Properties

Label 585.2.i.e.196.2
Level $585$
Weight $2$
Character 585.196
Analytic conductor $4.671$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \( x^{16} - 5 x^{15} + 20 x^{14} - 44 x^{13} + 96 x^{12} - 107 x^{11} + 178 x^{10} - 19 x^{9} + 231 x^{8} + 326 x^{7} + 551 x^{6} + 859 x^{5} + 1118 x^{4} + 1215 x^{3} + 1103 x^{2} + \cdots + 268 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 196.2
Root \(-0.628312 + 0.590424i\) of defining polynomial
Character \(\chi\) \(=\) 585.196
Dual form 585.2.i.e.391.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.12831 + 1.95429i) q^{2} +(-0.604199 - 1.62325i) q^{3} +(-1.54617 - 2.67805i) q^{4} +(0.500000 + 0.866025i) q^{5} +(3.85403 + 0.650751i) q^{6} +(-0.353285 + 0.611908i) q^{7} +2.46502 q^{8} +(-2.26989 + 1.96153i) q^{9} +O(q^{10})\) \(q+(-1.12831 + 1.95429i) q^{2} +(-0.604199 - 1.62325i) q^{3} +(-1.54617 - 2.67805i) q^{4} +(0.500000 + 0.866025i) q^{5} +(3.85403 + 0.650751i) q^{6} +(-0.353285 + 0.611908i) q^{7} +2.46502 q^{8} +(-2.26989 + 1.96153i) q^{9} -2.25662 q^{10} +(1.16510 - 2.01802i) q^{11} +(-3.41295 + 4.12791i) q^{12} +(0.500000 + 0.866025i) q^{13} +(-0.797232 - 1.38085i) q^{14} +(1.10368 - 1.33488i) q^{15} +(0.311036 - 0.538731i) q^{16} +6.04736 q^{17} +(-1.27227 - 6.64925i) q^{18} -7.91884 q^{19} +(1.54617 - 2.67805i) q^{20} +(1.20674 + 0.203756i) q^{21} +(2.62920 + 4.55391i) q^{22} +(4.47799 + 7.75611i) q^{23} +(-1.48936 - 4.00135i) q^{24} +(-0.500000 + 0.866025i) q^{25} -2.25662 q^{26} +(4.55552 + 2.49944i) q^{27} +2.18496 q^{28} +(1.20340 - 2.08435i) q^{29} +(1.36345 + 3.66307i) q^{30} +(1.53216 + 2.65378i) q^{31} +(3.16691 + 5.48526i) q^{32} +(-3.97971 - 0.671971i) q^{33} +(-6.82331 + 11.8183i) q^{34} -0.706571 q^{35} +(8.76273 + 3.04600i) q^{36} -2.38079 q^{37} +(8.93492 - 15.4757i) q^{38} +(1.10368 - 1.33488i) q^{39} +(1.23251 + 2.13477i) q^{40} +(4.72945 + 8.19164i) q^{41} +(-1.75977 + 2.12841i) q^{42} +(-5.96795 + 10.3368i) q^{43} -7.20582 q^{44} +(-2.83368 - 0.985013i) q^{45} -20.2103 q^{46} +(-4.86433 + 8.42527i) q^{47} +(-1.06242 - 0.179389i) q^{48} +(3.25038 + 5.62982i) q^{49} +(-1.12831 - 1.95429i) q^{50} +(-3.65381 - 9.81639i) q^{51} +(1.54617 - 2.67805i) q^{52} +5.90968 q^{53} +(-10.0247 + 6.08269i) q^{54} +2.33021 q^{55} +(-0.870856 + 1.50837i) q^{56} +(4.78456 + 12.8543i) q^{57} +(2.71562 + 4.70359i) q^{58} +(-1.48719 - 2.57588i) q^{59} +(-5.28135 - 0.891752i) q^{60} +(4.62078 - 8.00343i) q^{61} -6.91501 q^{62} +(-0.398361 - 2.08194i) q^{63} -13.0489 q^{64} +(-0.500000 + 0.866025i) q^{65} +(5.80358 - 7.01933i) q^{66} +(0.847241 + 1.46746i) q^{67} +(-9.35028 - 16.1952i) q^{68} +(9.88452 - 11.9551i) q^{69} +(0.797232 - 1.38085i) q^{70} -12.4439 q^{71} +(-5.59532 + 4.83522i) q^{72} +4.88899 q^{73} +(2.68628 - 4.65277i) q^{74} +(1.70788 + 0.288374i) q^{75} +(12.2439 + 21.2071i) q^{76} +(0.823229 + 1.42587i) q^{77} +(1.36345 + 3.66307i) q^{78} +(5.51270 - 9.54827i) q^{79} +0.622073 q^{80} +(1.30477 - 8.90492i) q^{81} -21.3452 q^{82} +(0.260845 - 0.451797i) q^{83} +(-1.32015 - 3.54674i) q^{84} +(3.02368 + 5.23717i) q^{85} +(-13.4674 - 23.3262i) q^{86} +(-4.11051 - 0.694057i) q^{87} +(2.87201 - 4.97447i) q^{88} +10.7608 q^{89} +(5.12228 - 4.42644i) q^{90} -0.706571 q^{91} +(13.8475 - 23.9846i) q^{92} +(3.38201 - 4.09049i) q^{93} +(-10.9770 - 19.0127i) q^{94} +(-3.95942 - 6.85792i) q^{95} +(6.99050 - 8.45488i) q^{96} +(1.48153 - 2.56609i) q^{97} -14.6698 q^{98} +(1.31376 + 6.86607i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 3 q^{2} + q^{3} - 9 q^{4} + 8 q^{5} + 8 q^{6} + 11 q^{7} - 12 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 3 q^{2} + q^{3} - 9 q^{4} + 8 q^{5} + 8 q^{6} + 11 q^{7} - 12 q^{8} + q^{9} - 6 q^{10} - 6 q^{11} + 2 q^{12} + 8 q^{13} - 10 q^{14} + 5 q^{15} - 11 q^{16} - 4 q^{17} + 5 q^{18} - 20 q^{19} + 9 q^{20} + 11 q^{21} - 3 q^{22} - 6 q^{23} - 57 q^{24} - 8 q^{25} - 6 q^{26} - 14 q^{27} - 68 q^{28} - 14 q^{29} + 7 q^{30} + 31 q^{31} - q^{32} - 31 q^{33} + 7 q^{34} + 22 q^{35} + 2 q^{36} + 2 q^{37} - 9 q^{38} + 5 q^{39} - 6 q^{40} + 12 q^{41} - 26 q^{42} - 15 q^{43} + 32 q^{44} - 16 q^{45} - 64 q^{46} + 18 q^{47} - 4 q^{48} - 17 q^{49} - 3 q^{50} + 32 q^{51} + 9 q^{52} + 4 q^{53} + 2 q^{54} - 12 q^{55} - 16 q^{56} + 45 q^{57} + 42 q^{58} - 24 q^{59} - 8 q^{60} + 9 q^{61} - 40 q^{62} + 47 q^{63} - 60 q^{64} - 8 q^{65} + 55 q^{66} + 18 q^{67} + 14 q^{68} - 12 q^{69} + 10 q^{70} + 20 q^{71} - 9 q^{72} + 12 q^{73} + 37 q^{74} + 4 q^{75} + 53 q^{76} + 34 q^{77} + 7 q^{78} + 3 q^{79} - 22 q^{80} + 13 q^{81} - 68 q^{82} + 10 q^{83} + 22 q^{84} - 2 q^{85} - 60 q^{86} + 11 q^{87} + 14 q^{88} - 26 q^{89} + 19 q^{90} + 22 q^{91} - 5 q^{92} + 74 q^{93} - 17 q^{94} - 10 q^{95} + 13 q^{96} + 34 q^{97} - 60 q^{98} - 43 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.12831 + 1.95429i −0.797837 + 1.38189i 0.123185 + 0.992384i \(0.460689\pi\)
−0.921022 + 0.389510i \(0.872644\pi\)
\(3\) −0.604199 1.62325i −0.348835 0.937184i
\(4\) −1.54617 2.67805i −0.773087 1.33903i
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 3.85403 + 0.650751i 1.57340 + 0.265668i
\(7\) −0.353285 + 0.611908i −0.133529 + 0.231280i −0.925035 0.379883i \(-0.875964\pi\)
0.791505 + 0.611162i \(0.209298\pi\)
\(8\) 2.46502 0.871517
\(9\) −2.26989 + 1.96153i −0.756629 + 0.653845i
\(10\) −2.25662 −0.713607
\(11\) 1.16510 2.01802i 0.351292 0.608456i −0.635184 0.772361i \(-0.719076\pi\)
0.986476 + 0.163905i \(0.0524090\pi\)
\(12\) −3.41295 + 4.12791i −0.985235 + 1.19162i
\(13\) 0.500000 + 0.866025i 0.138675 + 0.240192i
\(14\) −0.797232 1.38085i −0.213069 0.369047i
\(15\) 1.10368 1.33488i 0.284968 0.344664i
\(16\) 0.311036 0.538731i 0.0777591 0.134683i
\(17\) 6.04736 1.46670 0.733351 0.679851i \(-0.237955\pi\)
0.733351 + 0.679851i \(0.237955\pi\)
\(18\) −1.27227 6.64925i −0.299877 1.56724i
\(19\) −7.91884 −1.81671 −0.908353 0.418204i \(-0.862660\pi\)
−0.908353 + 0.418204i \(0.862660\pi\)
\(20\) 1.54617 2.67805i 0.345735 0.598831i
