Properties

Label 585.2.i.e.196.5
Level $585$
Weight $2$
Character 585.196
Analytic conductor $4.671$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \( x^{16} - 5 x^{15} + 20 x^{14} - 44 x^{13} + 96 x^{12} - 107 x^{11} + 178 x^{10} - 19 x^{9} + 231 x^{8} + 326 x^{7} + 551 x^{6} + 859 x^{5} + 1118 x^{4} + 1215 x^{3} + 1103 x^{2} + \cdots + 268 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 196.5
Root \(0.252952 + 1.56266i\) of defining polynomial
Character \(\chi\) \(=\) 585.196
Dual form 585.2.i.e.391.5

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.247048 + 0.427900i) q^{2} +(0.674928 + 1.59514i) q^{3} +(0.877935 + 1.52063i) q^{4} +(0.500000 + 0.866025i) q^{5} +(-0.849299 - 0.105275i) q^{6} +(2.14269 - 3.71125i) q^{7} -1.85576 q^{8} +(-2.08895 + 2.15321i) q^{9} +O(q^{10})\) \(q+(-0.247048 + 0.427900i) q^{2} +(0.674928 + 1.59514i) q^{3} +(0.877935 + 1.52063i) q^{4} +(0.500000 + 0.866025i) q^{5} +(-0.849299 - 0.105275i) q^{6} +(2.14269 - 3.71125i) q^{7} -1.85576 q^{8} +(-2.08895 + 2.15321i) q^{9} -0.494096 q^{10} +(-2.24265 + 3.88439i) q^{11} +(-1.83307 + 2.42674i) q^{12} +(0.500000 + 0.866025i) q^{13} +(1.05870 + 1.83371i) q^{14} +(-1.04397 + 1.38207i) q^{15} +(-1.29741 + 2.24718i) q^{16} +1.57196 q^{17} +(-0.405288 - 1.42580i) q^{18} +1.86934 q^{19} +(-0.877935 + 1.52063i) q^{20} +(7.36613 + 0.913068i) q^{21} +(-1.10808 - 1.91926i) q^{22} +(2.62890 + 4.55339i) q^{23} +(-1.25250 - 2.96020i) q^{24} +(-0.500000 + 0.866025i) q^{25} -0.494096 q^{26} +(-4.84456 - 1.87890i) q^{27} +7.52458 q^{28} +(0.375154 - 0.649786i) q^{29} +(-0.333479 - 0.788152i) q^{30} +(-5.10067 - 8.83463i) q^{31} +(-2.49680 - 4.32459i) q^{32} +(-7.70977 - 0.955664i) q^{33} +(-0.388349 + 0.672641i) q^{34} +4.28539 q^{35} +(-5.10819 - 1.28613i) q^{36} +2.78257 q^{37} +(-0.461818 + 0.799892i) q^{38} +(-1.04397 + 1.38207i) q^{39} +(-0.927880 - 1.60713i) q^{40} +(3.18008 + 5.50806i) q^{41} +(-2.21049 + 2.92639i) q^{42} +(-3.79662 + 6.57594i) q^{43} -7.87560 q^{44} +(-2.90921 - 0.732475i) q^{45} -2.59786 q^{46} +(4.13510 - 7.16221i) q^{47} +(-4.46022 - 0.552866i) q^{48} +(-5.68226 - 9.84197i) q^{49} +(-0.247048 - 0.427900i) q^{50} +(1.06096 + 2.50750i) q^{51} +(-0.877935 + 1.52063i) q^{52} +0.0752567 q^{53} +(2.00082 - 1.60881i) q^{54} -4.48530 q^{55} +(-3.97632 + 6.88719i) q^{56} +(1.26167 + 2.98187i) q^{57} +(0.185362 + 0.321057i) q^{58} +(-5.72037 - 9.90797i) q^{59} +(-3.01816 - 0.374115i) q^{60} +(5.98002 - 10.3577i) q^{61} +5.04044 q^{62} +(3.51513 + 12.3663i) q^{63} -2.72231 q^{64} +(-0.500000 + 0.866025i) q^{65} +(2.31361 - 3.06291i) q^{66} +(6.44874 + 11.1696i) q^{67} +(1.38008 + 2.39036i) q^{68} +(-5.48897 + 7.26667i) q^{69} +(-1.05870 + 1.83371i) q^{70} +14.4466 q^{71} +(3.87658 - 3.99584i) q^{72} +9.37293 q^{73} +(-0.687429 + 1.19066i) q^{74} +(-1.71890 - 0.213066i) q^{75} +(1.64116 + 2.84258i) q^{76} +(9.61062 + 16.6461i) q^{77} +(-0.333479 - 0.788152i) q^{78} +(3.04959 - 5.28205i) q^{79} -2.59482 q^{80} +(-0.272617 - 8.99587i) q^{81} -3.14253 q^{82} +(-0.306089 + 0.530162i) q^{83} +(5.07855 + 12.0028i) q^{84} +(0.785980 + 1.36136i) q^{85} +(-1.87589 - 3.24914i) q^{86} +(1.28970 + 0.159865i) q^{87} +(4.16182 - 7.20849i) q^{88} -16.2485 q^{89} +(1.03214 - 1.06389i) q^{90} +4.28539 q^{91} +(-4.61600 + 7.99515i) q^{92} +(10.6499 - 14.0990i) q^{93} +(2.04314 + 3.53882i) q^{94} +(0.934672 + 1.61890i) q^{95} +(5.21317 - 6.90154i) q^{96} +(7.49702 - 12.9852i) q^{97} +5.61517 q^{98} +(-3.67912 - 12.9432i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 3 q^{2} + q^{3} - 9 q^{4} + 8 q^{5} + 8 q^{6} + 11 q^{7} - 12 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 3 q^{2} + q^{3} - 9 q^{4} + 8 q^{5} + 8 q^{6} + 11 q^{7} - 12 q^{8} + q^{9} - 6 q^{10} - 6 q^{11} + 2 q^{12} + 8 q^{13} - 10 q^{14} + 5 q^{15} - 11 q^{16} - 4 q^{17} + 5 q^{18} - 20 q^{19} + 9 q^{20} + 11 q^{21} - 3 q^{22} - 6 q^{23} - 57 q^{24} - 8 q^{25} - 6 q^{26} - 14 q^{27} - 68 q^{28} - 14 q^{29} + 7 q^{30} + 31 q^{31} - q^{32} - 31 q^{33} + 7 q^{34} + 22 q^{35} + 2 q^{36} + 2 q^{37} - 9 q^{38} + 5 q^{39} - 6 q^{40} + 12 q^{41} - 26 q^{42} - 15 q^{43} + 32 q^{44} - 16 q^{45} - 64 q^{46} + 18 q^{47} - 4 q^{48} - 17 q^{49} - 3 q^{50} + 32 q^{51} + 9 q^{52} + 4 q^{53} + 2 q^{54} - 12 q^{55} - 16 q^{56} + 45 q^{57} + 42 q^{58} - 24 q^{59} - 8 q^{60} + 9 q^{61} - 40 q^{62} + 47 q^{63} - 60 q^{64} - 8 q^{65} + 55 q^{66} + 18 q^{67} + 14 q^{68} - 12 q^{69} + 10 q^{70} + 20 q^{71} - 9 q^{72} + 12 q^{73} + 37 q^{74} + 4 q^{75} + 53 q^{76} + 34 q^{77} + 7 q^{78} + 3 q^{79} - 22 q^{80} + 13 q^{81} - 68 q^{82} + 10 q^{83} + 22 q^{84} - 2 q^{85} - 60 q^{86} + 11 q^{87} + 14 q^{88} - 26 q^{89} + 19 q^{90} + 22 q^{91} - 5 q^{92} + 74 q^{93} - 17 q^{94} - 10 q^{95} + 13 q^{96} + 34 q^{97} - 60 q^{98} - 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.247048 + 0.427900i −0.174689 + 0.302571i −0.940054 0.341026i \(-0.889225\pi\)
0.765364 + 0.643597i \(0.222559\pi\)
\(3\) 0.674928 + 1.59514i 0.389670 + 0.920955i
\(4\) 0.877935 + 1.52063i 0.438967 + 0.760314i
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) −0.849299 0.105275i −0.346725 0.0429783i
\(7\) 2.14269 3.71125i 0.809862 1.40272i −0.103098 0.994671i \(-0.532875\pi\)
0.912959 0.408050i \(-0.133791\pi\)
\(8\) −1.85576 −0.656110
\(9\) −2.08895 + 2.15321i −0.696315 + 0.717736i
\(10\) −0.494096 −0.156247
\(11\) −2.24265 + 3.88439i −0.676185 + 1.17119i 0.299936 + 0.953959i \(0.403035\pi\)
−0.976121 + 0.217227i \(0.930299\pi\)
\(12\) −1.83307 + 2.42674i −0.529162 + 0.700540i
\(13\) 0.500000 + 0.866025i 0.138675 + 0.240192i
\(14\) 1.05870 + 1.83371i 0.282948 + 0.490081i
\(15\) −1.04397 + 1.38207i −0.269551 + 0.356850i
\(16\) −1.29741 + 2.24718i −0.324352 + 0.561794i
\(17\) 1.57196 0.381256 0.190628 0.981662i \(-0.438948\pi\)
0.190628 + 0.981662i \(0.438948\pi\)
\(18\) −0.405288 1.42580i −0.0955272 0.336065i
\(19\) 1.86934 0.428857 0.214429 0.976740i \(-0.431211\pi\)
0.214429 + 0.976740i \(0.431211\pi\)
\(20\) −0.877935 + 1.52063i −0.196312 + 0.340023i
