Properties

Label 585.2.h.c.64.1
Level $585$
Weight $2$
Character 585.64
Analytic conductor $4.671$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 64.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 585.64
Dual form 585.2.h.c.64.2

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{4} +(1.00000 - 2.00000i) q^{5} -3.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} -1.00000 q^{4} +(1.00000 - 2.00000i) q^{5} -3.00000 q^{8} +(1.00000 - 2.00000i) q^{10} -2.00000i q^{11} +(3.00000 - 2.00000i) q^{13} -1.00000 q^{16} -6.00000i q^{19} +(-1.00000 + 2.00000i) q^{20} -2.00000i q^{22} -6.00000i q^{23} +(-3.00000 - 4.00000i) q^{25} +(3.00000 - 2.00000i) q^{26} -6.00000 q^{29} +6.00000i q^{31} +5.00000 q^{32} +6.00000 q^{37} -6.00000i q^{38} +(-3.00000 + 6.00000i) q^{40} +8.00000i q^{41} -6.00000i q^{43} +2.00000i q^{44} -6.00000i q^{46} +8.00000 q^{47} -7.00000 q^{49} +(-3.00000 - 4.00000i) q^{50} +(-3.00000 + 2.00000i) q^{52} +12.0000i q^{53} +(-4.00000 - 2.00000i) q^{55} -6.00000 q^{58} -2.00000i q^{59} +6.00000 q^{61} +6.00000i q^{62} +7.00000 q^{64} +(-1.00000 - 8.00000i) q^{65} +12.0000 q^{67} +2.00000i q^{71} -6.00000 q^{73} +6.00000 q^{74} +6.00000i q^{76} +(-1.00000 + 2.00000i) q^{80} +8.00000i q^{82} +4.00000 q^{83} -6.00000i q^{86} +6.00000i q^{88} +8.00000i q^{89} +6.00000i q^{92} +8.00000 q^{94} +(-12.0000 - 6.00000i) q^{95} -6.00000 q^{97} -7.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{4} + 2 q^{5} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} - 2 q^{4} + 2 q^{5} - 6 q^{8} + 2 q^{10} + 6 q^{13} - 2 q^{16} - 2 q^{20} - 6 q^{25} + 6 q^{26} - 12 q^{29} + 10 q^{32} + 12 q^{37} - 6 q^{40} + 16 q^{47} - 14 q^{49} - 6 q^{50} - 6 q^{52} - 8 q^{55} - 12 q^{58} + 12 q^{61} + 14 q^{64} - 2 q^{65} + 24 q^{67} - 12 q^{73} + 12 q^{74} - 2 q^{80} + 8 q^{83} + 16 q^{94} - 24 q^{95} - 12 q^{97} - 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107 0.353553 0.935414i \(-0.384973\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 1.00000 2.00000i 0.447214 0.894427i
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) −3.00000 −1.06066
\(9\) 0 0
\(10\) 1.00000 2.00000i 0.316228 0.632456i
\(11\) 2.00000i 0.603023i −0.953463 0.301511i \(-0.902509\pi\)
0.953463 0.301511i \(-0.0974911\pi\)
\(12\) 0 0
\(13\) 3.00000 2.00000i 0.832050 0.554700i
\(14\) 0 0
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 6.00000i 1.37649i −0.725476 0.688247i \(-0.758380\pi\)
0.725476 0.688247i \(-0.241620\pi\)
\(20\) −1.00000 + 2.00000i −0.223607 + 0.447214i
\(21\) 0 0
\(22\) 2.00000i 0.426401i
\(23\) 6.00000i 1.25109i −0.780189 0.625543i \(-0.784877\pi\)
0.780189 0.625543i \(-0.215123\pi\)
\(24\) 0 0
\(25\) −3.00000 4.00000i −0.600000 0.800000i
\(26\) 3.00000 2.00000i 0.588348 0.392232i
\(27\) 0 0
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 6.00000i 1.07763i 0.842424 + 0.538816i \(0.181128\pi\)
−0.842424 + 0.538816i \(0.818872\pi\)
\(32\) 5.00000 0.883883
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) 6.00000i 0.973329i
\(39\) 0 0
\(40\) −3.00000 + 6.00000i −0.474342 + 0.948683i
\(41\) 8.00000i 1.24939i 0.780869 + 0.624695i \(0.214777\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) 6.00000i 0.914991i −0.889212 0.457496i \(-0.848747\pi\)
0.889212 0.457496i \(-0.151253\pi\)
\(44\) 2.00000i 0.301511i