\(21\) 1.20674 + 0.203756i 0.263331 + 0.0444633i
\(22\) 2.62920 + 4.55391i 0.560548 + 0.970898i
\(23\) 4.47799 + 7.75611i 0.933726 + 1.61726i 0.776890 + 0.629637i \(0.216796\pi\)
0.156837 + 0.987625i \(0.449870\pi\)
\(24\) −1.48936 4.00135i −0.304015 0.816772i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −2.25662 −0.442560
\(27\) 4.55552 + 2.49944i 0.876711 + 0.481017i
\(28\) 2.18496 0.412919
\(29\) 1.20340 2.08435i 0.223465 0.387054i −0.732392 0.680883i \(-0.761596\pi\)
0.955858 + 0.293829i \(0.0949297\pi\)
\(30\) 1.36345 + 3.66307i 0.248931 + 0.668781i
\(31\) 1.53216 + 2.65378i 0.275184 + 0.476632i 0.970181 0.242380i \(-0.0779280\pi\)
−0.694998 + 0.719012i \(0.744595\pi\)
\(32\) 3.16691 + 5.48526i 0.559837 + 0.969665i
\(33\) −3.97971 0.671971i −0.692779 0.116975i
\(34\) −6.82331 + 11.8183i −1.17019 + 2.02683i
\(35\) −0.706571 −0.119432
\(36\) 8.76273 + 3.04600i 1.46046 + 0.507667i
\(37\) −2.38079 −0.391400 −0.195700 0.980664i \(-0.562698\pi\)
−0.195700 + 0.980664i \(0.562698\pi\)
\(38\) 8.93492 15.4757i 1.44944 2.51050i
\(39\) 1.10368 1.33488i 0.176730 0.213751i
\(40\) 1.23251 + 2.13477i 0.194877 + 0.337537i
\(41\) 4.72945 + 8.19164i 0.738616 + 1.27932i 0.953119 + 0.302596i \(0.0978534\pi\)
−0.214503 + 0.976723i \(0.568813\pi\)
\(42\) −1.75977 + 2.12841i −0.271539 + 0.328421i
\(43\) −5.96795 + 10.3368i −0.910103 + 1.57635i −0.0961869 + 0.995363i \(0.530665\pi\)
−0.813916 + 0.580982i \(0.802669\pi\)
\(44\) −7.20582 −1.08632
\(45\) −2.83368 0.985013i −0.422420 0.146837i
\(46\) −20.2103 −2.97985
\(47\) −4.86433 + 8.42527i −0.709536 + 1.22895i 0.255493 + 0.966811i \(0.417762\pi\)
−0.965029 + 0.262142i \(0.915571\pi\)
\(48\) −1.06242 0.179389i −0.153348 0.0258926i
\(49\) 3.25038 + 5.62982i 0.464340 + 0.804260i
\(50\) −1.12831 1.95429i −0.159567 0.276379i
\(51\) −3.65381 9.81639i −0.511636 1.37457i
\(52\) 1.54617 2.67805i 0.214416 0.371379i
\(53\) 5.90968 0.811756 0.405878 0.913927i \(-0.366966\pi\)
0.405878 + 0.913927i \(0.366966\pi\)
\(54\) −10.0247 + 6.08269i −1.36419 + 0.827749i
\(55\) 2.33021 0.314205
\(56\) −0.870856 + 1.50837i −0.116373 + 0.201564i
\(57\) 4.78456 + 12.8543i 0.633730 + 1.70259i
\(58\) 2.71562 + 4.70359i 0.356578 + 0.617611i
\(59\) −1.48719 2.57588i −0.193615 0.335351i 0.752831 0.658214i \(-0.228688\pi\)
−0.946446 + 0.322863i \(0.895355\pi\)
\(60\) −5.28135 0.891752i −0.681819 0.115125i
\(61\) 4.62078 8.00343i 0.591630 1.02473i −0.402383 0.915472i \(-0.631818\pi\)
0.994013 0.109262i \(-0.0348488\pi\)
\(62\) −6.91501 −0.878207
\(63\) −0.398361 2.08194i −0.0501887 0.262300i
\(64\) −13.0489 −1.63111
\(65\) −0.500000 + 0.866025i −0.0620174 + 0.107417i
\(66\) 5.80358 7.01933i 0.714371 0.864019i
\(67\) 0.847241 + 1.46746i 0.103507 + 0.179279i 0.913127 0.407675i \(-0.133660\pi\)
−0.809620 + 0.586954i \(0.800327\pi\)
\(68\) −9.35028 16.1952i −1.13389 1.96395i
\(69\) 9.88452 11.9551i 1.18996 1.43923i
\(70\) 0.797232 1.38085i 0.0952875 0.165043i
\(71\) −12.4439 −1.47682 −0.738410 0.674352i \(-0.764423\pi\)
−0.738410 + 0.674352i \(0.764423\pi\)
\(72\) −5.59532 + 4.83522i −0.659415 + 0.569837i
\(73\) 4.88899 0.572213 0.286106 0.958198i \(-0.407639\pi\)
0.286106 + 0.958198i \(0.407639\pi\)
\(74\) 2.68628 4.65277i 0.312273 0.540873i
\(75\) 1.70788 + 0.288374i 0.197209 + 0.0332985i
\(76\) 12.2439 + 21.2071i 1.40447 + 2.43262i
\(77\) 0.823229 + 1.42587i 0.0938157 + 0.162493i
\(78\) 1.36345 + 3.66307i 0.154380 + 0.414761i
\(79\) 5.51270 9.54827i 0.620227 1.07426i −0.369217 0.929343i \(-0.620374\pi\)
0.989443 0.144921i \(-0.0462927\pi\)
\(80\) 0.622073 0.0695499
\(81\) 1.30477 8.90492i 0.144975 0.989435i
\(82\) −21.3452 −2.35718
\(83\) 0.260845 0.451797i 0.0286315 0.0495912i −0.851355 0.524591i \(-0.824218\pi\)
0.879986 + 0.474999i \(0.157552\pi\)
\(84\) −1.32015 3.54674i −0.144041 0.386982i
\(85\) 3.02368 + 5.23717i 0.327964 + 0.568051i
\(86\) −13.4674 23.3262i −1.45223 2.51533i
\(87\) −4.11051 0.694057i −0.440693 0.0744107i
\(88\) 2.87201 4.97447i 0.306157 0.530280i
\(89\) 10.7608 1.14065 0.570323 0.821420i \(-0.306818\pi\)
0.570323 + 0.821420i \(0.306818\pi\)
\(90\) 5.12228 4.42644i 0.539936 0.466588i
\(91\) −0.706571 −0.0740687
\(92\) 13.8475 23.9846i 1.44370 2.50057i
\(93\) 3.38201 4.09049i 0.350699 0.424164i
\(94\) −10.9770 19.0127i −1.13219 1.96101i
\(95\) −3.95942 6.85792i −0.406228 0.703607i
\(96\) 6.99050 8.45488i 0.713465 0.862923i
\(97\) 1.48153 2.56609i 0.150427 0.260547i −0.780958 0.624584i \(-0.785269\pi\)
0.931384 + 0.364037i \(0.118602\pi\)
\(98\) −14.6698 −1.48187
\(99\) 1.31376 + 6.86607i 0.132038 + 0.690066i
\(100\) 3.09235 0.309235
\(101\) −6.83573 + 11.8398i −0.680181 + 1.17811i 0.294745 + 0.955576i \(0.404765\pi\)
−0.974925 + 0.222532i \(0.928568\pi\)
\(102\) 23.3067 + 3.93533i 2.30771 + 0.389655i
\(103\) 3.56535 + 6.17537i 0.351305 + 0.608478i 0.986478 0.163892i \(-0.0524048\pi\)
−0.635174 + 0.772369i \(0.719071\pi\)
\(104\) 1.23251 + 2.13477i 0.120858 + 0.209332i
\(105\) 0.426909 + 1.14694i 0.0416621 + 0.111930i
\(106\) −6.66796 + 11.5492i −0.647649 + 1.12176i
\(107\) −1.70776 −0.165095 −0.0825477 0.996587i \(-0.526306\pi\)
−0.0825477 + 0.996587i \(0.526306\pi\)
\(108\) −0.350008 16.0645i −0.0336796 1.54581i
\(109\) −3.23628 −0.309979 −0.154989 0.987916i \(-0.549534\pi\)
−0.154989 + 0.987916i \(0.549534\pi\)
\(110\) −2.62920 + 4.55391i −0.250685 + 0.434199i
\(111\) 1.43847 + 3.86462i 0.136534 + 0.366814i
\(112\) 0.219769 + 0.380652i 0.0207662 + 0.0359682i
\(113\) 0.339220 + 0.587547i 0.0319112 + 0.0552717i 0.881540 0.472109i \(-0.156507\pi\)
−0.849629 + 0.527381i \(0.823174\pi\)
\(114\) −30.5195 5.15319i −2.85841 0.482641i
\(115\) −4.47799 + 7.75611i −0.417575 + 0.723261i
\(116\) −7.44266 −0.691033
\(117\) −2.83368 0.985013i −0.261974 0.0910645i
\(118\) 6.71204 0.617893
\(119\) −2.13645 + 3.70043i −0.195848 + 0.339218i
\(120\) 2.72059 3.29050i 0.248355 0.300380i
\(121\) 2.78506 + 4.82387i 0.253187 + 0.438533i
\(122\) 10.4274 + 18.0607i 0.944049 + 1.63514i
