i \(-0.424011\pi\)
0.236466 + 0.971640i \(0.424011\pi\)
\(632\) 1.22618 2.12380i 0.0487747 0.0844803i
\(633\) 32.9111 28.6655i 1.30810 1.13935i
\(634\) −0.942085 1.63174i −0.0374150 0.0648046i
\(635\) −2.98847 5.17618i −0.118594 0.205410i
\(636\) 32.5702 28.3686i 1.29149 1.12489i
\(637\) −0.465404 + 0.806103i −0.0184400 + 0.0319390i
\(638\) −0.497842 −0.0197098
\(639\) −21.6574 + 8.79926i −0.856754 + 0.348094i
\(640\) 2.13835 0.0845256
\(641\) −12.5654 + 21.7639i −0.496302 + 0.859621i −0.999991 0.00426452i \(-0.998643\pi\)
0.503689 + 0.863885i \(0.331976\pi\)
\(642\) −1.47226 0.505337i −0.0581055 0.0199441i
\(643\) 18.9486 + 32.8199i 0.747258 + 1.29429i 0.949132 + 0.314877i \(0.101963\pi\)
−0.201874 + 0.979411i \(0.564703\pi\)
\(644\) 10.4951 + 18.1781i 0.413567 + 0.716318i
\(645\) −1.51660 7.76189i −0.0597162 0.305624i
\(646\) −0.633839 + 1.09784i −0.0249381 + 0.0431940i
\(647\) −5.59065 −0.219791 −0.109896 0.993943i \(-0.535052\pi\)
−0.109896 + 0.993943i \(0.535052\pi\)
\(648\) −1.73177 + 1.68543i −0.0680302 + 0.0662100i
\(649\) 9.15521 0.359373
\(650\) 0.0336011 0.0581988i 0.00131794 0.00228274i
\(651\) 6.24587 + 31.9660i 0.244795 + 1.25285i
\(652\) −9.78905 16.9551i −0.383369 0.664014i
\(653\) 4.29248 + 7.43479i 0.167978 + 0.290946i 0.937709 0.347422i \(-0.112943\pi\)
−0.769731 + 0.638368i \(0.779610\pi\)
\(654\) −0.149493 0.0513118i −0.00584564 0.00200645i
\(655\) 8.93670 15.4788i 0.349186 0.604807i
\(656\) −10.0529 −0.392501
\(657\) −6.30346 + 2.56106i −0.245922 + 0.0999163i
\(658\) −1.03733 −0.0404393
\(659\) 9.85987 17.0778i 0.384086 0.665257i −0.607556 0.794277i \(-0.707850\pi\)
0.991642 + 0.129020i \(0.0411832\pi\)
\(660\) −8.37174 + 7.29177i −0.325870 + 0.283832i
\(661\) −17.6742 30.6127i −0.687448 1.19069i −0.972661 0.232230i \(-0.925398\pi\)
0.285213 0.958464i \(-0.407936\pi\)
\(662\) 0.600127 + 1.03945i 0.0233246 + 0.0403994i
\(663\) −6.23889 + 5.43406i −0.242299 + 0.211041i
\(664\) 1.41125 2.44436i 0.0547671 0.0948594i
\(665\) 9.72873 0.377264
\(666\) 0.134831 0.973119i 0.00522459 0.0377076i
\(667\) −9.84732 −0.381290
\(668\) 8.15645 14.1274i 0.315582 0.546605i
\(669\) 12.4250 + 4.26474i 0.480378 + 0.164884i
\(670\) −0.453856 0.786102i −0.0175340 0.0303698i
\(671\) −20.3971 35.3288i −0.787422 1.36385i
\(672\) −0.657886 3.36702i −0.0253785 0.129886i
\(673\) −8.53274 + 14.7791i −0.328913 + 0.569694i −0.982296 0.187333i \(-0.940016\pi\)
0.653383 + 0.757027i \(0.273349\pi\)
\(674\) 0.656674 0.0252941
\(675\) −5.18821 + 0.287102i −0.199694 + 0.0110506i
\(676\) −1.99548 −0.0767494
\(677\) 5.54423 9.60290i 0.213082 0.369069i −0.739595 0.673052i \(-0.764983\pi\)