\(21\) 7.36613 + 0.913068i 1.60742 + 0.199248i
\(22\) −1.10808 1.91926i −0.236244 0.409187i
\(23\) 2.62890 + 4.55339i 0.548163 + 0.949447i 0.998400 + 0.0565377i \(0.0180061\pi\)
−0.450237 + 0.892909i \(0.648661\pi\)
\(24\) −1.25250 2.96020i −0.255666 0.604248i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −0.494096 −0.0969002
\(27\) −4.84456 1.87890i −0.932335 0.361594i
\(28\) 7.52458 1.42201
\(29\) 0.375154 0.649786i 0.0696644 0.120662i −0.829089 0.559116i \(-0.811140\pi\)
0.898754 + 0.438454i \(0.144474\pi\)
\(30\) −0.333479 0.788152i −0.0608847 0.143896i
\(31\) −5.10067 8.83463i −0.916108 1.58675i −0.805271 0.592907i \(-0.797980\pi\)
−0.110837 0.993839i \(-0.535353\pi\)
\(32\) −2.49680 4.32459i −0.441377 0.764487i
\(33\) −7.70977 0.955664i −1.34210 0.166360i
\(34\) −0.388349 + 0.672641i −0.0666014 + 0.115357i
\(35\) 4.28539 0.724362
\(36\) −5.10819 1.28613i −0.851364 0.214355i
\(37\) 2.78257 0.457452 0.228726 0.973491i \(-0.426544\pi\)
0.228726 + 0.973491i \(0.426544\pi\)
\(38\) −0.461818 + 0.799892i −0.0749167 + 0.129760i
\(39\) −1.04397 + 1.38207i −0.167169 + 0.221309i
\(40\) −0.927880 1.60713i −0.146711 0.254110i
\(41\) 3.18008 + 5.50806i 0.496645 + 0.860214i 0.999993 0.00386999i \(-0.00123186\pi\)
−0.503348 + 0.864084i \(0.667899\pi\)
\(42\) −2.21049 + 2.92639i −0.341086 + 0.451552i
\(43\) −3.79662 + 6.57594i −0.578979 + 1.00282i 0.416618 + 0.909082i \(0.363215\pi\)
−0.995597 + 0.0937394i \(0.970118\pi\)
\(44\) −7.87560 −1.18729
\(45\) −2.90921 0.732475i −0.433679 0.109191i
\(46\) −2.59786 −0.383033
\(47\) 4.13510 7.16221i 0.603167 1.04472i −0.389171 0.921165i \(-0.627239\pi\)
0.992338 0.123550i \(-0.0394280\pi\)
\(48\) −4.46022 0.552866i −0.643777 0.0797993i
\(49\) −5.68226 9.84197i −0.811752 1.40600i
\(50\) −0.247048 0.427900i −0.0349379 0.0605141i
\(51\) 1.06096 + 2.50750i 0.148564 + 0.351120i
\(52\) −0.877935 + 1.52063i −0.121748 + 0.210873i
\(53\) 0.0752567 0.0103373 0.00516865 0.999987i \(-0.498355\pi\)
0.00516865 + 0.999987i \(0.498355\pi\)
\(54\) 2.00082 1.60881i 0.272277 0.218931i
\(55\) −4.48530 −0.604798
\(56\) −3.97632 + 6.88719i −0.531358 + 0.920340i
\(57\) 1.26167 + 2.98187i 0.167113 + 0.394958i
\(58\) 0.185362 + 0.321057i 0.0243392 + 0.0421568i
\(59\) −5.72037 9.90797i −0.744728 1.28991i −0.950322 0.311270i \(-0.899246\pi\)
0.205593 0.978638i \(-0.434088\pi\)
\(60\) −3.01816 0.374115i −0.389642 0.0482981i
\(61\) 5.98002 10.3577i 0.765663 1.32617i −0.174232 0.984705i \(-0.555744\pi\)
0.939895 0.341463i \(-0.110923\pi\)
\(62\) 5.04044 0.640137
\(63\) 3.51513 + 12.3663i 0.442865 + 1.55800i
\(64\) −2.72231 −0.340289
\(65\) −0.500000 + 0.866025i −0.0620174 + 0.107417i
\(66\) 2.31361 3.06291i 0.284786 0.377018i
\(67\) 6.44874 + 11.1696i 0.787839 + 1.36458i 0.927288 + 0.374348i \(0.122134\pi\)
−0.139449 + 0.990229i \(0.544533\pi\)
\(68\) 1.38008 + 2.39036i 0.167359 + 0.289874i
\(69\) −5.48897 + 7.26667i −0.660795 + 0.874804i
\(70\) −1.05870 + 1.83371i −0.126538 + 0.219171i
\(71\) 14.4466 1.71450 0.857250 0.514900i \(-0.172171\pi\)
0.857250 + 0.514900i \(0.172171\pi\)
\(72\) 3.87658 3.99584i 0.456859 0.470914i
\(73\) 9.37293 1.09702 0.548509 0.836144i \(-0.315196\pi\)
0.548509 + 0.836144i \(0.315196\pi\)
\(74\) −0.687429 + 1.19066i −0.0799120 + 0.138412i
\(75\) −1.71890 0.213066i −0.198481 0.0246027i
\(76\) 1.64116 + 2.84258i 0.188254 + 0.326066i
\(77\) 9.61062 + 16.6461i 1.09523 + 1.89700i
\(78\) −0.333479 0.788152i −0.0377591 0.0892407i
\(79\) 3.04959 5.28205i 0.343106 0.594277i −0.641902 0.766787i \(-0.721854\pi\)
0.985008 + 0.172510i \(0.0551877\pi\)
\(80\) −2.59482 −0.290109
\(81\) −0.272617 8.99587i −0.0302907 0.999541i
\(82\) −3.14253 −0.347034
\(83\) −0.306089 + 0.530162i −0.0335976 + 0.0581928i −0.882335 0.470621i \(-0.844030\pi\)
0.848738 + 0.528814i \(0.177363\pi\)
\(84\) 5.07855 + 12.0028i 0.554115 + 1.30961i
\(85\) 0.785980 + 1.36136i 0.0852515 + 0.147660i
\(86\) −1.87589 3.24914i −0.202283 0.350364i
\(87\) 1.28970 + 0.159865i 0.138271 + 0.0171393i
\(88\) 4.16182 7.20849i 0.443652 0.768427i
\(89\) −16.2485 −1.72234 −0.861169 0.508319i \(-0.830267\pi\)
−0.861169 + 0.508319i \(0.830267\pi\)
\(90\) 1.03214 1.06389i 0.108797 0.112144i
\(91\) 4.28539 0.449230
\(92\) −4.61600 + 7.99515i −0.481252 + 0.833552i
\(93\) 10.6499 14.0990i 1.10434 1.46200i
\(94\) 2.04314 + 3.53882i 0.210734 + 0.365001i
\(95\) 0.934672 + 1.61890i 0.0958954 + 0.166096i
\(96\) 5.21317 6.90154i 0.532067 0.704385i
\(97\) 7.49702 12.9852i 0.761207 1.31845i −0.181021 0.983479i \(-0.557940\pi\)
0.942229 0.334971i \(-0.108726\pi\)
\(98\) 5.61517 0.567218
\(99\) −3.67912 12.9432i −0.369765 1.30084i
\(100\) −1.75587 −0.175587
\(101\) −5.44487 + 9.43079i −0.541785 + 0.938399i 0.457017 + 0.889458i \(0.348918\pi\)
−0.998802 + 0.0489409i \(0.984415\pi\)
\(102\) −1.33506 0.165488i −0.132191 0.0163857i
\(103\) 0.768667 + 1.33137i 0.0757390 + 0.131184i 0.901407 0.432972i \(-0.142535\pi\)
−0.825668 + 0.564156i \(0.809202\pi\)
\(104\) −0.927880 1.60713i −0.0909861 0.157593i
\(105\) 2.89233 + 6.83579i 0.282262 + 0.667105i
\(106\) −0.0185920 + 0.0322023i −0.00180582 + 0.00312776i
\(107\) −5.43803 −0.525715 −0.262857 0.964835i \(-0.584665\pi\)
−0.262857 + 0.964835i \(0.584665\pi\)
\(108\) −1.39610 9.01632i −0.134340 0.867596i
\(109\) 1.44466 0.138374 0.0691868 0.997604i \(-0.477960\pi\)
0.0691868 + 0.997604i \(0.477960\pi\)
\(110\) 1.10808 1.91926i 0.105652 0.182994i
\(111\) 1.87804 + 4.43859i 0.178255 + 0.421293i
\(112\) 5.55989 + 9.63002i 0.525360 + 0.909951i
\(113\) −2.23239 3.86661i −0.210006 0.363740i 0.741710 0.670720i \(-0.234015\pi\)
−0.951716 + 0.306980i \(0.900682\pi\)
\(114\) −1.58763 0.196795i −0.148695 0.0184315i
\(115\) −2.62890 + 4.55339i −0.245146 + 0.424605i
\(116\) 1.31744 0.122322
\(117\) −2.90921 0.732475i −0.268956 0.0677173i
\(118\) 5.65282 0.520384
\(119\) 3.36823 5.83394i 0.308765 0.534796i
\(120\) 1.93735 2.56480i 0.176855 0.234133i
\(121\) −4.55897 7.89637i −0.414452 0.717851i
\(122\) 2.95470 + 5.11770i 0.267506 + 0.463335i