\(123\) 10.4396 12.6265i 0.941304 1.13849i
\(124\) 4.73797 8.20640i 0.425482 0.736957i
\(125\) −1.00000 −0.0894427
\(126\) 4.51820 + 1.57057i 0.402514 + 0.139917i
\(127\) 14.6889 1.30343 0.651714 0.758465i \(-0.274050\pi\)
0.651714 + 0.758465i \(0.274050\pi\)
\(128\) 8.38942 14.5309i 0.741527 1.28436i
\(129\) 20.3850 + 3.44200i 1.79480 + 0.303051i
\(130\) −1.12831 1.95429i −0.0989595 0.171403i
\(131\) 4.53194 + 7.84955i 0.395957 + 0.685818i 0.993223 0.116225i \(-0.0370795\pi\)
−0.597266 + 0.802044i \(0.703746\pi\)
\(132\) 4.35375 + 11.6969i 0.378946 + 1.01808i
\(133\) 2.79761 4.84560i 0.242584 0.420167i
\(134\) −3.82381 −0.330327
\(135\) 0.113185 + 5.19492i 0.00974144 + 0.447107i
\(136\) 14.9069 1.27825
\(137\) 1.01492 1.75789i 0.0867104 0.150187i −0.819408 0.573210i \(-0.805698\pi\)
0.906119 + 0.423023i \(0.139031\pi\)
\(138\) 12.2110 + 32.8064i 1.03947 + 2.79266i
\(139\) 1.42659 + 2.47092i 0.121002 + 0.209581i 0.920163 0.391536i \(-0.128056\pi\)
−0.799161 + 0.601117i \(0.794723\pi\)
\(140\) 1.09248 + 1.89223i 0.0923316 + 0.159923i
\(141\) 16.6154 + 2.80549i 1.39927 + 0.236265i
\(142\) 14.0406 24.3190i 1.17826 2.04081i
\(143\) 2.33021 0.194862
\(144\) 0.350721 + 1.83297i 0.0292268 + 0.152747i
\(145\) 2.40680 0.199874
\(146\) −5.51630 + 9.55452i −0.456532 + 0.790737i
\(147\) 7.17474 8.67771i 0.591762 0.715726i
\(148\) 3.68112 + 6.37589i 0.302586 + 0.524095i
\(149\) −4.49112 7.77885i −0.367927 0.637269i 0.621314 0.783562i \(-0.286599\pi\)
−0.989241 + 0.146293i \(0.953266\pi\)
\(150\) −2.49058 + 3.01232i −0.203355 + 0.245955i
\(151\) 1.37741 2.38575i 0.112092 0.194150i −0.804521 0.593924i \(-0.797578\pi\)
0.916614 + 0.399774i \(0.130911\pi\)
\(152\) −19.5201 −1.58329
\(153\) −13.7268 + 11.8621i −1.10975 + 0.958995i
\(154\) −3.71544 −0.299398
\(155\) −1.53216 + 2.65378i −0.123066 + 0.213156i
\(156\) −5.28135 0.891752i −0.422846 0.0713973i
\(157\) −12.2493 21.2164i −0.977601 1.69325i −0.671071 0.741393i \(-0.734166\pi\)
−0.306529 0.951861i \(-0.599168\pi\)
\(158\) 12.4401 + 21.5468i 0.989679 + 1.71418i
\(159\) −3.57062 9.59289i −0.283169 0.760765i
\(160\) −3.16691 + 5.48526i −0.250367 + 0.433648i
\(161\) −6.32804 −0.498719
\(162\) 15.9306 + 12.5974i 1.25163 + 0.989748i
\(163\) −18.2489 −1.42937 −0.714684 0.699448i \(-0.753429\pi\)
−0.714684 + 0.699448i \(0.753429\pi\)
\(164\) 14.6251 25.3314i 1.14203 1.97805i
\(165\) −1.40791 3.78252i −0.109606 0.294468i
\(166\) 0.588630 + 1.01954i 0.0456865 + 0.0791314i
\(167\) −2.80066 4.85088i −0.216721 0.375372i 0.737082 0.675803i \(-0.236203\pi\)
−0.953804 + 0.300431i \(0.902870\pi\)
\(168\) 2.97463 + 0.502264i 0.229498 + 0.0387505i
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) −13.6466 −1.04665
\(171\) 17.9749 15.5331i 1.37457 1.18784i
\(172\) 36.9100 2.81436
\(173\) 1.80130 3.11994i 0.136950 0.237205i −0.789391 0.613891i \(-0.789603\pi\)
0.926341 + 0.376687i \(0.122937\pi\)
\(174\) 5.99433 7.25003i 0.454429 0.549624i
\(175\) −0.353285 0.611908i −0.0267059 0.0462559i
\(176\) −0.724780 1.25536i −0.0546324 0.0946260i
\(177\) −3.28274 + 3.97042i −0.246746 + 0.298435i
\(178\) −12.1416 + 21.0298i −0.910050 + 1.57625i
\(179\) 15.3123 1.14449 0.572246 0.820082i \(-0.306072\pi\)
0.572246 + 0.820082i \(0.306072\pi\)
\(180\) 1.74345 + 9.11175i 0.129949 + 0.679150i
\(181\) −7.23734 −0.537947 −0.268974 0.963148i \(-0.586684\pi\)
−0.268974 + 0.963148i \(0.586684\pi\)
\(182\) 0.797232 1.38085i 0.0590948 0.102355i
\(183\) −15.7834 2.66502i −1.16675 0.197004i
\(184\) 11.0384 + 19.1190i 0.813758 + 1.40947i
\(185\) −1.19040 2.06183i −0.0875197 0.151589i
\(186\) 4.17804 + 11.2248i 0.306349 + 0.823042i
\(187\) 7.04581 12.2037i 0.515241 0.892423i
\(188\) 30.0844 2.19413
\(189\) −3.13883 + 1.90455i −0.228316 + 0.138535i
\(190\) 17.8698 1.29641
\(191\) 9.68393 16.7731i 0.700705 1.21366i −0.267515 0.963554i \(-0.586202\pi\)
0.968219 0.250102i \(-0.0804642\pi\)
\(192\) 7.88415 + 21.1817i 0.568989 + 1.52866i
\(193\) −2.52773 4.37816i −0.181950 0.315147i 0.760595 0.649227i \(-0.224908\pi\)
−0.942545 + 0.334081i \(0.891574\pi\)
\(194\) 3.34326 + 5.79069i 0.240032 + 0.415747i
\(195\) 1.70788 + 0.288374i 0.122304 + 0.0206509i
\(196\) 10.0513 17.4094i 0.717951 1.24353i
\(197\) 6.35430 0.452725 0.226363 0.974043i \(-0.427317\pi\)
0.226363 + 0.974043i \(0.427317\pi\)
\(198\) −14.9006 5.17960i −1.05894 0.368098i
\(199\) −16.7816 −1.18961 −0.594807 0.803868i \(-0.702772\pi\)
−0.594807 + 0.803868i \(0.702772\pi\)
\(200\) −1.23251 + 2.13477i −0.0871517 + 0.150951i
\(201\) 1.87016 2.26193i 0.131911 0.159544i
\(202\) −15.4257 26.7181i −1.08535 1.87988i
\(203\) 0.850286 + 1.47274i 0.0596784 + 0.103366i
\(204\) −20.6394 + 24.9630i −1.44505 + 1.74776i
\(205\) −4.72945 + 8.19164i −0.330319 + 0.572129i
\(206\) −16.0913 −1.12114
\(207\) −25.3784 8.82176i −1.76392 0.613155i
\(208\) 0.622073 0.0431330
\(209\) −9.22628 + 15.9804i −0.638195 + 1.10539i
\(210\) −2.72315 0.459801i −0.187915 0.0317293i
\(211\) 5.68155 + 9.84073i 0.391134 + 0.677464i 0.992599 0.121435i \(-0.0387495\pi\)
−0.601465 + 0.798899i \(0.705416\pi\)
\(212\) −9.13739 15.8264i −0.627559 1.08696i
\(213\) 7.51860 + 20.1996i 0.515166 + 1.38405i
\(214\) 1.92689 3.33747i 0.131719 0.228144i
\(215\) −11.9359 −0.814021
\(216\) 11.2295 + 6.16117i 0.764069 + 0.419215i
\(217\) −2.16516 −0.146980
\(218\) 3.65153 6.32463i 0.247313 0.428358i
\(219\) −2.95392 7.93605i −0.199608 0.536269i
\(220\) −3.60291 6.24043i −0.242908 0.420729i
\(221\) 3.02368 + 5.23717i 0.203395 + 0.352290i
\(222\) −9.17565 1.54930i −0.615829 0.103982i
\(223\) 10.0428 17.3947i 0.672518 1.16484i −0.304669 0.952458i \(-0.598546\pi\)
0.977188 0.212378i \(-0.0681207\pi\)
\(224\) −4.47530 −0.299018
\(225\) −0.563795 2.94655i −0.0375863 0.196436i
\(226\) −1.53098 −0.101840
\(227\) 5.67412 9.82787i 0.376605 0.652299i −0.613961 0.789336i \(-0.710425\pi\)
0.990566 + 0.137038i \(0.0437582\pi\)
\(228\) 27.0266 32.6882i 1.78988 2.16483i
\(229\) 1.84068 + 3.18815i 0.121635 + 0.210679i 0.920413 0.390948i \(-0.127853\pi\)
