Newspace parameters
Level: | \( N \) | \(=\) | \( 585 = 3^{2} \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 585.h (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.67124851824\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(\sqrt{-5}, \sqrt{13})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - 2x^{3} + 5x^{2} - 4x + 69 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{2} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - 2x^{3} + 5x^{2} - 4x + 69 \)
:
\(\beta_{1}\) | \(=\) |
\( ( 2\nu^{3} - 3\nu^{2} + 25\nu - 12 ) / 33 \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{2} - \nu + 2 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -4\nu^{3} + 6\nu^{2} + 16\nu - 9 ) / 33 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{3} + 2\beta _1 + 1 ) / 2 \)
|
\(\nu^{2}\) | \(=\) |
\( ( \beta_{3} + 2\beta_{2} + 2\beta _1 - 3 ) / 2 \)
|
\(\nu^{3}\) | \(=\) |
\( ( -11\beta_{3} + 3\beta_{2} + 11\beta _1 - 5 ) / 2 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).
\(n\) | \(326\) | \(352\) | \(496\) |
\(\chi(n)\) | \(1\) | \(-1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
64.1 |
|
0 | 0 | −2.00000 | − | 2.23607i | 0 | −3.60555 | 0 | 0 | 0 | |||||||||||||||||||||||||||||
64.2 | 0 | 0 | −2.00000 | − | 2.23607i | 0 | 3.60555 | 0 | 0 | 0 | ||||||||||||||||||||||||||||||
64.3 | 0 | 0 | −2.00000 | 2.23607i | 0 | −3.60555 | 0 | 0 | 0 | |||||||||||||||||||||||||||||||
64.4 | 0 | 0 | −2.00000 | 2.23607i | 0 | 3.60555 | 0 | 0 | 0 | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
195.e | odd | 2 | 1 | CM by \(\Q(\sqrt{-195}) \) |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
13.b | even | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
39.d | odd | 2 | 1 | inner |
65.d | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 585.2.h.e | ✓ | 4 |
3.b | odd | 2 | 1 | inner | 585.2.h.e | ✓ | 4 |
5.b | even | 2 | 1 | inner | 585.2.h.e | ✓ | 4 |
13.b | even | 2 | 1 | inner | 585.2.h.e | ✓ | 4 |
15.d | odd | 2 | 1 | inner | 585.2.h.e | ✓ | 4 |
39.d | odd | 2 | 1 | inner | 585.2.h.e | ✓ | 4 |
65.d | even | 2 | 1 | inner | 585.2.h.e | ✓ | 4 |
195.e | odd | 2 | 1 | CM | 585.2.h.e | ✓ | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
585.2.h.e | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
585.2.h.e | ✓ | 4 | 3.b | odd | 2 | 1 | inner |
585.2.h.e | ✓ | 4 | 5.b | even | 2 | 1 | inner |
585.2.h.e | ✓ | 4 | 13.b | even | 2 | 1 | inner |
585.2.h.e | ✓ | 4 | 15.d | odd | 2 | 1 | inner |
585.2.h.e | ✓ | 4 | 39.d | odd | 2 | 1 | inner |
585.2.h.e | ✓ | 4 | 65.d | even | 2 | 1 | inner |
585.2.h.e | ✓ | 4 | 195.e | odd | 2 | 1 | CM |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2} \)
acting on \(S_{2}^{\mathrm{new}}(585, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} \)
$3$
\( T^{4} \)
$5$
\( (T^{2} + 5)^{2} \)
$7$
\( (T^{2} - 13)^{2} \)
$11$
\( (T^{2} + 5)^{2} \)
$13$
\( (T^{2} - 13)^{2} \)
$17$
\( (T^{2} + 65)^{2} \)
$19$
\( T^{4} \)
$23$
\( (T^{2} + 65)^{2} \)
$29$
\( T^{4} \)
$31$
\( T^{4} \)
$37$
\( (T^{2} - 13)^{2} \)
$41$
\( (T^{2} + 125)^{2} \)
$43$
\( T^{4} \)
$47$
\( T^{4} \)
$53$
\( (T^{2} + 65)^{2} \)
$59$
\( (T^{2} + 80)^{2} \)
$61$
\( (T + 7)^{4} \)
$67$
\( (T^{2} - 208)^{2} \)
$71$
\( (T^{2} + 245)^{2} \)
$73$
\( (T^{2} - 52)^{2} \)
$79$
\( (T - 11)^{4} \)
$83$
\( T^{4} \)
$89$
\( (T^{2} + 5)^{2} \)
$97$
\( (T^{2} - 13)^{2} \)
show more
show less