\(123\) −6.63980 + 8.79021i −0.598691 + 0.792587i
\(124\) 8.95612 15.5124i 0.804283 1.39306i
\(125\) −1.00000 −0.0894427
\(126\) −6.15993 1.55094i −0.548770 0.138168i
\(127\) −3.92097 −0.347930 −0.173965 0.984752i \(-0.555658\pi\)
−0.173965 + 0.984752i \(0.555658\pi\)
\(128\) 5.66615 9.81406i 0.500821 0.867448i
\(129\) −13.0520 1.61786i −1.14916 0.142444i
\(130\) −0.247048 0.427900i −0.0216675 0.0375293i
\(131\) −0.387214 0.670674i −0.0338310 0.0585971i 0.848614 0.529012i \(-0.177437\pi\)
−0.882445 + 0.470415i \(0.844104\pi\)
\(132\) −5.31546 12.5627i −0.462652 1.09344i
\(133\) 4.00543 6.93761i 0.347315 0.601567i
\(134\) −6.37259 −0.550508
\(135\) −0.795103 5.13496i −0.0684316 0.441947i
\(136\) −2.91718 −0.250146
\(137\) −2.35405 + 4.07733i −0.201120 + 0.348350i −0.948890 0.315608i \(-0.897791\pi\)
0.747770 + 0.663958i \(0.231125\pi\)
\(138\) −1.75337 4.14395i −0.149256 0.352756i
\(139\) 3.48346 + 6.03352i 0.295463 + 0.511757i 0.975092 0.221799i \(-0.0711928\pi\)
−0.679630 + 0.733555i \(0.737859\pi\)
\(140\) 3.76229 + 6.51647i 0.317971 + 0.550743i
\(141\) 14.2156 + 1.76210i 1.19717 + 0.148395i
\(142\) −3.56901 + 6.18171i −0.299505 + 0.518758i
\(143\) −4.48530 −0.375080
\(144\) −2.12843 7.48782i −0.177369 0.623985i
\(145\) 0.750308 0.0623097
\(146\) −2.31556 + 4.01067i −0.191637 + 0.331926i
\(147\) 11.8642 15.7066i 0.978543 1.29546i
\(148\) 2.44292 + 4.23126i 0.200807 + 0.347807i
\(149\) 4.11863 + 7.13367i 0.337411 + 0.584413i 0.983945 0.178472i \(-0.0571154\pi\)
−0.646534 + 0.762885i \(0.723782\pi\)
\(150\) 0.515820 0.682877i 0.0421166 0.0557567i
\(151\) 4.38594 7.59667i 0.356923 0.618208i −0.630522 0.776171i \(-0.717159\pi\)
0.987445 + 0.157963i \(0.0504926\pi\)
\(152\) −3.46905 −0.281377
\(153\) −3.28374 + 3.38476i −0.265474 + 0.273641i
\(154\) −9.49714 −0.765301
\(155\) 5.10067 8.83463i 0.409696 0.709614i
\(156\) −3.01816 0.374115i −0.241646 0.0299532i
\(157\) 6.69687 + 11.5993i 0.534468 + 0.925726i 0.999189 + 0.0402687i \(0.0128214\pi\)
−0.464721 + 0.885457i \(0.653845\pi\)
\(158\) 1.50679 + 2.60984i 0.119874 + 0.207628i
\(159\) 0.0507928 + 0.120045i 0.00402813 + 0.00952018i
\(160\) 2.49680 4.32459i 0.197390 0.341889i
\(161\) 22.5317 1.77575
\(162\) 3.91668 + 2.10576i 0.307723 + 0.165444i
\(163\) −0.242444 −0.0189897 −0.00949486 0.999955i \(-0.503022\pi\)
−0.00949486 + 0.999955i \(0.503022\pi\)
\(164\) −5.58380 + 9.67143i −0.436022 + 0.755212i
\(165\) −3.02726 7.15469i −0.235671 0.556992i
\(166\) −0.151237 0.261951i −0.0117383 0.0203313i
\(167\) −2.54305 4.40470i −0.196787 0.340846i 0.750698 0.660646i \(-0.229718\pi\)
−0.947485 + 0.319800i \(0.896384\pi\)
\(168\) −13.6698 1.69443i −1.05465 0.130728i
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) −0.776699 −0.0595701
\(171\) −3.90496 + 4.02509i −0.298620 + 0.307806i
\(172\) −13.3327 −1.01661
\(173\) 11.5855 20.0667i 0.880831 1.52564i 0.0304130 0.999537i \(-0.490318\pi\)
0.850418 0.526107i \(-0.176349\pi\)
\(174\) −0.387024 + 0.512369i −0.0293402 + 0.0388426i
\(175\) 2.14269 + 3.71125i 0.161972 + 0.280544i
\(176\) −5.81927 10.0793i −0.438644 0.759753i
\(177\) 11.9438 15.8119i 0.897748 1.18850i
\(178\) 4.01416 6.95273i 0.300874 0.521129i
\(179\) 13.9237 1.04070 0.520352 0.853952i \(-0.325801\pi\)
0.520352 + 0.853952i \(0.325801\pi\)
\(180\) −1.44027 5.06688i −0.107351 0.377663i
\(181\) 13.6884 1.01745 0.508725 0.860929i \(-0.330117\pi\)
0.508725 + 0.860929i \(0.330117\pi\)
\(182\) −1.05870 + 1.83371i −0.0784757 + 0.135924i
\(183\) 20.5581 + 2.54827i 1.51970 + 0.188374i
\(184\) −4.87860 8.44999i −0.359655 0.622942i
\(185\) 1.39129 + 2.40978i 0.102289 + 0.177170i
\(186\) 3.40194 + 8.04022i 0.249442 + 0.589537i
\(187\) −3.52536 + 6.10610i −0.257800 + 0.446522i
\(188\) 14.5214 1.05908
\(189\) −17.3535 + 13.9535i −1.26228 + 1.01497i
\(190\) −0.923636 −0.0670076
\(191\) 3.92168 6.79255i 0.283763 0.491491i −0.688546 0.725193i \(-0.741751\pi\)
0.972308 + 0.233702i \(0.0750839\pi\)
\(192\) −1.83736 4.34247i −0.132600 0.313391i
\(193\) 10.3259 + 17.8850i 0.743274 + 1.28739i 0.950997 + 0.309200i \(0.100061\pi\)
−0.207723 + 0.978188i \(0.566605\pi\)
\(194\) 3.70425 + 6.41595i 0.265950 + 0.460638i
\(195\) −1.71890 0.213066i −0.123093 0.0152579i
\(196\) 9.97731 17.2812i 0.712665 1.23437i
\(197\) 4.38617 0.312502 0.156251 0.987717i \(-0.450059\pi\)
0.156251 + 0.987717i \(0.450059\pi\)
\(198\) 6.44729 + 1.62329i 0.458189 + 0.115362i
\(199\) −13.3916 −0.949304 −0.474652 0.880174i \(-0.657426\pi\)
−0.474652 + 0.880174i \(0.657426\pi\)
\(200\) 0.927880 1.60713i 0.0656110 0.113642i
\(201\) −13.4646 + 17.8253i −0.949717 + 1.25730i
\(202\) −2.69029 4.65972i −0.189288 0.327856i
\(203\) −1.60768 2.78458i −0.112837 0.195440i
\(204\) −2.88151 + 3.81474i −0.201746 + 0.267085i
\(205\) −3.18008 + 5.50806i −0.222106 + 0.384699i
\(206\) −0.759591 −0.0529232
\(207\) −15.2960 3.85121i −1.06315 0.267677i
\(208\) −2.59482 −0.179918
\(209\) −4.19229 + 7.26126i −0.289987 + 0.502272i
\(210\) −3.63958 0.451143i −0.251155 0.0311318i
\(211\) 3.03493 + 5.25665i 0.208933 + 0.361883i 0.951379 0.308023i \(-0.0996675\pi\)
−0.742446 + 0.669906i \(0.766334\pi\)
\(212\) 0.0660704 + 0.114437i 0.00453774 + 0.00785959i
\(213\) 9.75044 + 23.0444i 0.668089 + 1.57898i
\(214\) 1.34345 2.32693i 0.0918367 0.159066i
\(215\) −7.59324 −0.517855
\(216\) 8.99033 + 3.48679i 0.611715 + 0.237246i
\(217\) −43.7167 −2.96768
\(218\) −0.356901 + 0.618170i −0.0241724 + 0.0418678i
\(219\) 6.32605 + 14.9511i 0.427475 + 1.01030i
\(220\) −3.93780 6.82047i −0.265487 0.459836i
\(221\) 0.785980 + 1.36136i 0.0528707 + 0.0915748i
\(222\) −2.36324 0.292935i −0.158610 0.0196605i
\(223\) 11.4941 19.9083i 0.769700 1.33316i −0.168026 0.985783i \(-0.553739\pi\)
0.937726 0.347377i \(-0.112928\pi\)
\(224\) −21.3995 −1.42982
\(225\) −0.820261 2.88568i −0.0546841 0.192379i
\(226\) 2.20603 0.146743
\(227\) 9.41732 16.3113i 0.625050 1.08262i −0.363482 0.931601i \(-0.618412\pi\)
0.988531 0.151016i \(-0.0482546\pi\)
\(228\) −3.42664 + 4.53642i −0.226935 + 0.300432i