−0.798777 + 0.601627i \(0.794519\pi\)
\(230\) −10.1051 17.5026i −0.666314 1.15409i
\(231\) 1.81716 2.19782i 0.119560 0.144606i
\(232\) 2.96640 5.13796i 0.194754 0.337324i
\(233\) 12.5286 0.820778 0.410389 0.911911i \(-0.365393\pi\)
0.410389 + 0.911911i \(0.365393\pi\)
\(234\) 5.12228 4.42644i 0.334854 0.289366i
\(235\) −9.72867 −0.634628
\(236\) −4.59890 + 7.96552i −0.299363 + 0.518511i
\(237\) −18.8300 3.17943i −1.22314 0.206526i
\(238\) −4.82115 8.35048i −0.312509 0.541281i
\(239\) −1.66443 2.88288i −0.107663 0.186478i 0.807160 0.590333i \(-0.201004\pi\)
−0.914823 + 0.403855i \(0.867670\pi\)
\(240\) −0.375856 1.00978i −0.0242614 0.0651811i
\(241\) 13.3919 23.1955i 0.862649 1.49415i −0.00671442 0.999977i \(-0.502137\pi\)
0.869363 0.494174i \(-0.164529\pi\)
\(242\) −12.5697 −0.808009
\(243\) −15.2433 + 3.26237i −0.977855 + 0.209281i
\(244\) −28.5781 −1.82953
\(245\) −3.25038 + 5.62982i −0.207659 + 0.359676i
\(246\) 12.8967 + 34.6486i 0.822265 + 2.20911i
\(247\) −3.95942 6.85792i −0.251932 0.436359i
\(248\) 3.77680 + 6.54161i 0.239827 + 0.415393i
\(249\) −0.890983 0.150442i −0.0564637 0.00953386i
\(250\) 1.12831 1.95429i 0.0713607 0.123600i
\(251\) −6.05718 −0.382326 −0.191163 0.981558i \(-0.561226\pi\)
−0.191163 + 0.981558i \(0.561226\pi\)
\(252\) −4.95962 + 4.28588i −0.312427 + 0.269985i
\(253\) 20.8693 1.31204
\(254\) −16.5737 + 28.7064i −1.03992 + 1.80120i
\(255\) 6.67434 8.07249i 0.417963 0.505519i
\(256\) 5.88285 + 10.1894i 0.367678 + 0.636837i
\(257\) 1.97635 + 3.42314i 0.123281 + 0.213529i 0.921060 0.389421i \(-0.127325\pi\)
−0.797779 + 0.602951i \(0.793992\pi\)
\(258\) −29.7273 + 35.9547i −1.85074 + 2.23844i
\(259\) 0.841099 1.45683i 0.0522634 0.0905228i
\(260\) 3.09235 0.191779
\(261\) 1.35694 + 7.09174i 0.0839924 + 0.438968i
\(262\) −20.4538 −1.26364
\(263\) −5.65057 + 9.78708i −0.348429 + 0.603497i −0.985971 0.166919i \(-0.946618\pi\)
0.637541 + 0.770416i \(0.279952\pi\)
\(264\) −9.81007 1.65642i −0.603768 0.101946i
\(265\) 2.95484 + 5.11793i 0.181514 + 0.314392i
\(266\) 6.31315 + 10.9347i 0.387084 + 0.670450i
\(267\) −6.50169 17.4675i −0.397897 1.06900i
\(268\) 2.61997 4.53791i 0.160040 0.277197i
\(269\) −20.7773 −1.26681 −0.633407 0.773819i \(-0.718344\pi\)
−0.633407 + 0.773819i \(0.718344\pi\)
\(270\) −10.2801 5.64029i −0.625627 0.343257i
\(271\) −1.72567 −0.104827 −0.0524136 0.998625i \(-0.516691\pi\)
−0.0524136 + 0.998625i \(0.516691\pi\)
\(272\) 1.88095 3.25790i 0.114049 0.197539i
\(273\) 0.426909 + 1.14694i 0.0258377 + 0.0694161i
\(274\) 2.29029 + 3.96690i 0.138361 + 0.239649i
\(275\) 1.16510 + 2.01802i 0.0702585 + 0.121691i
\(276\) −47.2997 7.98652i −2.84711 0.480732i
\(277\) 1.73361 3.00270i 0.104163 0.180415i −0.809233 0.587488i \(-0.800117\pi\)
0.913396 + 0.407073i \(0.133450\pi\)
\(278\) −6.43855 −0.386158
\(279\) −8.68329 3.01839i −0.519855 0.180706i
\(280\) −1.74171 −0.104087
\(281\) −0.586316 + 1.01553i −0.0349767 + 0.0605814i −0.882984 0.469403i \(-0.844469\pi\)
0.848007 + 0.529985i \(0.177802\pi\)
\(282\) −24.2301 + 29.3058i −1.44288 + 1.74514i
\(283\) −10.9061 18.8899i −0.648301 1.12289i −0.983529 0.180753i \(-0.942147\pi\)
0.335228 0.942137i \(-0.391187\pi\)
\(284\) 19.2405 + 33.3255i 1.14171 + 1.97750i
\(285\) −8.73984 + 10.5707i −0.517704 + 0.626153i
\(286\) −2.62920 + 4.55391i −0.155468 + 0.269279i
\(287\) −6.68338 −0.394507
\(288\) −17.9481 6.23890i −1.05760 0.367631i
\(289\) 19.5706 1.15121
\(290\) −2.71562 + 4.70359i −0.159467 + 0.276204i
\(291\) −5.06054 0.854468i −0.296654 0.0500898i
\(292\) −7.55923 13.0930i −0.442371 0.766208i
\(293\) 13.9460 + 24.1551i 0.814732 + 1.41116i 0.909520 + 0.415659i \(0.136449\pi\)
−0.0947888 + 0.995497i \(0.530218\pi\)
\(294\) 8.86346 + 23.8127i 0.516927 + 1.38879i
\(295\) 1.48719 2.57588i 0.0865873 0.149974i
\(296\) −5.86870 −0.341112
\(297\) 10.3516 6.28104i 0.600660 0.364463i
\(298\) 20.2695 1.17418
\(299\) −4.47799 + 7.75611i −0.258969 + 0.448548i
\(300\) −1.86840 5.01966i −0.107872 0.289810i
\(301\) −4.21678 7.30367i −0.243051 0.420977i
\(302\) 3.10831 + 5.38374i 0.178863 + 0.309800i
\(303\) 23.3492 + 3.94249i 1.34137 + 0.226490i
\(304\) −2.46305 + 4.26613i −0.141266 + 0.244679i
\(305\) 9.24156 0.529170
\(306\) −7.69389 40.2104i −0.439831 2.29868i
\(307\) −0.574330 −0.0327787 −0.0163894 0.999866i \(-0.505217\pi\)
−0.0163894 + 0.999866i \(0.505217\pi\)
\(308\) 2.54571 4.40930i 0.145055 0.251243i
\(309\) 7.87000 9.51862i 0.447709 0.541495i
\(310\) −3.45750 5.98857i −0.196373 0.340128i
\(311\) −11.5536 20.0114i −0.655143 1.13474i −0.981858 0.189618i \(-0.939275\pi\)
0.326715 0.945123i \(-0.394058\pi\)
\(312\) 2.72059 3.29050i 0.154023 0.186288i
\(313\) −12.7427 + 22.0710i −0.720260 + 1.24753i 0.240635 + 0.970616i \(0.422644\pi\)
−0.960895 + 0.276912i \(0.910689\pi\)
\(314\) 55.2841 3.11986
\(315\) 1.60384 1.38596i 0.0903659 0.0780901i
\(316\) −34.0944 −1.91796
\(317\) −16.1778 + 28.0208i −0.908638 + 1.57381i −0.0926799 + 0.995696i \(0.529543\pi\)
−0.815958 + 0.578111i \(0.803790\pi\)
\(318\) 22.7761 + 3.84573i 1.27722 + 0.215658i
\(319\) −2.80417 4.85697i −0.157003 0.271938i
\(320\) −6.52446 11.3007i −0.364728 0.631728i
\(321\) 1.03183 + 2.77212i 0.0575910 + 0.154725i
\(322\) 7.14000 12.3668i 0.397897 0.689177i
\(323\) −47.8881 −2.66457
\(324\) −25.8653 + 10.2743i −1.43696 + 0.570795i
\(325\) −1.00000 −0.0554700
\(326\) 20.5905 35.6638i 1.14040 1.97523i
\(327\) 1.95535 + 5.25329i 0.108131 + 0.290507i
\(328\) 11.6582 + 20.1926i 0.643716 + 1.11495i
\(329\) −3.43700 5.95305i −0.189488 0.328202i
\(330\) 8.98071 + 1.51639i 0.494372 + 0.0834743i
\(331\) −15.0848 + 26.1276i −0.829135 + 1.43610i 0.0695818 + 0.997576i \(0.477834\pi\)
−0.898717 + 0.438529i \(0.855500\pi\)
\(332\) −1.61325 −0.0885386
\(333\) 5.40413 4.67000i 0.296144 0.255915i
\(334\) 12.6400 0.691633
\(335\) −0.847241 + 1.46746i −0.0462897 + 0.0801762i
\(336\) 0.485109 0.586730i 0.0264648 0.0320087i