\(45\) 0 0
\(46\) 6.00000i 0.884652i
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) −3.00000 4.00000i −0.424264 0.565685i
\(51\) 0 0
\(52\) −3.00000 + 2.00000i −0.416025 + 0.277350i
\(53\) 12.0000i 1.64833i 0.566352 + 0.824163i \(0.308354\pi\)
−0.566352 + 0.824163i \(0.691646\pi\)
\(54\) 0 0
\(55\) −4.00000 2.00000i −0.539360 0.269680i
\(56\) 0 0
\(57\) 0 0
\(58\) −6.00000 −0.787839
\(59\) 2.00000i 0.260378i −0.991489 0.130189i \(-0.958442\pi\)
0.991489 0.130189i \(-0.0415584\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 6.00000i 0.762001i
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) −1.00000 8.00000i −0.124035 0.992278i
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.00000i 0.237356i 0.992933 + 0.118678i \(0.0378657\pi\)
−0.992933 + 0.118678i \(0.962134\pi\)
\(72\) 0 0
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 6.00000 0.697486
\(75\) 0 0
\(76\) 6.00000i 0.688247i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) −1.00000 + 2.00000i −0.111803 + 0.223607i
\(81\) 0 0
\(82\) 8.00000i 0.883452i
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 6.00000i 0.646997i
\(87\) 0 0
\(88\) 6.00000i 0.639602i
\(89\) 8.00000i 0.847998i 0.905663 + 0.423999i \(0.139374\pi\)
−0.905663 + 0.423999i \(0.860626\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 6.00000i 0.625543i
\(93\) 0 0
\(94\) 8.00000 0.825137
\(95\) −12.0000 6.00000i −1.23117 0.615587i
\(96\) 0 0
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) −7.00000 −0.707107
\(99\) 0 0
\(100\) 3.00000 + 4.00000i 0.300000 + 0.400000i
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 6.00000i 0.591198i 0.955312 + 0.295599i \(0.0955191\pi\)
−0.955312 + 0.295599i \(0.904481\pi\)
\(104\) −9.00000 + 6.00000i −0.882523 + 0.588348i
\(105\) 0 0
\(106\) 12.0000i 1.16554i
\(107\) 6.00000i 0.580042i 0.957020 + 0.290021i \(0.0936623\pi\)
−0.957020 + 0.290021i \(0.906338\pi\)
\(108\) 0 0
\(109\) 12.0000i 1.14939i 0.818367 + 0.574696i \(0.194880\pi\)
−0.818367 + 0.574696i \(0.805120\pi\)
\(110\) −4.00000 2.00000i −0.381385 0.190693i
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) −12.0000 6.00000i −1.11901 0.559503i
\(116\) 6.00000 0.557086
\(117\) 0 0
\(118\) 2.00000i 0.184115i
\(119\) 0 0
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) 6.00000 0.543214
\(123\) 0 0
\(124\) 6.00000i 0.538816i
\(125\) −11.0000 + 2.00000i −0.983870 + 0.178885i
\(126\) 0 0
\(127\) 2.00000i 0.177471i −0.996055 0.0887357i \(-0.971717\pi\)
0.996055 0.0887357i \(-0.0282826\pi\)
\(128\) −3.00000 −0.265165
\(129\) 0 0
\(130\) −1.00000 8.00000i −0.0877058 0.701646i
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 12.0000 1.03664
\(135\) 0 0
\(136\) 0 0
\(137\) −2.00000 −0.170872 −0.0854358 0.996344i \(-0.527228\pi\)
−0.0854358 + 0.996344i \(0.527228\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.00000i 0.167836i
\(143\) −4.00000 6.00000i −0.334497 0.501745i
\(144\) 0 0
\(145\) −6.00000 + 12.0000i −0.498273 + 0.996546i
\(146\) −6.00000 −0.496564
\(147\) 0 0
\(148\) −6.00000 −0.493197
\(149\) 20.0000i 1.63846i −0.573462 0.819232i \(-0.694400\pi\)
0.573462 0.819232i \(-0.305600\pi\)
\(150\) 0 0
\(151\) 18.0000i 1.46482i −0.680864 0.732410i \(-0.738396\pi\)
0.680864 0.732410i \(-0.261604\pi\)
\(152\) 18.0000i 1.45999i
\(153\) 0 0
\(154\) 0 0