\(229\) 2.70463 + 4.68455i 0.178727 + 0.309564i 0.941445 0.337167i \(-0.109469\pi\)
−0.762718 + 0.646731i \(0.776135\pi\)
\(230\) −1.29893 2.24981i −0.0856488 0.148348i
\(231\) −20.0664 + 26.5652i −1.32027 + 1.74786i
\(232\) −0.696196 + 1.20585i −0.0457075 + 0.0791677i
\(233\) −7.45934 −0.488677 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(234\) 1.03214 1.06389i 0.0674731 0.0695488i
\(235\) 8.27021 0.539489
\(236\) 10.0442 17.3971i 0.653823 1.13245i
\(237\) 10.4839 + 1.29953i 0.681000 + 0.0844133i
\(238\) 1.66423 + 2.88253i 0.107876 + 0.186846i
\(239\) −3.84036 6.65171i −0.248412 0.430263i 0.714673 0.699459i \(-0.246576\pi\)
−0.963086 + 0.269196i \(0.913242\pi\)
\(240\) −1.75131 4.13909i −0.113047 0.267177i
\(241\) −14.6400 + 25.3573i −0.943048 + 1.63341i −0.183434 + 0.983032i \(0.558721\pi\)
−0.759614 + 0.650375i \(0.774612\pi\)
\(242\) 4.50514 0.289601
\(243\) 14.1657 6.50642i 0.908729 0.417387i
\(244\) 21.0003 1.34440
\(245\) 5.68226 9.84197i 0.363027 0.628780i
\(246\) −2.12098 5.01277i −0.135229 0.319603i
\(247\) 0.934672 + 1.61890i 0.0594718 + 0.103008i
\(248\) 9.46562 + 16.3949i 0.601068 + 1.04108i
\(249\) −1.05227 0.130434i −0.0666849 0.00826593i
\(250\) 0.247048 0.427900i 0.0156247 0.0270627i
\(251\) −26.6402 −1.68152 −0.840758 0.541412i \(-0.817890\pi\)
−0.840758 + 0.541412i \(0.817890\pi\)
\(252\) −15.7184 + 16.2020i −0.990168 + 1.02063i
\(253\) −23.5828 −1.48264
\(254\) 0.968667 1.67778i 0.0607796 0.105273i
\(255\) −1.64108 + 2.17257i −0.102768 + 0.136051i
\(256\) 0.0773104 + 0.133905i 0.00483190 + 0.00836909i
\(257\) 0.356142 + 0.616855i 0.0222155 + 0.0384784i 0.876919 0.480637i \(-0.159595\pi\)
−0.854704 + 0.519116i \(0.826261\pi\)
\(258\) 3.91675 5.18525i 0.243846 0.322820i
\(259\) 5.96220 10.3268i 0.370473 0.641678i
\(260\) −1.75587 −0.108894
\(261\) 0.615449 + 2.16515i 0.0380953 + 0.134020i
\(262\) 0.382641 0.0236397
\(263\) 6.60152 11.4342i 0.407067 0.705061i −0.587493 0.809230i \(-0.699885\pi\)
0.994560 + 0.104169i \(0.0332182\pi\)
\(264\) 14.3075 + 1.77348i 0.880564 + 0.109150i
\(265\) 0.0376283 + 0.0651742i 0.00231149 + 0.00400362i
\(266\) 1.97907 + 3.42784i 0.121344 + 0.210175i
\(267\) −10.9666 25.9186i −0.671143 1.58619i
\(268\) −11.3231 + 19.6123i −0.691671 + 1.19801i
\(269\) −18.3263 −1.11737 −0.558687 0.829379i \(-0.688695\pi\)
−0.558687 + 0.829379i \(0.688695\pi\)
\(270\) 2.39368 + 0.928357i 0.145674 + 0.0564980i
\(271\) −28.9102 −1.75617 −0.878084 0.478507i \(-0.841178\pi\)
−0.878084 + 0.478507i \(0.841178\pi\)
\(272\) −2.03947 + 3.53247i −0.123661 + 0.214187i
\(273\) 2.89233 + 6.83579i 0.175052 + 0.413721i
\(274\) −1.16313 2.01459i −0.0702670 0.121706i
\(275\) −2.24265 3.88439i −0.135237 0.234237i
\(276\) −15.8689 1.96702i −0.955193 0.118401i
\(277\) −13.0652 + 22.6297i −0.785014 + 1.35968i 0.143977 + 0.989581i \(0.454011\pi\)
−0.928991 + 0.370103i \(0.879322\pi\)
\(278\) −3.44232 −0.206457
\(279\) 29.6778 + 7.47223i 1.77676 + 0.447351i
\(280\) −7.95265 −0.475261
\(281\) −13.8389 + 23.9697i −0.825559 + 1.42991i 0.0759316 + 0.997113i \(0.475807\pi\)
−0.901491 + 0.432798i \(0.857526\pi\)
\(282\) −4.26594 + 5.64754i −0.254033 + 0.336306i
\(283\) −13.0720 22.6414i −0.777053 1.34589i −0.933634 0.358229i \(-0.883381\pi\)
0.156581 0.987665i \(-0.449953\pi\)
\(284\) 12.6832 + 21.9680i 0.752610 + 1.30356i
\(285\) −1.95154 + 2.58357i −0.115599 + 0.153038i
\(286\) 1.10808 1.91926i 0.0655224 0.113488i
\(287\) 27.2557 1.60885
\(288\) 14.5274 + 3.65769i 0.856037 + 0.215532i
\(289\) −14.5289 −0.854644
\(290\) −0.185362 + 0.321057i −0.0108848 + 0.0188531i
\(291\) 25.7732 + 3.19471i 1.51085 + 0.187278i
\(292\) 8.22882 + 14.2527i 0.481555 + 0.834078i
\(293\) −2.00825 3.47840i −0.117323 0.203210i 0.801383 0.598152i \(-0.204098\pi\)
−0.918706 + 0.394942i \(0.870765\pi\)
\(294\) 3.78983 + 8.95698i 0.221027 + 0.522382i
\(295\) 5.72037 9.90797i 0.333053 0.576864i
\(296\) −5.16379 −0.300139
\(297\) 18.1630 14.6044i 1.05393 0.847434i
\(298\) −4.06999 −0.235768
\(299\) −2.62890 + 4.55339i −0.152033 + 0.263329i
\(300\) −1.18508 2.80086i −0.0684209 0.161708i
\(301\) 16.2700 + 28.1804i 0.937786 + 1.62429i
\(302\) 2.16708 + 3.75348i 0.124701 + 0.215989i
\(303\) −18.7183 2.32023i −1.07534 0.133294i
\(304\) −2.42530 + 4.20075i −0.139101 + 0.240929i
\(305\) 11.9600 0.684830
\(306\) −0.637096 2.24131i −0.0364203 0.128127i
\(307\) −7.51331 −0.428807 −0.214404 0.976745i \(-0.568781\pi\)
−0.214404 + 0.976745i \(0.568781\pi\)
\(308\) −16.8750 + 29.2284i −0.961542 + 1.66544i
\(309\) −1.60493 + 2.12471i −0.0913012 + 0.120871i
\(310\) 2.52022 + 4.36515i 0.143139 + 0.247924i
\(311\) −10.5200 18.2213i −0.596537 1.03323i −0.993328 0.115323i \(-0.963210\pi\)
0.396791 0.917909i \(-0.370124\pi\)
\(312\) 1.93735 2.56480i 0.109681 0.145203i
\(313\) 3.25007 5.62929i 0.183705 0.318186i −0.759435 0.650584i \(-0.774524\pi\)
0.943139 + 0.332398i \(0.107858\pi\)
\(314\) −6.61779 −0.373463
\(315\) −8.95193 + 9.22733i −0.504384 + 0.519901i
\(316\) 10.7094 0.602449
\(317\) 5.72790 9.92101i 0.321711 0.557220i −0.659130 0.752029i \(-0.729075\pi\)
0.980841 + 0.194809i \(0.0624088\pi\)
\(318\) −0.0639154 0.00792263i −0.00358420 0.000444279i
\(319\) 1.68268 + 2.91449i 0.0942120 + 0.163180i
\(320\) −1.36116 2.35759i −0.0760909 0.131793i
\(321\) −3.67028 8.67443i −0.204855 0.484159i
\(322\) −5.56641 + 9.64130i −0.310204 + 0.537289i
\(323\) 2.93853 0.163504
\(324\) 13.4400 8.31233i 0.746668 0.461796i
\(325\) −1.00000 −0.0554700
\(326\) 0.0598954 0.103742i 0.00331730 0.00574573i
\(327\) 0.975043 + 2.30444i 0.0539200 + 0.127436i
\(328\) −5.90146 10.2216i −0.325854 0.564395i
\(329\) −17.7205 30.6928i −0.976964 1.69215i
\(330\) 3.80936 + 0.472189i 0.209699 + 0.0259932i
\(331\) 12.1797 21.0958i 0.669456 1.15953i −0.308601 0.951192i \(-0.599861\pi\)
0.978057 0.208340i \(-0.0668060\pi\)
\(332\) −1.07490 −0.0589931
\(333\) −5.81264 + 5.99146i −0.318531 + 0.328330i
\(334\) 2.51302 0.137507
\(335\) −6.44874 + 11.1696i −0.352332 + 0.610258i
\(336\) −11.6087 + 15.3684i −0.633307 + 0.838413i