\(337\) −3.28919 5.69705i −0.179174 0.310338i 0.762424 0.647078i \(-0.224009\pi\)
−0.941598 + 0.336740i \(0.890676\pi\)
\(338\) −1.12831 1.95429i −0.0613721 0.106300i
\(339\) 0.748779 0.905635i 0.0406681 0.0491873i
\(340\) 9.35028 16.1952i 0.507090 0.878306i
\(341\) 7.14050 0.386680
\(342\) 10.0749 + 52.6543i 0.544789 + 2.84722i
\(343\) −9.53924 −0.515071
\(344\) −14.7111 + 25.4804i −0.793170 + 1.37381i
\(345\) 15.2957 + 2.58267i 0.823494 + 0.139046i
\(346\) 4.06485 + 7.04053i 0.218528 + 0.378501i
\(347\) 1.00532 + 1.74126i 0.0539682 + 0.0934756i 0.891747 0.452534i \(-0.149480\pi\)
−0.837779 + 0.546009i \(0.816146\pi\)
\(348\) 4.49685 + 12.0813i 0.241056 + 0.647626i
\(349\) −7.00194 + 12.1277i −0.374805 + 0.649182i −0.990298 0.138961i \(-0.955624\pi\)
0.615493 + 0.788143i \(0.288957\pi\)
\(350\) 1.59446 0.0852277
\(351\) 0.113185 + 5.19492i 0.00604138 + 0.277284i
\(352\) 14.7591 0.786665
\(353\) −17.2999 + 29.9643i −0.920780 + 1.59484i −0.122570 + 0.992460i \(0.539114\pi\)
−0.798211 + 0.602379i \(0.794220\pi\)
\(354\) −4.05541 10.8953i −0.215542 0.579080i
\(355\) −6.22195 10.7767i −0.330227 0.571970i
\(356\) −16.6381 28.8181i −0.881820 1.52736i
\(357\) 7.29757 + 1.23219i 0.386228 + 0.0652143i
\(358\) −17.2770 + 29.9247i −0.913118 + 1.58157i
\(359\) 22.7679 1.20164 0.600822 0.799382i \(-0.294840\pi\)
0.600822 + 0.799382i \(0.294840\pi\)
\(360\) −6.98509 2.42808i −0.368146 0.127971i
\(361\) 43.7080 2.30042
\(362\) 8.16597 14.1439i 0.429194 0.743386i
\(363\) 6.14762 7.43543i 0.322666 0.390259i
\(364\) 1.09248 + 1.89223i 0.0572616 + 0.0991800i
\(365\) 2.44449 + 4.23399i 0.127951 + 0.221617i
\(366\) 23.0169 27.8385i 1.20311 1.45514i
\(367\) 5.69696 9.86742i 0.297379 0.515075i −0.678157 0.734917i \(-0.737221\pi\)
0.975535 + 0.219842i \(0.0705543\pi\)
\(368\) 5.57128 0.290423
\(369\) −26.8035 9.31713i −1.39533 0.485030i
\(370\) 5.37255 0.279306
\(371\) −2.08780 + 3.61618i −0.108393 + 0.187743i
\(372\) −16.1837 2.73261i −0.839087 0.141679i
\(373\) −1.29760 2.24750i −0.0671870 0.116371i 0.830475 0.557056i \(-0.188069\pi\)
−0.897662 + 0.440685i \(0.854736\pi\)
\(374\) 15.8997 + 27.5392i 0.822156 + 1.42402i
\(375\) 0.604199 + 1.62325i 0.0312007 + 0.0838243i
\(376\) −11.9907 + 20.7685i −0.618373 + 1.07105i
\(377\) 2.40680 0.123956
\(378\) −0.180470 8.28311i −0.00928237 0.426037i
\(379\) 2.38710 0.122617 0.0613084 0.998119i \(-0.480473\pi\)
0.0613084 + 0.998119i \(0.480473\pi\)
\(380\) −12.2439 + 21.2071i −0.628099 + 1.08790i
\(381\) −8.87502 23.8438i −0.454681 1.22155i
\(382\) 21.8530 + 37.8505i 1.11810 + 1.93660i
\(383\) 16.1363 + 27.9488i 0.824525 + 1.42812i 0.902282 + 0.431147i \(0.141891\pi\)
−0.0777565 + 0.996972i \(0.524776\pi\)
\(384\) −28.6562 4.83857i −1.46235 0.246917i
\(385\) −0.823229 + 1.42587i −0.0419556 + 0.0726693i
\(386\) 11.4083 0.580666
\(387\) −6.72939 35.1697i −0.342074 1.78777i
\(388\) −9.16282 −0.465172
\(389\) −3.75052 + 6.49610i −0.190159 + 0.329365i −0.945303 0.326194i \(-0.894234\pi\)
0.755144 + 0.655559i \(0.227567\pi\)
\(390\) −2.49058 + 3.01232i −0.126116 + 0.152535i
\(391\) 27.0801 + 46.9040i 1.36950 + 2.37204i
\(392\) 8.01226 + 13.8776i 0.404680 + 0.700926i
\(393\) 10.0036 12.0992i 0.504614 0.610322i
\(394\) −7.16963 + 12.4182i −0.361201 + 0.625618i
\(395\) 11.0254 0.554748
\(396\) 16.3564 14.1345i 0.821940 0.710284i
\(397\) −22.5214 −1.13032 −0.565158 0.824983i \(-0.691185\pi\)
−0.565158 + 0.824983i \(0.691185\pi\)
\(398\) 18.9349 32.7961i 0.949119 1.64392i
\(399\) −9.55594 1.61351i −0.478396 0.0807767i
\(400\) 0.311036 + 0.538731i 0.0155518 + 0.0269366i
\(401\) −1.26630 2.19330i −0.0632362 0.109528i 0.832674 0.553763i \(-0.186809\pi\)
−0.895910 + 0.444235i \(0.853475\pi\)
\(402\) 2.31034 + 6.20700i 0.115229 + 0.309577i
\(403\) −1.53216 + 2.65378i −0.0763222 + 0.132194i
\(404\) 42.2770 2.10336
\(405\) 8.36427 3.32249i 0.415624 0.165096i
\(406\) −3.83755 −0.190454
\(407\) −2.77387 + 4.80449i −0.137496 + 0.238150i
\(408\) −9.00673 24.1976i −0.445899 1.19796i
\(409\) 3.18542 + 5.51731i 0.157509 + 0.272814i 0.933970 0.357352i \(-0.116320\pi\)
−0.776461 + 0.630166i \(0.782987\pi\)
\(410\) −10.6726 18.4855i −0.527081 0.912931i
\(411\) −3.46671 0.585352i −0.171000 0.0288733i
\(412\) 11.0253 19.0964i 0.543179 0.940813i
\(413\) 2.10160 0.103413
\(414\) 45.8751 39.6432i 2.25464 1.94836i
\(415\) 0.521691 0.0256088
\(416\) −3.16691 + 5.48526i −0.155271 + 0.268937i
\(417\) 3.14899 3.80864i 0.154207 0.186510i
\(418\) −20.8202 36.0617i −1.01835 1.76384i
\(419\) −15.4679 26.7912i −0.755657 1.30884i −0.945047 0.326934i \(-0.893984\pi\)
0.189390 0.981902i \(-0.439349\pi\)
\(420\) 2.41149 2.91666i 0.117669 0.142318i
\(421\) 6.98221 12.0935i 0.340292 0.589403i −0.644195 0.764861i \(-0.722807\pi\)
0.984487 + 0.175459i \(0.0561408\pi\)
\(422\) −25.6422 −1.24824
\(423\) −5.48497 28.6660i −0.266688 1.39379i
\(424\) 14.5675 0.707459
\(425\) −3.02368 + 5.23717i −0.146670 + 0.254040i
\(426\) −47.9592 8.09788i −2.32363 0.392344i
\(427\) 3.26491 + 5.65499i 0.158000 + 0.273664i
\(428\) 2.64050 + 4.57348i 0.127633 + 0.221067i
\(429\) −1.40791 3.78252i −0.0679746 0.182622i
\(430\) 13.4674 23.3262i 0.649456 1.12489i
\(431\) 20.2027 0.973131 0.486566 0.873644i \(-0.338249\pi\)
0.486566 + 0.873644i \(0.338249\pi\)
\(432\) 2.76346 1.67679i 0.132957 0.0806744i
\(433\) −13.7657 −0.661537 −0.330768 0.943712i \(-0.607308\pi\)
−0.330768 + 0.943712i \(0.607308\pi\)
\(434\) 2.44297 4.23135i 0.117266 0.203111i
\(435\) −1.45418 3.90684i −0.0697228 0.187318i
\(436\) 5.00385 + 8.66692i 0.239641 + 0.415070i
\(437\) −35.4605 61.4194i −1.69631 2.93809i
\(438\) 18.8423 + 3.18151i 0.900321 + 0.152019i
\(439\) −3.88378 + 6.72690i −0.185363 + 0.321058i −0.943699 0.330806i \(-0.892679\pi\)
0.758336 + 0.651864i \(0.226013\pi\)
\(440\) 5.74402 0.273835
\(441\) −18.4211 6.40333i −0.877194 0.304920i
\(442\) −13.6466 −0.649104
\(443\) −8.21573 + 14.2301i −0.390341 + 0.676090i −0.992494 0.122290i \(-0.960976\pi\)
0.602153 + 0.798380i \(0.294310\pi\)