\(155\) 12.0000 + 6.00000i 0.963863 + 0.481932i
\(156\) 0 0
\(157\) 12.0000i 0.957704i 0.877896 + 0.478852i \(0.158947\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 5.00000 10.0000i 0.395285 0.790569i
\(161\) 0 0
\(162\) 0 0
\(163\) 12.0000 0.939913 0.469956 0.882690i \(-0.344270\pi\)
0.469956 + 0.882690i \(0.344270\pi\)
\(164\) 8.00000i 0.624695i
\(165\) 0 0
\(166\) 4.00000 0.310460
\(167\) 16.0000 1.23812 0.619059 0.785345i \(-0.287514\pi\)
0.619059 + 0.785345i \(0.287514\pi\)
\(168\) 0 0
\(169\) 5.00000 12.0000i 0.384615 0.923077i
\(170\) 0 0
\(171\) 0 0
\(172\) 6.00000i 0.457496i
\(173\) 12.0000i 0.912343i −0.889892 0.456172i \(-0.849220\pi\)
0.889892 0.456172i \(-0.150780\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 2.00000i 0.150756i
\(177\) 0 0
\(178\) 8.00000i 0.599625i
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 18.0000i 1.32698i
\(185\) 6.00000 12.0000i 0.441129 0.882258i
\(186\) 0 0
\(187\) 0 0
\(188\) −8.00000 −0.583460
\(189\) 0 0
\(190\) −12.0000 6.00000i −0.870572 0.435286i
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −6.00000 −0.431889 −0.215945 0.976406i \(-0.569283\pi\)
−0.215945 + 0.976406i \(0.569283\pi\)
\(194\) −6.00000 −0.430775
\(195\) 0 0
\(196\) 7.00000 0.500000
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) −24.0000 −1.70131 −0.850657 0.525720i \(-0.823796\pi\)
−0.850657 + 0.525720i \(0.823796\pi\)
\(200\) 9.00000 + 12.0000i 0.636396 + 0.848528i
\(201\) 0 0
\(202\) −6.00000 −0.422159
\(203\) 0 0
\(204\) 0 0
\(205\) 16.0000 + 8.00000i 1.11749 + 0.558744i
\(206\) 6.00000i 0.418040i
\(207\) 0 0
\(208\) −3.00000 + 2.00000i −0.208013 + 0.138675i
\(209\) −12.0000 −0.830057
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 12.0000i 0.824163i
\(213\) 0 0
\(214\) 6.00000i 0.410152i
\(215\) −12.0000 6.00000i −0.818393 0.409197i
\(216\) 0 0
\(217\) 0 0
\(218\) 12.0000i 0.812743i
\(219\) 0 0
\(220\) 4.00000 + 2.00000i 0.269680 + 0.134840i
\(221\) 0 0
\(222\) 0 0
\(223\) 24.0000 1.60716 0.803579 0.595198i \(-0.202926\pi\)
0.803579 + 0.595198i \(0.202926\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.00000 0.265489 0.132745 0.991150i \(-0.457621\pi\)
0.132745 + 0.991150i \(0.457621\pi\)
\(228\) 0 0
\(229\) 12.0000i 0.792982i −0.918039 0.396491i \(-0.870228\pi\)
0.918039 0.396491i \(-0.129772\pi\)
\(230\) −12.0000 6.00000i −0.791257 0.395628i
\(231\) 0 0
\(232\) 18.0000 1.18176
\(233\) 24.0000i 1.57229i 0.618041 + 0.786146i \(0.287927\pi\)
−0.618041 + 0.786146i \(0.712073\pi\)
\(234\) 0 0
\(235\) 8.00000 16.0000i 0.521862 1.04372i
\(236\) 2.00000i 0.130189i
\(237\) 0 0
\(238\) 0 0
\(239\) 10.0000i 0.646846i 0.946254 + 0.323423i \(0.104834\pi\)
−0.946254 + 0.323423i \(0.895166\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 7.00000 0.449977
\(243\) 0 0
\(244\) −6.00000 −0.384111
\(245\) −7.00000 + 14.0000i −0.447214 + 0.894427i
\(246\) 0 0
\(247\) −12.0000 18.0000i −0.763542 1.14531i
\(248\) 18.0000i 1.14300i
\(249\) 0 0
\(250\) −11.0000 + 2.00000i −0.695701 + 0.126491i
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) −12.0000 −0.754434
\(254\) 2.00000i 0.125491i
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.00000 + 8.00000i 0.0620174 + 0.496139i
\(261\) 0 0
\(262\) 12.0000 0.741362
\(263\) 6.00000i 0.369976i −0.982741 0.184988i \(-0.940775\pi\)