0.952678 + 0.303982i \(0.0983164\pi\)
\(678\) 0.164214 + 0.840440i 0.00630662 + 0.0322769i
\(679\) 23.1335 + 40.0683i 0.887780 + 1.53768i
\(680\) 0.641295 + 1.11076i 0.0245925 + 0.0425955i
\(681\) 0.493170 + 0.169275i 0.0188983 + 0.00648663i
\(682\) 0.823846 1.42694i 0.0315467 0.0546405i
\(683\) −42.5037 −1.62636 −0.813179 0.582014i \(-0.802265\pi\)
−0.813179 + 0.582014i \(0.802265\pi\)
\(684\) 18.6574 + 14.5184i 0.713385 + 0.555123i
\(685\) −10.4931 −0.400919
\(686\) 0.656502 1.13710i 0.0250654 0.0434145i
\(687\) 6.05132 5.27069i 0.230872 0.201089i
\(688\) 9.07033 + 15.7103i 0.345803 + 0.598948i
\(689\) 6.24841 + 10.8226i 0.238046 + 0.412307i
\(690\) 0.374766 0.326421i 0.0142671 0.0124266i
\(691\) −0.656332 + 1.13680i −0.0249681 + 0.0432460i −0.878239 0.478221i \(-0.841282\pi\)
0.853271 + 0.521467i \(0.174615\pi\)
\(692\) 12.7665 0.485310
\(693\) 18.7358 + 14.5794i 0.711716 + 0.553825i
\(694\) 1.41222 0.0536072
\(695\) −5.35343 + 9.27241i −0.203067 + 0.351722i
\(696\) 1.01448 + 0.348208i 0.0384536 + 0.0131988i
\(697\) −6.04349 10.4676i −0.228914 0.396490i
\(698\) 0.310458 + 0.537729i 0.0117510 + 0.0203534i
\(699\) −1.86812 9.56094i −0.0706589 0.361628i
\(700\) 2.45801 4.25740i 0.0929040 0.160915i
\(701\) 21.2054 0.800916 0.400458 0.916315i \(-0.368851\pi\)
0.400458 + 0.916315i \(0.368851\pi\)
\(702\) −0.191039 0.292301i −0.00721029 0.0110322i
\(703\) −19.2434 −0.725778
\(704\) 12.6748 21.9534i 0.477700 0.827401i
\(705\) −2.08112 10.6511i −0.0783795 0.401142i
\(706\) −0.151448 0.262316i −0.00569983 0.00987240i
\(707\) 22.8588 + 39.5926i 0.859694 + 1.48903i
\(708\) −9.31746 3.19812i −0.350172 0.120193i
\(709\) −24.6030 + 42.6136i −0.923985 + 1.60039i −0.130799 + 0.991409i \(0.541754\pi\)
−0.793186 + 0.608980i \(0.791579\pi\)
\(710\) −0.523655 −0.0196524
\(711\) 3.76050 27.1408i 0.141030 1.01786i
\(712\) −0.259540 −0.00972669
\(713\) 16.2957 28.2249i 0.610278 1.05703i
\(714\) 1.03290 0.899650i 0.0386551 0.0336685i
\(715\) −1.60607 2.78180i −0.0600637 0.104033i
\(716\) −15.5963 27.0136i −0.582861 1.00955i
\(717\) −3.34601 + 2.91436i −0.124959 + 0.108839i
\(718\) −0.849273 + 1.47098i −0.0316946 + 0.0548966i
\(719\) −31.1080 −1.16013 −0.580067 0.814569i \(-0.696974\pi\)
−0.580067 + 0.814569i \(0.696974\pi\)
\(720\) 11.0422 4.48636i 0.411518 0.167197i
\(721\) 25.2671 0.940998
\(722\) 0.114417 0.198175i 0.00425814 0.00737532i
\(723\) −24.5456 8.42502i −0.912862 0.313330i
\(724\) 11.0782 + 19.1880i 0.411718 + 0.713116i
\(725\) 1.15314 + 1.99730i 0.0428267 + 0.0741780i
\(726\) 0.0152259 + 0.0779251i 0.000565085 + 0.00289207i