\(444\) 8.12554 9.82769i 0.385621 0.466401i
\(445\) 5.38042 + 9.31916i 0.255056 + 0.441771i
\(446\) 22.6629 + 39.2533i 1.07312 + 1.85870i
\(447\) −9.91350 + 11.9902i −0.468892 + 0.567117i
\(448\) 4.60999 7.98474i 0.217802 0.377244i
\(449\) 9.97715 0.470851 0.235425 0.971892i \(-0.424352\pi\)
0.235425 + 0.971892i \(0.424352\pi\)
\(450\) 6.39455 + 2.22280i 0.301442 + 0.104784i
\(451\) 22.0412 1.03788
\(452\) 1.04899 1.81690i 0.0493402 0.0854598i
\(453\) −4.70491 0.794420i −0.221056 0.0373251i
\(454\) 12.8044 + 22.1778i 0.600938 + 1.04086i
\(455\) −0.353285 0.611908i −0.0165623 0.0286867i
\(456\) 11.7940 + 31.6860i 0.552306 + 1.48384i
\(457\) 8.67799 15.0307i 0.405939 0.703108i −0.588491 0.808504i \(-0.700278\pi\)
0.994430 + 0.105396i \(0.0336111\pi\)
\(458\) −8.30743 −0.388181
\(459\) 27.5489 + 15.1150i 1.28587 + 0.705508i
\(460\) 27.6950 1.29129
\(461\) 5.29646 9.17373i 0.246681 0.427263i −0.715922 0.698180i \(-0.753994\pi\)
0.962603 + 0.270917i \(0.0873268\pi\)
\(462\) 2.24486 + 6.03108i 0.104440 + 0.280591i
\(463\) 1.80372 + 3.12414i 0.0838260 + 0.145191i 0.904890 0.425645i \(-0.139953\pi\)
−0.821064 + 0.570836i \(0.806619\pi\)
\(464\) −0.748602 1.29662i −0.0347530 0.0601939i
\(465\) 5.23347 + 0.883668i 0.242696 + 0.0409791i
\(466\) −14.1362 + 24.4846i −0.654847 + 1.13423i
\(467\) 6.96611 0.322353 0.161177 0.986926i \(-0.448471\pi\)
0.161177 + 0.986926i \(0.448471\pi\)
\(468\) 1.74345 + 9.11175i 0.0805910 + 0.421191i
\(469\) −1.19727 −0.0552849
\(470\) 10.9770 19.0127i 0.506330 0.876989i
\(471\) −27.0385 + 32.7026i −1.24587 + 1.50686i
\(472\) −3.66594 6.34960i −0.168739 0.292264i
\(473\) 13.9066 + 24.0869i 0.639425 + 1.10752i
\(474\) 27.4597 33.2120i 1.26126 1.52548i
\(475\) 3.95942 6.85792i 0.181671 0.314663i
\(476\) 13.2133 0.605629
\(477\) −13.4143 + 11.5920i −0.614198 + 0.530763i
\(478\) 7.51200 0.343591
\(479\) 11.0303 19.1050i 0.503987 0.872932i −0.496002 0.868321i \(-0.665199\pi\)
0.999989 0.00461038i \(-0.00146754\pi\)
\(480\) 10.8174 + 1.82651i 0.493744 + 0.0833683i
\(481\) −1.19040 2.06183i −0.0542774 0.0940112i
\(482\) 30.2205 + 52.3434i 1.37651 + 2.38418i
\(483\) 3.82340 + 10.2720i 0.173971 + 0.467392i
\(484\) 8.61238 14.9171i 0.391472 0.678049i
\(485\) 2.96306 0.134546
\(486\) 10.8235 33.4708i 0.490965 1.51827i
\(487\) −5.19759 −0.235525 −0.117763 0.993042i \(-0.537572\pi\)
−0.117763 + 0.993042i \(0.537572\pi\)
\(488\) 11.3903 19.7286i 0.515616 0.893073i
\(489\) 11.0260 + 29.6226i 0.498613 + 1.33958i
\(490\) −7.33488 12.7044i −0.331356 0.573926i
\(491\) 1.11828 + 1.93692i 0.0504675 + 0.0874122i 0.890156 0.455657i \(-0.150596\pi\)
−0.839688 + 0.543069i \(0.817262\pi\)
\(492\) −49.9557 8.43499i −2.25218 0.380279i
\(493\) 7.27739 12.6048i 0.327757 0.567692i
\(494\) 17.8698 0.804002
\(495\) −5.28931 + 4.57079i −0.237737 + 0.205442i
\(496\) 1.90623 0.0855922
\(497\) 4.39625 7.61453i 0.197199 0.341558i
\(498\) 1.29931 1.57150i 0.0582236 0.0704205i
\(499\) 10.6446 + 18.4370i 0.476519 + 0.825356i 0.999638 0.0269043i \(-0.00856493\pi\)
−0.523119 + 0.852260i \(0.675232\pi\)
\(500\) 1.54617 + 2.67805i 0.0691470 + 0.119766i
\(501\) −6.18204 + 7.47706i −0.276193 + 0.334051i
\(502\) 6.83439 11.8375i 0.305034 0.528334i
\(503\) −33.5371 −1.49534 −0.747672 0.664068i \(-0.768829\pi\)
−0.747672 + 0.664068i \(0.768829\pi\)
\(504\) −0.981968 5.13204i −0.0437403 0.228599i
\(505\) −13.6715 −0.608372
\(506\) −23.5471 + 40.7848i −1.04680 + 1.81311i
\(507\) 1.70788 + 0.288374i 0.0758494 + 0.0128071i
\(508\) −22.7116 39.3376i −1.00766 1.74533i
\(509\) 1.53741 + 2.66287i 0.0681444 + 0.118030i 0.898085 0.439823i \(-0.144959\pi\)
−0.829940 + 0.557853i \(0.811625\pi\)
\(510\) 8.24528 + 22.1519i 0.365107 + 0.980902i
\(511\) −1.72721 + 2.99161i −0.0764072 + 0.132341i
\(512\) 7.00695 0.309666
\(513\) −36.0745 19.7927i −1.59273 0.873867i
\(514\) −8.91975 −0.393433
\(515\) −3.56535 + 6.17537i −0.157108 + 0.272119i
\(516\) −22.3010 59.9141i −0.981745 2.63757i
\(517\) 11.3349 + 19.6327i 0.498509 + 0.863443i
\(518\) 1.89804 + 3.28751i 0.0833953 + 0.144445i
\(519\) −6.15279 1.03889i −0.270077 0.0456024i
\(520\) −1.23251 + 2.13477i −0.0540492 + 0.0936159i
\(521\) 32.8855 1.44074 0.720371 0.693589i \(-0.243972\pi\)
0.720371 + 0.693589i \(0.243972\pi\)
\(522\) −15.3904 5.34984i −0.673619 0.234156i
\(523\) 19.0090 0.831206 0.415603 0.909546i \(-0.363571\pi\)
0.415603 + 0.909546i \(0.363571\pi\)
\(524\) 14.0143 24.2735i 0.612219 1.06039i
\(525\) −0.779826 + 0.943185i −0.0340344 + 0.0411640i
\(526\) −12.7512 22.0858i −0.555979 0.962985i
\(527\) 9.26552 + 16.0483i 0.403612 + 0.699077i
\(528\) −1.59985 + 1.93499i −0.0696244 + 0.0842094i
\(529\) −28.6049 + 49.5451i −1.24369 + 2.15413i
\(530\) −13.3359 −0.579275
\(531\) 8.42842 + 2.92979i 0.365762 + 0.127142i
\(532\) −17.3024 −0.750153
\(533\) −4.72945 + 8.19164i −0.204855 + 0.354819i
\(534\) 41.4726 + 7.00262i 1.79470 + 0.303033i
\(535\) −0.853881 1.47896i −0.0369165 0.0639412i
\(536\) 2.08847 + 3.61733i 0.0902081 + 0.156245i
\(537\) −9.25166 24.8556i −0.399238 1.07260i
\(538\) 23.4433 40.6049i 1.01071 1.75060i
\(539\) 15.1481 0.652476
\(540\) 13.7373 8.33537i 0.591158 0.358697i
\(541\) −13.4399 −0.577825 −0.288912 0.957356i \(-0.593294\pi\)
−0.288912 + 0.957356i \(0.593294\pi\)
\(542\) 1.94710 3.37247i 0.0836351 0.144860i
\(543\) 4.37279 + 11.7480i 0.187655 + 0.504156i
\(544\) 19.1515 + 33.1713i 0.821113 + 1.42221i
\(545\) −1.61814 2.80270i −0.0693134 0.120054i
\(546\) −2.72315 0.459801i −0.116540 0.0196777i
\(547\) −5.66269 + 9.80807i −0.242119 + 0.419363i −0.961318 0.275442i \(-0.911176\pi\)
0.719198 + 0.694805i \(0.244509\pi\)
\(548\) −6.27697 −0.268139
\(549\) 5.21034 + 27.2307i 0.222372 + 1.16218i
\(550\) −5.25841 −0.224219
\(551\) −9.52952 + 16.5056i −0.405971 + 0.703163i
\(552\) 24.3656 29.4697i 1.03707 1.25431i
\(553\) 3.89511 + 6.74653i 0.165637 + 0.286892i
\(554\) 3.91210 + 6.77596i 0.166209 + 0.287883i
\(555\) −2.62763 + 3.17807i −0.111536 + 0.134901i