\(337\) −5.80009 10.0460i −0.315951 0.547243i 0.663688 0.748009i \(-0.268990\pi\)
−0.979639 + 0.200766i \(0.935657\pi\)
\(338\) −0.247048 0.427900i −0.0134376 0.0232747i
\(339\) 4.66109 6.17066i 0.253155 0.335144i
\(340\) −1.38008 + 2.39036i −0.0748452 + 0.129636i
\(341\) 45.7561 2.47783
\(342\) −0.757622 2.66532i −0.0409675 0.144124i
\(343\) −18.7037 −1.00990
\(344\) 7.04561 12.2034i 0.379874 0.657961i
\(345\) −9.03761 1.12026i −0.486568 0.0603125i
\(346\) 5.72436 + 9.91488i 0.307744 + 0.533028i
\(347\) 6.09100 + 10.5499i 0.326982 + 0.566349i 0.981911 0.189341i \(-0.0606351\pi\)
−0.654930 + 0.755690i \(0.727302\pi\)
\(348\) 0.889179 + 2.10151i 0.0476650 + 0.112653i
\(349\) −3.95551 + 6.85114i −0.211734 + 0.366733i −0.952257 0.305297i \(-0.901244\pi\)
0.740524 + 0.672030i \(0.234578\pi\)
\(350\) −2.11739 −0.113179
\(351\) −0.795103 5.13496i −0.0424395 0.274084i
\(352\) 22.3978 1.19381
\(353\) −10.6294 + 18.4107i −0.565747 + 0.979903i 0.431233 + 0.902241i \(0.358079\pi\)
−0.996980 + 0.0776620i \(0.975254\pi\)
\(354\) 3.81524 + 9.01704i 0.202778 + 0.479250i
\(355\) 7.22332 + 12.5112i 0.383374 + 0.664023i
\(356\) −14.2651 24.7079i −0.756050 1.30952i
\(357\) 11.5793 + 1.43531i 0.612839 + 0.0759645i
\(358\) −3.43981 + 5.95793i −0.181800 + 0.314886i
\(359\) −7.59638 −0.400922 −0.200461 0.979702i \(-0.564244\pi\)
−0.200461 + 0.979702i \(0.564244\pi\)
\(360\) 5.39879 + 1.35930i 0.284541 + 0.0716413i
\(361\) −15.5056 −0.816082
\(362\) −3.38169 + 5.85725i −0.177738 + 0.307850i
\(363\) 9.51884 12.6017i 0.499609 0.661416i
\(364\) 3.76229 + 6.51647i 0.197197 + 0.341556i
\(365\) 4.68647 + 8.11720i 0.245301 + 0.424873i
\(366\) −6.16924 + 8.16725i −0.322471 + 0.426909i
\(367\) −10.8071 + 18.7184i −0.564124 + 0.977092i 0.433006 + 0.901391i \(0.357453\pi\)
−0.997131 + 0.0757010i \(0.975881\pi\)
\(368\) −13.6430 −0.711191
\(369\) −18.5030 4.65866i −0.963228 0.242520i
\(370\) −1.37486 −0.0714754
\(371\) 0.161252 0.279297i 0.00837178 0.0145004i
\(372\) 30.7893 + 3.81648i 1.59635 + 0.197875i
\(373\) 6.00668 + 10.4039i 0.311014 + 0.538692i 0.978582 0.205857i \(-0.0659981\pi\)
−0.667568 + 0.744549i \(0.732665\pi\)
\(374\) −1.74186 3.01700i −0.0900697 0.156005i
\(375\) −0.674928 1.59514i −0.0348531 0.0823727i
\(376\) −7.67376 + 13.2913i −0.395744 + 0.685448i
\(377\) 0.750308 0.0386429
\(378\) −1.68354 10.8727i −0.0865922 0.559232i
\(379\) −3.44005 −0.176704 −0.0883518 0.996089i \(-0.528160\pi\)
−0.0883518 + 0.996089i \(0.528160\pi\)
\(380\) −1.64116 + 2.84258i −0.0841899 + 0.145821i
\(381\) −2.64637 6.25449i −0.135578 0.320427i
\(382\) 1.93768 + 3.35617i 0.0991406 + 0.171717i
\(383\) −13.4494 23.2950i −0.687232 1.19032i −0.972730 0.231941i \(-0.925492\pi\)
0.285498 0.958379i \(-0.407841\pi\)
\(384\) 19.4790 + 2.41452i 0.994035 + 0.123216i
\(385\) −9.61062 + 16.6461i −0.489803 + 0.848363i
\(386\) −10.2040 −0.519368
\(387\) −6.22844 21.9117i −0.316609 1.11383i
\(388\) 26.3276 1.33658
\(389\) −1.66758 + 2.88833i −0.0845494 + 0.146444i −0.905199 0.424988i \(-0.860278\pi\)
0.820650 + 0.571432i \(0.193612\pi\)
\(390\) 0.515820 0.682877i 0.0261196 0.0345788i
\(391\) 4.13252 + 7.15774i 0.208991 + 0.361982i
\(392\) 10.5449 + 18.2643i 0.532599 + 0.922488i
\(393\) 0.808478 1.07032i 0.0407823 0.0539903i
\(394\) −1.08359 + 1.87684i −0.0545907 + 0.0945538i
\(395\) 6.09918 0.306883
\(396\) 16.4517 16.9578i 0.826729 0.852163i
\(397\) 0.768687 0.0385793 0.0192897 0.999814i \(-0.493860\pi\)
0.0192897 + 0.999814i \(0.493860\pi\)
\(398\) 3.30836 5.73025i 0.165833 0.287232i
\(399\) 13.7698 + 1.70684i 0.689354 + 0.0854488i
\(400\) −1.29741 2.24718i −0.0648704 0.112359i
\(401\) −14.8015 25.6370i −0.739153 1.28025i −0.952877 0.303357i \(-0.901892\pi\)
0.213723 0.976894i \(-0.431441\pi\)
\(402\) −4.30104 10.1652i −0.214516 0.506993i
\(403\) 5.10067 8.83463i 0.254083 0.440084i
\(404\) −19.1210 −0.951303
\(405\) 7.65434 4.73403i 0.380347 0.235236i
\(406\) 1.58870 0.0788457
\(407\) −6.24034 + 10.8086i −0.309322 + 0.535762i
\(408\) −1.96888 4.65331i −0.0974743 0.230373i
\(409\) 8.10055 + 14.0306i 0.400546 + 0.693766i 0.993792 0.111255i \(-0.0354871\pi\)
−0.593246 + 0.805021i \(0.702154\pi\)
\(410\) −1.57126 2.72151i −0.0775992 0.134406i
\(411\) −8.09273 1.00313i −0.399185 0.0494809i
\(412\) −1.34968 + 2.33771i −0.0664939 + 0.115171i
\(413\) −49.0279 −2.41251
\(414\) 5.42678 5.59373i 0.266712 0.274917i
\(415\) −0.612178 −0.0300506
\(416\) 2.49680 4.32459i 0.122416 0.212030i
\(417\) −7.27323 + 9.62879i −0.356172 + 0.471524i
\(418\) −2.07139 3.58776i −0.101315 0.175483i
\(419\) −5.70634 9.88368i −0.278773 0.482849i 0.692307 0.721603i \(-0.256594\pi\)
−0.971080 + 0.238754i \(0.923261\pi\)
\(420\) −7.85542 + 10.3995i −0.383305 + 0.507445i
\(421\) −5.19917 + 9.00522i −0.253392 + 0.438888i −0.964458 0.264238i \(-0.914880\pi\)
0.711066 + 0.703126i \(0.248213\pi\)
\(422\) −2.99909 −0.145994
\(423\) 6.78373 + 23.8652i 0.329836 + 1.16037i
\(424\) −0.139658 −0.00678241
\(425\) −0.785980 + 1.36136i −0.0381256 + 0.0660355i
\(426\) −12.2695 1.52087i −0.594460 0.0736863i
\(427\) −25.6267 44.3868i −1.24016 2.14803i
\(428\) −4.77424 8.26922i −0.230771 0.399708i
\(429\) −3.02726 7.15469i −0.146157 0.345432i
\(430\) 1.87589 3.24914i 0.0904637 0.156688i
\(431\) −0.879972 −0.0423868 −0.0211934 0.999775i \(-0.506747\pi\)
−0.0211934 + 0.999775i \(0.506747\pi\)
\(432\) 10.5076 8.44887i 0.505546 0.406497i
\(433\) 31.4562 1.51169 0.755845 0.654750i \(-0.227226\pi\)
0.755845 + 0.654750i \(0.227226\pi\)
\(434\) 10.8001 18.7064i 0.518422 0.897934i
\(435\) 0.506404 + 1.19685i 0.0242802 + 0.0573844i
\(436\) 1.26832 + 2.19679i 0.0607415 + 0.105207i
\(437\) 4.91432 + 8.51185i 0.235084 + 0.407177i
\(438\) −7.96042 0.986734i −0.380364 0.0471480i
\(439\) 2.88207 4.99189i 0.137554 0.238250i −0.789016 0.614372i \(-0.789409\pi\)
0.926570 + 0.376122i \(0.122743\pi\)
\(440\) 8.32364 0.396814
\(441\) 33.0618 + 8.32423i 1.57437 + 0.396392i
\(442\) −0.776699 −0.0369438
\(443\) −2.06423 + 3.57535i −0.0980746 + 0.169870i −0.910888 0.412654i \(-0.864602\pi\)