\(727\) −15.0470 + 26.0622i −0.558062 + 0.966592i 0.439596 + 0.898196i \(0.355122\pi\)
−0.997658 + 0.0683968i \(0.978212\pi\)
\(728\) 0.661482 0.0245162
\(729\) −10.8376 + 24.7295i −0.401392 + 0.915906i
\(730\) −0.152412 −0.00564101
\(731\) −10.9056 + 18.8890i −0.403356 + 0.698634i
\(732\) 8.41747 + 43.0801i 0.311118 + 1.59229i
\(733\) 6.49987 + 11.2581i 0.240078 + 0.415827i 0.960736 0.277463i \(-0.0894936\pi\)
−0.720658 + 0.693290i \(0.756160\pi\)
\(734\) 0.373198 + 0.646398i 0.0137750 + 0.0238590i
\(735\) 1.52488 + 0.523399i 0.0562461 + 0.0193059i
\(736\) −1.71645 + 2.97297i −0.0632691 + 0.109585i
\(737\) −43.3870 −1.59818
\(738\) 0.472618 0.192022i 0.0173973 0.00706842i
\(739\) 43.9402 1.61637 0.808183 0.588932i \(-0.200451\pi\)
0.808183 + 0.588932i \(0.200451\pi\)
\(740\) −4.86193 + 8.42111i −0.178728 + 0.309566i
\(741\) −5.15778 + 4.49242i −0.189476 + 0.165033i
\(742\) −1.03447 1.79176i −0.0379767 0.0657775i
\(743\) 24.4254 + 42.3061i 0.896081 + 1.55206i 0.832461 + 0.554084i \(0.186931\pi\)
0.0636208 + 0.997974i \(0.479735\pi\)
\(744\) −2.67684 + 2.33153i −0.0981379 + 0.0854779i
\(745\) −10.1595 + 17.5968i −0.372216 + 0.644697i
\(746\) −0.519907 −0.0190351
\(747\) 4.32809 31.2373i 0.158357 1.14291i
\(748\) 30.6181 1.11951
\(749\) 16.4725 28.5313i 0.601894 1.04251i
\(750\) −0.110093 0.0377882i −0.00402003 0.00137983i
\(751\) 16.7071 + 28.9376i 0.609651 + 1.05595i 0.991298 + 0.131638i \(0.0420238\pi\)
−0.381647 + 0.924308i \(0.624643\pi\)
\(752\) 12.4465 + 21.5580i 0.453878 + 0.786139i
\(753\) 2.41599 + 12.3649i 0.0880435 + 0.450602i
\(754\) −0.0774937 + 0.134223i −0.00282216 + 0.00488812i
\(755\) 17.0220 0.619493
\(756\) −13.9750 21.3826i −0.508266 0.777678i
\(757\) 45.6922 1.66071 0.830356 0.557233i \(-0.188137\pi\)
0.830356 + 0.557233i \(0.188137\pi\)
\(758\) −0.876551 + 1.51823i −0.0318378 + 0.0551446i
\(759\) −4.55543 23.3144i −0.165351 0.846259i
\(760\) 0.530168 + 0.918278i 0.0192312 + 0.0333094i
\(761\) 2.43929 + 4.22497i 0.0884242 + 0.153155i 0.906845 0.421464i \(-0.138484\pi\)
−0.818421 + 0.574619i \(0.805150\pi\)
\(762\) −0.658018 0.225857i −0.0238375 0.00818195i
\(763\) 1.67262 2.89706i 0.0605528 0.104881i
\(764\) −31.0945 −1.12496
\(765\) 11.3096 + 8.80063i 0.408900 + 0.318187i
\(766\) −0.0566225 −0.00204585
\(767\) 1.42509 2.46833i 0.0514572 0.0891264i
\(768\) −20.4271 + 17.7920i −0.737101 + 0.642013i
\(769\) −5.62978 9.75106i −0.203015 0.351632i 0.746483 0.665404i \(-0.231741\pi\)
−0.949498 + 0.313772i \(0.898407\pi\)
\(770\) 0.265897 + 0.460548i 0.00958227 + 0.0165970i
\(771\) 11.8412 10.3136i 0.426449 0.371436i
\(772\)