\(556\) 4.41151 7.64096i 0.187090 0.324049i
\(557\) 4.71355 0.199720 0.0998598 0.995002i \(-0.468161\pi\)
0.0998598 + 0.995002i \(0.468161\pi\)
\(558\) 15.6963 13.5640i 0.664477 0.574211i
\(559\) −11.9359 −0.504835
\(560\) −0.219769 + 0.380652i −0.00928695 + 0.0160855i
\(561\) −24.0668 4.06365i −1.01610 0.171568i
\(562\) −1.32309 2.29167i −0.0558114 0.0966681i
\(563\) −17.6579 30.5844i −0.744193 1.28898i −0.950571 0.310508i \(-0.899501\pi\)
0.206377 0.978473i \(-0.433833\pi\)
\(564\) −18.1770 48.8346i −0.765390 2.05631i
\(565\) −0.339220 + 0.587547i −0.0142711 + 0.0247183i
\(566\) 49.2220 2.06895
\(567\) 4.98804 + 3.94438i 0.209478 + 0.165648i
\(568\) −30.6745 −1.28707
\(569\) 13.2680 22.9808i 0.556222 0.963404i −0.441586 0.897219i \(-0.645584\pi\)
0.997807 0.0661850i \(-0.0210827\pi\)
\(570\) −10.7969 29.0072i −0.452234 1.21498i
\(571\) 16.8771 + 29.2320i 0.706284 + 1.22332i 0.966226 + 0.257696i \(0.0829632\pi\)
−0.259942 + 0.965624i \(0.583703\pi\)
\(572\) −3.60291 6.24043i −0.150645 0.260925i
\(573\) −33.0779 5.58518i −1.38185 0.233324i
\(574\) 7.54093 13.0613i 0.314752 0.545167i
\(575\) −8.95599 −0.373491
\(576\) 29.6196 25.5959i 1.23415 1.06650i
\(577\) −30.7531 −1.28027 −0.640133 0.768264i \(-0.721121\pi\)
−0.640133 + 0.768264i \(0.721121\pi\)
\(578\) −22.0817 + 38.2467i −0.918480 + 1.59085i
\(579\) −5.57959 + 6.74842i −0.231880 + 0.280455i
\(580\) −3.72133 6.44553i −0.154520 0.267636i
\(581\) 0.184306 + 0.319227i 0.00764629 + 0.0132438i
\(582\) 7.37975 8.92567i 0.305900 0.369981i
\(583\) 6.88539 11.9259i 0.285164 0.493918i
\(584\) 12.0515 0.498693
\(585\) −0.563795 2.94655i −0.0233100 0.121825i
\(586\) −62.9416 −2.60009
\(587\) −2.61862 + 4.53559i −0.108082 + 0.187204i −0.914993 0.403469i \(-0.867804\pi\)
0.806911 + 0.590673i \(0.201138\pi\)
\(588\) −34.3328 5.79706i −1.41586 0.239067i
\(589\) −12.1329 21.0148i −0.499928 0.865901i
\(590\) 3.35602 + 5.81279i 0.138165 + 0.239309i
\(591\) −3.83926 10.3146i −0.157926 0.424287i
\(592\) −0.740513 + 1.28261i −0.0304349 + 0.0527148i
\(593\) 15.8490 0.650839 0.325420 0.945570i \(-0.394494\pi\)
0.325420 + 0.945570i \(0.394494\pi\)
\(594\) 0.595174 + 27.3170i 0.0244203 + 1.12083i
\(595\) −4.27289 −0.175171
\(596\) −13.8881 + 24.0549i −0.568880 + 0.985329i
\(597\) 10.1394 + 27.2407i 0.414979 + 1.11489i
\(598\) −10.1051 17.5026i −0.413230 0.715736i
\(599\) −13.1618 22.7969i −0.537775 0.931454i −0.999023 0.0441829i \(-0.985932\pi\)
0.461248 0.887271i \(-0.347402\pi\)
\(600\) 4.20995 + 0.710847i 0.171871 + 0.0290202i
\(601\) −0.901862 + 1.56207i −0.0367877 + 0.0637182i −0.883833 0.467802i \(-0.845046\pi\)
0.847045 + 0.531521i \(0.178379\pi\)
\(602\) 19.0314 0.775660
\(603\) −4.80162 1.66909i −0.195537 0.0679705i
\(604\) −8.51889 −0.346629
\(605\) −2.78506 + 4.82387i −0.113229 + 0.196118i
\(606\) −34.0499 + 41.1828i −1.38318 + 1.67294i
\(607\) −6.26933 10.8588i −0.254464 0.440745i 0.710286 0.703914i \(-0.248566\pi\)
−0.964750 + 0.263168i \(0.915232\pi\)
\(608\) −25.0783 43.4369i −1.01706 1.76160i
\(609\) 1.87688 2.27006i 0.0760551 0.0919873i
\(610\) −10.4274 + 18.0607i −0.422192 + 0.731257i
\(611\) −9.72867 −0.393580
\(612\) 52.9914 + 18.4203i 2.14205 + 0.744596i
\(613\) 9.01785 0.364228 0.182114 0.983277i \(-0.441706\pi\)
0.182114 + 0.983277i \(0.441706\pi\)
\(614\) 0.648023 1.12241i 0.0261521 0.0452968i
\(615\) 16.1546 + 2.72770i 0.651417 + 0.109991i
\(616\) 2.02928 + 3.51481i 0.0817619 + 0.141616i
\(617\) −7.34095 12.7149i −0.295536 0.511883i 0.679574 0.733607i \(-0.262165\pi\)
−0.975109 + 0.221725i \(0.928831\pi\)
\(618\) 9.72236 + 26.1203i 0.391091 + 1.05071i
\(619\) 20.8355 36.0881i 0.837448 1.45050i −0.0545741 0.998510i \(-0.517380\pi\)
0.892022 0.451992i \(-0.149287\pi\)
\(620\) 9.47594 0.380563
\(621\) 1.01369 + 46.5256i 0.0406778 + 1.86701i
\(622\) 52.1441 2.09079
\(623\) −3.80165 + 6.58465i −0.152310 + 0.263808i
\(624\) −0.375856 1.00978i −0.0150463 0.0404236i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −28.7555 49.8060i −1.14930 1.99065i
\(627\) 31.5147 + 5.32123i 1.25858 + 0.212510i
\(628\) −37.8791 + 65.6086i −1.51154 + 2.61807i
\(629\) −14.3975 −0.574067
\(630\) 0.898950 + 4.69816i 0.0358150 + 0.187179i
\(631\) −19.8681 −0.790936 −0.395468 0.918480i \(-0.629418\pi\)
−0.395468 + 0.918480i \(0.629418\pi\)
\(632\) 13.5889 23.5367i 0.540538 0.936239i
\(633\) 12.5412 15.1683i 0.498468 0.602888i
\(634\) −36.5073 63.2325i −1.44989 2.51128i
\(635\) 7.34445 + 12.7210i 0.291456 + 0.504816i
\(636\) −20.1695 + 24.3946i −0.799771 + 0.967309i
\(637\) −3.25038 + 5.62982i −0.128785 + 0.223062i
\(638\) 12.6559 0.501053
\(639\) 28.2463 24.4091i 1.11740 0.965611i
\(640\) 16.7788 0.663242
\(641\) −11.1576 + 19.3256i −0.440700 + 0.763315i −0.997742 0.0671694i \(-0.978603\pi\)
0.557041 + 0.830485i \(0.311937\pi\)
\(642\) −6.58177 1.11133i −0.259762 0.0438606i
\(643\) −7.72222 13.3753i −0.304535 0.527470i 0.672623 0.739985i \(-0.265168\pi\)
−0.977158 + 0.212516i \(0.931834\pi\)
\(644\) 9.78426 + 16.9468i 0.385554 + 0.667799i
\(645\) 7.21166 + 19.3749i 0.283959 + 0.762888i
\(646\) 54.0327 93.5874i 2.12589 3.68215i
\(647\) −25.0635 −0.985349 −0.492675 0.870214i \(-0.663981\pi\)
−0.492675 + 0.870214i \(0.663981\pi\)
\(648\) 3.21629 21.9508i 0.126348 0.862310i
\(649\) −6.93091 −0.272062
\(650\) 1.12831 1.95429i 0.0442560 0.0766537i
\(651\) 1.30819 + 3.51459i 0.0512718 + 0.137748i
\(652\) 28.2161 + 48.8716i 1.10503 + 1.91396i
\(653\) 1.49244 + 2.58498i 0.0584036 + 0.101158i 0.893749 0.448568i \(-0.148066\pi\)
−0.835345 + 0.549726i \(0.814732\pi\)
\(654\) −12.4727 2.10601i −0.487722 0.0823514i
\(655\) −4.53194 + 7.84955i −0.177077 + 0.306707i
\(656\) 5.88412 0.229736
\(657\) −11.0974 + 9.58992i −0.432953 + 0.374138i
\(658\) 15.5120 0.604721
\(659\) 18.7165 32.4180i 0.729092 1.26282i −0.228175 0.973620i \(-0.573276\pi\)
0.957267 0.289204i \(-0.0933907\pi\)
\(660\) −7.95290 + 9.61889i −0.309566 + 0.374415i
\(661\) −7.68631 13.3131i −0.298963 0.517819i 0.676936 0.736042i \(-0.263307\pi\)