0.812813 + 0.582525i \(0.197935\pi\)
\(444\) −5.10065 + 6.75259i −0.242066 + 0.320464i
\(445\) −8.12425 14.0716i −0.385126 0.667058i
\(446\) 5.67917 + 9.83662i 0.268917 + 0.465777i
\(447\) −8.59943 + 11.3845i −0.406739 + 0.538468i
\(448\) −5.83307 + 10.1032i −0.275587 + 0.477330i
\(449\) −30.3402 −1.43184 −0.715921 0.698181i \(-0.753993\pi\)
−0.715921 + 0.698181i \(0.753993\pi\)
\(450\) 1.43743 + 0.361913i 0.0677609 + 0.0170607i
\(451\) −28.5272 −1.34329
\(452\) 3.91978 6.78927i 0.184371 0.319340i
\(453\) 15.0779 + 1.86899i 0.708424 + 0.0878126i
\(454\) 4.65306 + 8.05934i 0.218379 + 0.378243i
\(455\) 2.14269 + 3.71125i 0.100451 + 0.173986i
\(456\) −2.34136 5.53363i −0.109644 0.259136i
\(457\) 4.23141 7.32902i 0.197937 0.342837i −0.749922 0.661526i \(-0.769909\pi\)
0.947859 + 0.318689i \(0.103242\pi\)
\(458\) −2.67269 −0.124887
\(459\) −7.61545 2.95355i −0.355459 0.137860i
\(460\) −9.23201 −0.430444
\(461\) −8.81541 + 15.2687i −0.410575 + 0.711136i −0.994953 0.100345i \(-0.968005\pi\)
0.584378 + 0.811482i \(0.301339\pi\)
\(462\) −6.40988 15.1493i −0.298215 0.704808i
\(463\) 0.627193 + 1.08633i 0.0291481 + 0.0504860i 0.880231 0.474545i \(-0.157387\pi\)
−0.851083 + 0.525031i \(0.824054\pi\)
\(464\) 0.973456 + 1.68608i 0.0451916 + 0.0782741i
\(465\) 17.5351 + 2.17356i 0.813169 + 0.100796i
\(466\) 1.84281 3.19185i 0.0853667 0.147859i
\(467\) 11.3158 0.523634 0.261817 0.965117i \(-0.415678\pi\)
0.261817 + 0.965117i \(0.415678\pi\)
\(468\) −1.44027 5.06688i −0.0665766 0.234217i
\(469\) 55.2707 2.55216
\(470\) −2.04314 + 3.53882i −0.0942429 + 0.163234i
\(471\) −13.9826 + 18.5111i −0.644286 + 0.852948i
\(472\) 10.6156 + 18.3868i 0.488624 + 0.846321i
\(473\) −17.0290 29.4951i −0.782994 1.35618i
\(474\) −3.14608 + 4.16500i −0.144504 + 0.191305i
\(475\) −0.934672 + 1.61890i −0.0428857 + 0.0742802i
\(476\) 11.8283 0.542151
\(477\) −0.157207 + 0.162043i −0.00719802 + 0.00741945i
\(478\) 3.79502 0.173580
\(479\) 16.6918 28.9110i 0.762667 1.32098i −0.178804 0.983885i \(-0.557223\pi\)
0.941471 0.337094i \(-0.109444\pi\)
\(480\) 8.58349 + 1.06397i 0.391781 + 0.0485632i
\(481\) 1.39129 + 2.40978i 0.0634372 + 0.109876i
\(482\) −7.23358 12.5289i −0.329481 0.570677i
\(483\) 15.2073 + 35.9412i 0.691954 + 1.63538i
\(484\) 8.00495 13.8650i 0.363862 0.630227i
\(485\) 14.9940 0.680844
\(486\) −0.715506 + 7.66889i −0.0324560 + 0.347868i
\(487\) −42.2806 −1.91592 −0.957959 0.286904i \(-0.907374\pi\)
−0.957959 + 0.286904i \(0.907374\pi\)
\(488\) −11.0975 + 19.2214i −0.502360 + 0.870112i
\(489\) −0.163632 0.386733i −0.00739972 0.0174887i
\(490\) 2.80758 + 4.86288i 0.126834 + 0.219682i
\(491\) −5.73286 9.92961i −0.258720 0.448117i 0.707179 0.707035i \(-0.249967\pi\)
−0.965899 + 0.258918i \(0.916634\pi\)
\(492\) −19.1959 2.37943i −0.865420 0.107273i
\(493\) 0.589727 1.02144i 0.0265600 0.0460032i
\(494\) −0.923636 −0.0415563
\(495\) 9.36955 9.65779i 0.421130 0.434086i
\(496\) 26.4706 1.18857
\(497\) 30.9547 53.6151i 1.38851 2.40497i
\(498\) 0.315774 0.418043i 0.0141502 0.0187329i
\(499\) −3.35426 5.80976i −0.150157 0.260080i 0.781128 0.624371i \(-0.214645\pi\)
−0.931285 + 0.364291i \(0.881311\pi\)
\(500\) −0.877935 1.52063i −0.0392624 0.0680045i
\(501\) 5.30973 7.02938i 0.237221 0.314049i
\(502\) 6.58141 11.3993i 0.293743 0.508777i
\(503\) 13.1409 0.585925 0.292963 0.956124i \(-0.405359\pi\)
0.292963 + 0.956124i \(0.405359\pi\)
\(504\) −6.52324 22.9488i −0.290568 1.02222i
\(505\) −10.8897 −0.484587
\(506\) 5.82609 10.0911i 0.259001 0.448603i
\(507\) −1.71890 0.213066i −0.0763388 0.00946257i
\(508\) −3.44235 5.96233i −0.152730 0.264536i
\(509\) 15.5601 + 26.9508i 0.689687 + 1.19457i 0.971939 + 0.235233i \(0.0755854\pi\)
−0.282252 + 0.959340i \(0.591081\pi\)
\(510\) −0.524215 1.23894i −0.0232127 0.0548613i
\(511\) 20.0833 34.7853i 0.888433 1.53881i
\(512\) 22.5882 0.998267
\(513\) −9.05615 3.51231i −0.399839 0.155072i
\(514\) −0.351936 −0.0155232
\(515\) −0.768667 + 1.33137i −0.0338715 + 0.0586672i
\(516\) −8.99863 21.2676i −0.396143 0.936253i
\(517\) 18.5472 + 32.1247i 0.815705 + 1.41284i
\(518\) 2.94590 + 5.10244i 0.129435 + 0.224189i
\(519\) 39.8286 + 4.93695i 1.74828 + 0.216708i
\(520\) 0.927880 1.60713i 0.0406902 0.0704775i
\(521\) 10.6889 0.468287 0.234144 0.972202i \(-0.424771\pi\)
0.234144 + 0.972202i \(0.424771\pi\)
\(522\) −1.07851 0.271546i −0.0472053 0.0118853i
\(523\) −22.8750 −1.00025 −0.500127 0.865952i \(-0.666713\pi\)
−0.500127 + 0.865952i \(0.666713\pi\)
\(524\) 0.679897 1.17762i 0.0297014 0.0514444i
\(525\) −4.47381 + 5.92272i −0.195253 + 0.258489i
\(526\) 3.26178 + 5.64958i 0.142221 + 0.246333i
\(527\) −8.01805 13.8877i −0.349272 0.604957i
\(528\) 12.1503 16.0853i 0.528772 0.700024i
\(529\) −2.32222 + 4.02220i −0.100966 + 0.174878i
\(530\) −0.0371840 −0.00161517
\(531\) 33.2834 + 8.38005i 1.44438 + 0.363663i
\(532\) 14.0660 0.609840
\(533\) −3.18008 + 5.50806i −0.137744 + 0.238580i
\(534\) 13.7998 + 1.71056i 0.597178 + 0.0740231i
\(535\) −2.71902 4.70948i −0.117553 0.203608i
\(536\) −11.9673 20.7280i −0.516909 0.895313i
\(537\) 9.39746 + 22.2102i 0.405530 + 0.958440i
\(538\) 4.52747 7.84181i 0.195193 0.338085i
\(539\) 50.9733 2.19558
\(540\) 7.11031 5.71721i 0.305979 0.246030i
\(541\) −13.5880 −0.584192 −0.292096 0.956389i \(-0.594353\pi\)
−0.292096 + 0.956389i \(0.594353\pi\)
\(542\) 7.14220 12.3707i 0.306784 0.531365i
\(543\) 9.23867 + 21.8349i 0.396469 + 0.937025i
\(544\) −3.92487 6.79808i −0.168278 0.291465i
\(545\) 0.722331 + 1.25111i 0.0309413 + 0.0535919i
\(546\) −3.63958 0.451143i −0.155759 0.0193071i
\(547\) −11.9818 + 20.7531i −0.512305 + 0.887338i 0.487593 + 0.873071i \(0.337875\pi\)
−0.999898 + 0.0142675i \(0.995458\pi\)
\(548\) −8.26680 −0.353140
\(549\) 9.81036 + 34.5129i 0.418696 + 1.47298i
\(550\) 2.21617 0.0944978
\(551\) 0.701293 1.21467i 0.0298761 0.0517469i
\(552\) 10.1862 13.4852i 0.433554 0.573968i
\(553\) −13.0687 22.6356i −0.555737 0.962564i
\(554\) −6.45548 11.1812i −0.274267 0.475045i
\(555\) −2.90492 + 3.84572i −0.123307 + 0.163242i