0.982741 0.184988i \(-0.0592246\pi\)
\(264\) 0 0
\(265\) 24.0000 + 12.0000i 1.47431 + 0.737154i
\(266\) 0 0
\(267\) 0 0
\(268\) −12.0000 −0.733017
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 0 0
\(271\) 6.00000i 0.364474i 0.983255 + 0.182237i \(0.0583338\pi\)
−0.983255 + 0.182237i \(0.941666\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −2.00000 −0.120824
\(275\) −8.00000 + 6.00000i −0.482418 + 0.361814i
\(276\) 0 0
\(277\) 12.0000i 0.721010i −0.932757 0.360505i \(-0.882604\pi\)
0.932757 0.360505i \(-0.117396\pi\)
\(278\) −4.00000 −0.239904
\(279\) 0 0
\(280\) 0 0
\(281\) 8.00000i 0.477240i −0.971113 0.238620i \(-0.923305\pi\)
0.971113 0.238620i \(-0.0766950\pi\)
\(282\) 0 0
\(283\) 22.0000i 1.30776i −0.756596 0.653882i \(-0.773139\pi\)
0.756596 0.653882i \(-0.226861\pi\)
\(284\) 2.00000i 0.118678i
\(285\) 0 0
\(286\) −4.00000 6.00000i −0.236525 0.354787i
\(287\) 0 0
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) −6.00000 + 12.0000i −0.352332 + 0.704664i
\(291\) 0 0
\(292\) 6.00000 0.351123
\(293\) 26.0000 1.51894 0.759468 0.650545i \(-0.225459\pi\)
0.759468 + 0.650545i \(0.225459\pi\)
\(294\) 0 0
\(295\) −4.00000 2.00000i −0.232889 0.116445i
\(296\) −18.0000 −1.04623
\(297\) 0 0
\(298\) 20.0000i 1.15857i
\(299\) −12.0000 18.0000i −0.693978 1.04097i
\(300\) 0 0
\(301\) 0 0
\(302\) 18.0000i 1.03578i
\(303\) 0 0
\(304\) 6.00000i 0.344124i
\(305\) 6.00000 12.0000i 0.343559 0.687118i
\(306\) 0 0
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 12.0000 + 6.00000i 0.681554 + 0.340777i
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) 8.00000i 0.452187i 0.974106 + 0.226093i \(0.0725954\pi\)
−0.974106 + 0.226093i \(0.927405\pi\)
\(314\) 12.0000i 0.677199i
\(315\) 0 0
\(316\) 0 0
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) 0 0
\(319\) 12.0000i 0.671871i
\(320\) 7.00000 14.0000i 0.391312 0.782624i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −17.0000 6.00000i −0.942990 0.332820i
\(326\) 12.0000 0.664619
\(327\) 0 0
\(328\) 24.0000i 1.32518i
\(329\) 0 0
\(330\) 0 0
\(331\) 30.0000i 1.64895i −0.565899 0.824475i \(-0.691471\pi\)
0.565899 0.824475i \(-0.308529\pi\)
\(332\) −4.00000 −0.219529
\(333\) 0 0
\(334\) 16.0000 0.875481
\(335\) 12.0000 24.0000i 0.655630 1.31126i
\(336\) 0 0
\(337\) 32.0000i 1.74315i 0.490261 + 0.871576i \(0.336901\pi\)
−0.490261 + 0.871576i \(0.663099\pi\)
\(338\) 5.00000 12.0000i 0.271964 0.652714i
\(339\) 0 0
\(340\) 0 0
\(341\) 12.0000 0.649836
\(342\) 0 0
\(343\) 0 0
\(344\) 18.0000i 0.970495i
\(345\) 0 0
\(346\) 12.0000i 0.645124i
\(347\) 6.00000i 0.322097i 0.986947 + 0.161048i \(0.0514875\pi\)
−0.986947 + 0.161048i \(0.948512\pi\)
\(348\) 0 0
\(349\) 12.0000i 0.642345i 0.947021 + 0.321173i \(0.104077\pi\)
−0.947021 + 0.321173i \(0.895923\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 10.0000i 0.533002i
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) 0 0
\(355\) 4.00000 + 2.00000i 0.212298 + 0.106149i
\(356\) 8.00000i 0.423999i
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) 2.00000i 0.105556i 0.998606 + 0.0527780i \(0.0168076\pi\)
−0.998606 + 0.0527780i \(0.983192\pi\)
\(360\) 0 0
\(361\) −17.0000 −0.894737
\(362\) −2.00000 −0.105118
\(363\) 0 0
\(364\) 0 0
\(365\) −6.00000 + 12.0000i −0.314054 + 0.628109i
\(366\) 0 0