−0.975899 + 0.218223i \(0.929974\pi\)
\(662\) −34.0407 58.9602i −1.32303 2.29155i
\(663\) 6.67434 8.07249i 0.259210 0.313509i
\(664\) 0.642989 1.11369i 0.0249528 0.0432196i
\(665\) 5.59522 0.216973
\(666\) 3.02902 + 15.8305i 0.117372 + 0.613418i
\(667\) 21.5552 0.834622
\(668\) −8.66061 + 15.0006i −0.335089 + 0.580391i
\(669\) −34.3039 5.79218i −1.32626 0.223939i
\(670\) −1.91190 3.31152i −0.0738633 0.127935i
\(671\) −10.7674 18.6497i −0.415670 0.719962i
\(672\) 2.70397 + 7.26453i 0.104308 + 0.280235i
\(673\) 0.271779 0.470734i 0.0104763 0.0181455i −0.860740 0.509045i \(-0.829999\pi\)
0.871216 + 0.490900i \(0.163332\pi\)
\(674\) 14.8449 0.571805
\(675\) −4.44234 + 2.69548i −0.170986 + 0.103749i
\(676\) 3.09235 0.118937
\(677\) 10.0293 17.3713i 0.385458 0.667633i −0.606374 0.795179i \(-0.707377\pi\)
0.991833 + 0.127546i \(0.0407100\pi\)
\(678\) 0.925020 + 2.48517i 0.0355252 + 0.0954425i
\(679\) 1.04681 + 1.81312i 0.0401727 + 0.0695812i
\(680\) 7.45344 + 12.9097i 0.285826 + 0.495066i
\(681\) −19.3814 3.27253i −0.742697 0.125404i
\(682\) −8.05671 + 13.9546i −0.308507 + 0.534350i
\(683\) 35.5213 1.35919 0.679593 0.733589i \(-0.262156\pi\)
0.679593 + 0.733589i \(0.262156\pi\)
\(684\) −69.3907 24.1208i −2.65322 0.922283i
\(685\) 2.02984 0.0775561
\(686\) 10.7632 18.6425i 0.410942 0.711773i
\(687\) 4.06303 4.91416i 0.155014 0.187487i
\(688\) 3.71250 + 6.43024i 0.141538 + 0.245150i
\(689\) 2.95484 + 5.11793i 0.112570 + 0.194978i
\(690\) −22.3056 + 26.9783i −0.849161 + 1.02704i
\(691\) 25.6756 44.4714i 0.976746 1.69177i 0.302697 0.953087i \(-0.402113\pi\)
0.674049 0.738686i \(-0.264554\pi\)
\(692\) −11.1405 −0.423498
\(693\) −4.66554 1.62178i −0.177229 0.0616064i
\(694\) −4.53724 −0.172231
\(695\) −1.42659 + 2.47092i −0.0541136 + 0.0937275i
\(696\) −10.1325 1.71086i −0.384071 0.0648502i
\(697\) 28.6007 + 49.5378i 1.08333 + 1.87638i
\(698\) −15.8007 27.3677i −0.598067 1.03588i
\(699\) −7.56979 20.3371i −0.286316 0.769220i
\(700\) −1.09248 + 1.89223i −0.0412919 + 0.0715197i
\(701\) 26.2661 0.992057 0.496029 0.868306i \(-0.334791\pi\)
0.496029 + 0.868306i \(0.334791\pi\)
\(702\) −10.2801 5.64029i −0.387998 0.212879i
\(703\) 18.8531 0.711059
\(704\) −15.2034 + 26.3330i −0.572998 + 0.992462i
\(705\) 5.87805 + 15.7921i 0.221380 + 0.594764i
\(706\) −39.0393 67.6181i −1.46927 2.54484i
\(707\) −4.82993 8.36568i −0.181648 0.314624i
\(708\) 15.7087 + 2.65240i 0.590369 + 0.0996833i
\(709\) 12.8681 22.2882i 0.483273 0.837053i −0.516543 0.856261i \(-0.672781\pi\)
0.999815 + 0.0192087i \(0.00611468\pi\)
\(710\) 28.0812 1.05387
\(711\) 6.21606 + 32.4868i 0.233120 + 1.21835i
\(712\) 26.5257 0.994093
\(713\) −13.7220 + 23.7672i −0.513892 + 0.890088i
\(714\) −10.6420 + 12.8713i −0.398266 + 0.481696i
\(715\) 1.16510 + 2.01802i 0.0435725 + 0.0754697i
\(716\) −23.6754 41.0071i −0.884793 1.53251i
\(717\) −3.67400 + 4.44363i −0.137208 + 0.165950i
\(718\) −25.6893 + 44.4952i −0.958717 + 1.66055i
\(719\) −21.6829 −0.808634 −0.404317 0.914619i \(-0.632491\pi\)
−0.404317 + 0.914619i \(0.632491\pi\)
\(720\) −1.41204 + 1.22022i −0.0526234 + 0.0454748i
\(721\) −5.03835 −0.187638
\(722\) −49.3163 + 85.4183i −1.83536 + 3.17894i
\(723\) −45.7434 7.72375i −1.70122 0.287249i
\(724\) 11.1902 + 19.3820i 0.415880 + 0.720326i
\(725\) 1.20340 + 2.08435i 0.0446931 + 0.0774107i
\(726\) 7.59458 + 20.4037i 0.281861 + 0.757253i
\(727\) 24.6644 42.7200i 0.914752 1.58440i 0.107488 0.994206i \(-0.465719\pi\)
0.807264 0.590190i \(-0.200947\pi\)
\(728\) −1.74171 −0.0645522
\(729\) 14.5056 + 22.7725i 0.537245 + 0.843426i
\(730\) −11.0326 −0.408335
\(731\) −36.0903 + 62.5103i −1.33485 + 2.31203i
\(732\) 17.2669 + 46.3895i 0.638203 + 1.71460i
\(733\) −13.0583 22.6176i −0.482318 0.835399i 0.517476 0.855698i \(-0.326872\pi\)
−0.999794 + 0.0202985i \(0.993538\pi\)
\(734\) 12.8559 + 22.2671i 0.474520 + 0.821892i
\(735\) 11.1025 + 1.87465i 0.409521 + 0.0691474i
\(736\) −28.3628 + 49.1259i −1.04547 + 1.81080i
\(737\) 3.94850 0.145445
\(738\) 48.4511 41.8693i 1.78351 1.54123i
\(739\) −20.3143 −0.747275 −0.373637 0.927575i \(-0.621890\pi\)
−0.373637 + 0.927575i \(0.621890\pi\)
\(740\) −3.68112 + 6.37589i −0.135321 + 0.234382i
\(741\) −8.73984 + 10.5707i −0.321066 + 0.388324i
\(742\) −4.71138 8.16036i −0.172960 0.299576i
\(743\) −4.73644 8.20375i −0.173763 0.300966i 0.765969 0.642877i \(-0.222259\pi\)
−0.939733 + 0.341911i \(0.888926\pi\)
\(744\) 8.33674 10.0831i 0.305640 0.369666i
\(745\) 4.49112 7.77885i 0.164542 0.284995i
\(746\) 5.85637 0.214417
\(747\) 0.294126 + 1.53719i 0.0107615 + 0.0562427i
\(748\) −43.5762 −1.59330
\(749\) 0.603327 1.04499i 0.0220451 0.0381832i
\(750\) −3.85403 0.650751i −0.140729 0.0237621i
\(751\) 3.02922 + 5.24676i 0.110538 + 0.191457i 0.915987 0.401207i \(-0.131409\pi\)
−0.805449 + 0.592664i \(0.798076\pi\)
\(752\) 3.02597 + 5.24114i 0.110346 + 0.191125i
\(753\) 3.65975 + 9.83233i 0.133369 + 0.358310i
\(754\) −2.71562 + 4.70359i −0.0988970 + 0.171295i
\(755\) 2.75483 0.100258
\(756\) 9.95366 + 5.46118i 0.362011 + 0.198621i
\(757\) 19.3009 0.701503 0.350752 0.936469i \(-0.385926\pi\)
0.350752 + 0.936469i \(0.385926\pi\)
\(758\) −2.69339 + 4.66509i −0.0978283 + 0.169444i
\(759\) −12.6092 33.8762i −0.457686 1.22963i
\(760\) −9.76006 16.9049i −0.354035 0.613206i
\(761\) 15.7544 + 27.2873i 0.571095 + 0.989165i 0.996454 + 0.0841405i \(0.0268145\pi\)
−0.425359 + 0.905025i \(0.639852\pi\)
\(762\) 56.6115 + 9.55881i 2.05082 + 0.346279i
\(763\) 1.14333 1.98030i 0.0413913 0.0716918i
\(764\) −59.8922 −2.16682
\(765\) −17.1363 5.95673i −0.619564 0.215366i
\(766\) −72.8270 −2.63135
\(767\) 1.48719 2.57588i 0.0536992 0.0930097i
\(768\) 12.9855 15.7058i 0.468575 0.566733i
\(769\) −4.65962 8.07070i −0.168030 0.291037i 0.769697 0.638409i \(-0.220407\pi\)
−0.937727 + 0.347373i \(0.887074\pi\)
\(770\) −1.85772 3.21766i −0.0669475 0.115956i
\(771\) 4.36250 5.27637i 0.157112 0.190024i
\(772\) −7.81662 + 13.5388i −0.281326 + 0.487272i
\(773\)