\(556\) −6.11649 + 10.5941i −0.259397 + 0.449289i
\(557\) 0.501996 0.0212702 0.0106351 0.999943i \(-0.496615\pi\)
0.0106351 + 0.999943i \(0.496615\pi\)
\(558\) −10.5292 + 10.8531i −0.445737 + 0.459450i
\(559\) −7.59324 −0.321160
\(560\) −5.55989 + 9.63002i −0.234948 + 0.406942i
\(561\) −12.1194 1.50226i −0.511683 0.0634257i
\(562\) −6.83774 11.8433i −0.288433 0.499580i
\(563\) −8.45763 14.6490i −0.356447 0.617384i 0.630918 0.775850i \(-0.282679\pi\)
−0.987364 + 0.158466i \(0.949345\pi\)
\(564\) 9.80090 + 23.1637i 0.412692 + 0.975367i
\(565\) 2.23239 3.86661i 0.0939173 0.162670i
\(566\) 12.9177 0.542971
\(567\) −33.9701 18.2636i −1.42661 0.767001i
\(568\) −26.8095 −1.12490
\(569\) 12.0627 20.8931i 0.505693 0.875885i −0.494286 0.869300i \(-0.664570\pi\)
0.999978 0.00658582i \(-0.00209635\pi\)
\(570\) −0.623387 1.47333i −0.0261108 0.0617109i
\(571\) 7.32786 + 12.6922i 0.306661 + 0.531153i 0.977630 0.210333i \(-0.0674548\pi\)
−0.670968 + 0.741486i \(0.734121\pi\)
\(572\) −3.93780 6.82047i −0.164648 0.285178i
\(573\) 13.4819 + 1.67115i 0.563215 + 0.0698133i
\(574\) −6.73347 + 11.6627i −0.281050 + 0.486792i
\(575\) −5.25780 −0.219265
\(576\) 5.68676 5.86170i 0.236948 0.244238i
\(577\) 4.42835 0.184355 0.0921774 0.995743i \(-0.470617\pi\)
0.0921774 + 0.995743i \(0.470617\pi\)
\(578\) 3.58935 6.21693i 0.149297 0.258590i
\(579\) −21.5598 + 28.5423i −0.895995 + 1.18618i
\(580\) 0.658722 + 1.14094i 0.0273519 + 0.0473749i
\(581\) 1.31171 + 2.27195i 0.0544189 + 0.0942563i
\(582\) −7.73423 + 10.2391i −0.320594 + 0.424424i
\(583\) −0.168774 + 0.292326i −0.00698992 + 0.0121069i
\(584\) −17.3939 −0.719765
\(585\) −0.820261 2.88568i −0.0339136 0.119308i
\(586\) 1.98454 0.0819806
\(587\) 3.40578 5.89899i 0.140572 0.243477i −0.787140 0.616774i \(-0.788439\pi\)
0.927712 + 0.373297i \(0.121773\pi\)
\(588\) 34.2999 + 4.25164i 1.41451 + 0.175335i
\(589\) −9.53492 16.5150i −0.392879 0.680487i
\(590\) 2.82641 + 4.89548i 0.116361 + 0.201544i
\(591\) 2.96035 + 6.99655i 0.121772 + 0.287800i
\(592\) −3.61013 + 6.25293i −0.148375 + 0.256994i
\(593\) 9.71004 0.398744 0.199372 0.979924i \(-0.436110\pi\)
0.199372 + 0.979924i \(0.436110\pi\)
\(594\) 1.76208 + 11.3799i 0.0722992 + 0.466925i
\(595\) 6.73645 0.276168
\(596\) −7.23177 + 12.5258i −0.296225 + 0.513077i
\(597\) −9.03835 21.3614i −0.369915 0.874266i
\(598\) −1.29893 2.24981i −0.0531171 0.0920016i
\(599\) −11.1367 19.2893i −0.455032 0.788138i 0.543658 0.839307i \(-0.317039\pi\)
−0.998690 + 0.0511684i \(0.983705\pi\)
\(600\) 3.18986 + 0.395398i 0.130225 + 0.0161421i
\(601\) −6.77115 + 11.7280i −0.276201 + 0.478394i −0.970437 0.241353i \(-0.922409\pi\)
0.694236 + 0.719747i \(0.255742\pi\)
\(602\) −16.0779 −0.655285
\(603\) −37.5214 9.44709i −1.52799 0.384715i
\(604\) 15.4023 0.626710
\(605\) 4.55897 7.89637i 0.185348 0.321033i
\(606\) 5.61715 7.43636i 0.228181 0.302081i
\(607\) 2.38199 + 4.12572i 0.0966818 + 0.167458i 0.910309 0.413929i \(-0.135844\pi\)
−0.813627 + 0.581387i \(0.802510\pi\)
\(608\) −4.66739 8.08415i −0.189288 0.327856i
\(609\) 3.35673 4.44387i 0.136022 0.180075i
\(610\) −2.95470 + 5.11770i −0.119633 + 0.207210i
\(611\) 8.27021 0.334577
\(612\) −8.02986 2.02174i −0.324588 0.0817242i
\(613\) −7.58211 −0.306238 −0.153119 0.988208i \(-0.548932\pi\)
−0.153119 + 0.988208i \(0.548932\pi\)
\(614\) 1.85615 3.21494i 0.0749080 0.129745i
\(615\) −10.9324 1.35513i −0.440839 0.0546441i
\(616\) −17.8350 30.8911i −0.718593 1.24464i
\(617\) −7.28208 12.6129i −0.293166 0.507778i 0.681391 0.731920i \(-0.261375\pi\)
−0.974556 + 0.224142i \(0.928042\pi\)
\(618\) −0.512669 1.21165i −0.0206226 0.0487399i
\(619\) 21.3509 36.9808i 0.858165 1.48639i −0.0155124 0.999880i \(-0.504938\pi\)
0.873677 0.486506i \(-0.161729\pi\)
\(620\) 17.9122 0.719373
\(621\) −4.18049 26.9986i −0.167757 1.08342i
\(622\) 10.3958 0.416835
\(623\) −34.8155 + 60.3023i −1.39486 + 2.41596i
\(624\) −1.75131 4.13909i −0.0701086 0.165696i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 1.60585 + 2.78141i 0.0641825 + 0.111167i
\(627\) −14.4122 1.78646i −0.575568 0.0713445i
\(628\) −11.7588 + 20.3669i −0.469228 + 0.812727i
\(629\) 4.37409 0.174406
\(630\) −1.73681 6.11012i −0.0691963 0.243433i
\(631\) −35.7936 −1.42492 −0.712461 0.701712i \(-0.752419\pi\)
−0.712461 + 0.701712i \(0.752419\pi\)
\(632\) −5.65931 + 9.80221i −0.225115 + 0.389911i
\(633\) −6.33674 + 8.38900i −0.251863 + 0.333433i
\(634\) 2.83013 + 4.90193i 0.112399 + 0.194681i
\(635\) −1.96048 3.39566i −0.0777994 0.134753i
\(636\) −0.137951 + 0.182629i −0.00547011 + 0.00724169i
\(637\) 5.68226 9.84197i 0.225140 0.389953i
\(638\) −1.66281 −0.0658313
\(639\) −30.1782 + 31.1066i −1.19383 + 1.23056i
\(640\) 11.3323 0.447948
\(641\) −5.73418 + 9.93189i −0.226486 + 0.392286i −0.956764 0.290864i \(-0.906057\pi\)
0.730278 + 0.683150i \(0.239391\pi\)
\(642\) 4.61852 + 0.572488i 0.182278 + 0.0225943i
\(643\) 14.4978 + 25.1109i 0.571738 + 0.990279i 0.996388 + 0.0849212i \(0.0270639\pi\)
−0.424650 + 0.905358i \(0.639603\pi\)
\(644\) 19.7814 + 34.2623i 0.779494 + 1.35012i
\(645\) −5.12489 12.1123i −0.201792 0.476921i
\(646\) −0.725959 + 1.25740i −0.0285625 + 0.0494716i
\(647\) −11.2588 −0.442630 −0.221315 0.975202i \(-0.571035\pi\)
−0.221315 + 0.975202i \(0.571035\pi\)
\(648\) 0.505911 + 16.6942i 0.0198741 + 0.655809i
\(649\) 51.3151 2.01430
\(650\) 0.247048 0.427900i 0.00969002 0.0167836i
\(651\) −29.5056 69.7343i −1.15642 2.73310i
\(652\) −0.212850 0.368668i −0.00833586 0.0144381i
\(653\) 17.2419 + 29.8639i 0.674729 + 1.16866i 0.976548 + 0.215299i \(0.0690726\pi\)
−0.301820 + 0.953365i \(0.597594\pi\)
\(654\) −1.22695 0.152087i −0.0479776 0.00594706i
\(655\) 0.387214 0.670674i 0.0151297 0.0262054i
\(656\) −16.5034 −0.644351
\(657\) −19.5795 + 20.1819i −0.763871 + 0.787370i
\(658\) 17.5113 0.682660
\(659\) −15.2334 + 26.3850i −0.593408 + 1.02781i 0.400362 + 0.916357i \(0.368885\pi\)
−0.993769 + 0.111455i \(0.964449\pi\)
\(660\) 8.22188 10.8847i 0.320036 0.423685i
\(661\) −10.7408 18.6036i −0.417769 0.723597i 0.577946 0.816075i \(-0.303855\pi\)
−0.995715 + 0.0924779i \(0.970521\pi\)
\(662\) 6.01793 + 10.4234i 0.233893 + 0.405115i
\(663\) −1.64108 + 2.17257i −0.0637341 + 0.0843754i
\(664\) 0.568028 0.983853i 0.0220438 0.0381809i
\(665\) 8.01086 0.310648
\(666\) −1.12774 3.96740i −0.0436991 0.153734i
\(667\) 3.94497 0.152750
\(668\) 4.46527 7.73407i 0.172766 0.299240i
\(669\) 39.5142 + 4.89798i 1.52771 + 0.189367i
\(670\) −3.18630 5.51883i −0.123097 0.213211i
\(671\) 26.8222 + 46.4574i 1.03546 + 1.79347i
\(672\) −14.4431 34.1353i −0.557156 1.31680i
\(673\) −4.55275 + 7.88559i −0.175496 + 0.303967i −0.940333 0.340256i \(-0.889486\pi\)
0.764837 + 0.644224i \(0.222819\pi\)
\(674\) 5.73160 0.220773
\(675\) 4.04945 3.25606i 0.155864 0.125326i
\(676\) −1.75587 −0.0675334
\(677\) −1.72288 + 2.98411i −0.0662155 + 0.114689i −0.897233 0.441558i \(-0.854426\pi\)
0.831017 + 0.556247i \(0.187759\pi\)
\(678\) 1.48891 + 3.51893i 0.0571812 + 0.135144i
\(679\) −32.1276 55.6467i −1.23295 2.13552i
\(680\) −1.45859 2.52635i −0.0559343 0.0968811i
\(681\) 32.3748 + 4.01301i 1.24060 + 0.153779i
\(682\) −11.3040 + 19.5790i −0.432851 + 0.749720i
\(683\) 36.2676 1.38774 0.693870 0.720100i \(-0.255904\pi\)
0.693870 + 0.720100i \(0.255904\pi\)
\(684\) −9.54896 2.40422i −0.365114 0.0919277i
\(685\) −4.70810 −0.179887
\(686\) 4.62071 8.00330i 0.176419 0.305567i
\(687\) −5.64709 + 7.47600i −0.215450 + 0.285227i
\(688\) −9.85153 17.0633i −0.375586 0.650534i
\(689\) 0.0376283 + 0.0651742i 0.00143353 + 0.00248294i
\(690\) 2.71208 3.59043i 0.103247 0.136685i
\(691\) 19.1163 33.1104i 0.727218 1.25958i −0.230837 0.972993i \(-0.574146\pi\)
0.958055 0.286586i \(-0.0925204\pi\)
\(692\) 40.6853 1.54662
\(693\) −55.9186 14.0791i −2.12417 0.534820i
\(694\) −6.01907 −0.228481
\(695\) −3.48346 + 6.03352i −0.132135 + 0.228865i
\(696\) −2.39338 0.296671i −0.0907207 0.0112453i
\(697\) 4.99895 + 8.65844i 0.189349 + 0.327962i
\(698\) −1.95440 3.38512i −0.0739752 0.128129i
\(699\) −5.03451 11.8987i −0.190423 0.450050i
\(700\) −3.76229 + 6.51647i −0.142201 + 0.246300i
\(701\) −2.09523 −0.0791359 −0.0395679 0.999217i \(-0.512598\pi\)
−0.0395679 + 0.999217i \(0.512598\pi\)
\(702\) 2.39368 + 0.928357i 0.0903435 + 0.0350386i
\(703\) 5.20159 0.196182
\(704\) 6.10519 10.5745i 0.230098 0.398542i
\(705\) 5.58179 + 13.1921i 0.210222 + 0.496845i
\(706\) −5.25195 9.09665i −0.197660 0.342357i
\(707\) 23.3334 + 40.4146i 0.877542 + 1.51995i
\(708\) 34.5299 + 4.28015i 1.29771 + 0.160858i
\(709\) 9.93869 17.2143i 0.373255 0.646497i −0.616809 0.787113i \(-0.711575\pi\)
0.990064 + 0.140616i \(0.0449082\pi\)
\(710\) −7.13803 −0.267885
\(711\) 5.00292 + 17.6003i 0.187624 + 0.660064i
\(712\) 30.1533 1.13004
\(713\) 26.8183 46.4507i 1.00435 1.73959i
\(714\) −3.47480 + 4.60017i −0.130041 + 0.172157i
\(715\) −2.24265 3.88439i −0.0838704 0.145268i
\(716\) 12.2241 + 21.1727i 0.456835 + 0.791261i
\(717\) 8.01844 10.6153i 0.299454 0.396437i
\(718\) 1.87667 3.25049i 0.0700367 0.121307i
\(719\) −15.9997 −0.596687 −0.298344 0.954459i \(-0.596434\pi\)
−0.298344 + 0.954459i \(0.596434\pi\)
\(720\) 5.42043 5.58718i 0.202007 0.208222i
\(721\) 6.58807 0.245353
\(722\) 3.83061 6.63482i 0.142561 0.246922i
\(723\) −50.3294 6.23858i −1.87177 0.232015i
\(724\) 12.0175 + 20.8149i 0.446627 + 0.773581i
\(725\) 0.375154 + 0.649786i 0.0139329 + 0.0241325i
\(726\) 3.04064 + 7.18632i 0.112849 + 0.266709i
\(727\) 15.2862 26.4765i 0.566934 0.981959i −0.429933 0.902861i \(-0.641463\pi\)
0.996867 0.0790977i \(-0.0252039\pi\)
\(728\) −7.95265 −0.294745
\(729\) 19.9395 + 18.2049i 0.738499 + 0.674255i
\(730\) −4.63113 −0.171406
\(731\) −5.96813 + 10.3371i −0.220739 + 0.382332i
\(732\) 14.1737 + 33.4984i 0.523874 + 1.23814i
\(733\) −13.8308 23.9556i −0.510852 0.884821i −0.999921 0.0125762i \(-0.995997\pi\)
0.489069 0.872245i \(-0.337337\pi\)
\(734\) −5.33973 9.24868i −0.197093 0.341375i
\(735\) 19.5344 + 2.42139i 0.720539 + 0.0893143i
\(736\) 13.1277 22.7378i 0.483893 0.838127i
\(737\) −57.8491 −2.13090
\(738\) 6.56457 6.76652i 0.241645 0.249079i
\(739\) −2.03805 −0.0749710 −0.0374855 0.999297i \(-0.511935\pi\)
−0.0374855 + 0.999297i \(0.511935\pi\)
\(740\) −2.44292 + 4.23126i −0.0898034 + 0.155544i
\(741\) −1.95154 + 2.58357i −0.0716915 + 0.0949100i
\(742\) 0.0796739 + 0.137999i 0.00292492 + 0.00506611i
\(743\) −4.23249 7.33089i −0.155275 0.268944i 0.777884 0.628408i \(-0.216293\pi\)
−0.933159 + 0.359463i \(0.882960\pi\)
\(744\) −19.7636 + 26.1644i −0.724570 + 0.959233i
\(745\) −4.11863 + 7.13367i −0.150895 + 0.261358i
\(746\) −5.93575 −0.217323
\(747\) −0.502146 1.76655i −0.0183726 0.0646348i
\(748\) −12.3801 −0.452662
\(749\) −11.6520 + 20.1819i −0.425756 + 0.737431i
\(750\) 0.849299 + 0.105275i 0.0310120 + 0.00384409i
\(751\) 9.34897 + 16.1929i 0.341149 + 0.590887i 0.984646 0.174561i \(-0.0558506\pi\)
−0.643497 + 0.765448i \(0.722517\pi\)
\(752\) 10.7298 + 18.5846i 0.391277 + 0.677711i
\(753\) −17.9802 42.4949i −0.655236 1.54860i
\(754\) −0.185362 + 0.321057i −0.00675049 + 0.0116922i
\(755\) 8.77188 0.319241
\(756\) −36.4532 14.1379i −1.32579 0.514191i
\(757\) −4.02963 −0.146459 −0.0732296 0.997315i \(-0.523331\pi\)
−0.0732296 + 0.997315i \(0.523331\pi\)
\(758\) 0.849858 1.47200i 0.0308682 0.0534653i
\(759\) −15.9167 37.6179i −0.577739 1.36544i
\(760\) −1.73453 3.00429i −0.0629179 0.108977i
\(761\) −8.21661 14.2316i −0.297852 0.515895i 0.677792 0.735253i \(-0.262937\pi\)
−0.975644 + 0.219359i \(0.929604\pi\)
\(762\) 3.33008 + 0.412779i 0.120636 + 0.0149534i
\(763\) 3.09547 5.36151i 0.112063 0.194100i
\(764\) 13.7719 0.498250
\(765\) −4.57315 1.15142i −0.165343 0.0416297i
\(766\) 13.2906 0.480208
\(767\) 5.72037 9.90797i 0.206550 0.357756i
\(768\) −0.161419 + 0.213697i −0.00582471 + 0.00771114i
\(769\) 13.5335 + 23.4407i 0.488031 + 0.845295i 0.999905 0.0137657i \(-0.00438191\pi\)
−0.511874 + 0.859060i \(0.671049\pi\)
\(770\) −4.74857 8.22477i −0.171127 0.296400i
\(771\) −0.743601 + 0.984428i −0.0267801 + 0.0354533i
\(772\) −18.1309