\(367\) 18.0000i 0.939592i −0.882775 0.469796i \(-0.844327\pi\)
0.882775 0.469796i \(-0.155673\pi\)
\(368\) 6.00000i 0.312772i
\(369\) 0 0
\(370\) 6.00000 12.0000i 0.311925 0.623850i
\(371\) 0 0
\(372\) 0 0
\(373\) 4.00000i 0.207112i 0.994624 + 0.103556i \(0.0330221\pi\)
−0.994624 + 0.103556i \(0.966978\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −24.0000 −1.23771
\(377\) −18.0000 + 12.0000i −0.927047 + 0.618031i
\(378\) 0 0
\(379\) 18.0000i 0.924598i 0.886724 + 0.462299i \(0.152975\pi\)
−0.886724 + 0.462299i \(0.847025\pi\)
\(380\) 12.0000 + 6.00000i 0.615587 + 0.307794i
\(381\) 0 0
\(382\) 0 0
\(383\) −8.00000 −0.408781 −0.204390 0.978889i \(-0.565521\pi\)
−0.204390 + 0.978889i \(0.565521\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −6.00000 −0.305392
\(387\) 0 0
\(388\) 6.00000 0.304604
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 21.0000 1.06066
\(393\) 0 0
\(394\) 2.00000 0.100759
\(395\) 0 0
\(396\) 0 0
\(397\) −18.0000 −0.903394 −0.451697 0.892171i \(-0.649181\pi\)
−0.451697 + 0.892171i \(0.649181\pi\)
\(398\) −24.0000 −1.20301
\(399\) 0 0
\(400\) 3.00000 + 4.00000i 0.150000 + 0.200000i
\(401\) 16.0000i 0.799002i −0.916733 0.399501i \(-0.869183\pi\)
0.916733 0.399501i \(-0.130817\pi\)
\(402\) 0 0
\(403\) 12.0000 + 18.0000i 0.597763 + 0.896644i
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) 0 0
\(407\) 12.0000i 0.594818i
\(408\) 0 0
\(409\) 24.0000i 1.18672i −0.804936 0.593362i \(-0.797800\pi\)
0.804936 0.593362i \(-0.202200\pi\)
\(410\) 16.0000 + 8.00000i 0.790184 + 0.395092i
\(411\) 0 0
\(412\) 6.00000i 0.295599i
\(413\) 0 0
\(414\) 0 0
\(415\) 4.00000 8.00000i 0.196352 0.392705i
\(416\) 15.0000 10.0000i 0.735436 0.490290i
\(417\) 0 0
\(418\) −12.0000 −0.586939
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) 36.0000i 1.75453i 0.480004 + 0.877266i \(0.340635\pi\)
−0.480004 + 0.877266i \(0.659365\pi\)
\(422\) −12.0000 −0.584151
\(423\) 0 0
\(424\) 36.0000i 1.74831i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 6.00000i 0.290021i
\(429\) 0 0
\(430\) −12.0000 6.00000i −0.578691 0.289346i
\(431\) 10.0000i 0.481683i 0.970564 + 0.240842i \(0.0774234\pi\)
−0.970564 + 0.240842i \(0.922577\pi\)
\(432\) 0 0
\(433\) 16.0000i 0.768911i 0.923144 + 0.384455i \(0.125611\pi\)
−0.923144 + 0.384455i \(0.874389\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 12.0000i 0.574696i
\(437\) −36.0000 −1.72211
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 12.0000 + 6.00000i 0.572078 + 0.286039i
\(441\) 0 0
\(442\) 0 0
\(443\) 6.00000i 0.285069i 0.989790 + 0.142534i \(0.0455251\pi\)
−0.989790 + 0.142534i \(0.954475\pi\)
\(444\) 0 0
\(445\) 16.0000 + 8.00000i 0.758473 + 0.379236i
\(446\) 24.0000 1.13643
\(447\) 0 0
\(448\) 0 0
\(449\) 16.0000i 0.755087i 0.925992 + 0.377543i \(0.123231\pi\)
−0.925992 + 0.377543i \(0.876769\pi\)
\(450\) 0 0
\(451\) 16.0000 0.753411
\(452\) 0 0
\(453\) 0 0
\(454\) 4.00000 0.187729
\(455\) 0 0
\(456\) 0 0
\(457\) −30.0000 −1.40334 −0.701670 0.712502i \(-0.747562\pi\)
−0.701670 + 0.712502i \(0.747562\pi\)
\(458\) 12.0000i 0.560723i
\(459\) 0 0
\(460\) 12.0000 + 6.00000i 0.559503 + 0.279751i
\(461\) 4.00000i 0.186299i 0.995652 + 0.0931493i \(0.0296934\pi\)
−0.995652 + 0.0931493i \(0.970307\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) 6.00000 0.278543
\(465\) 0 0
\(466\) 24.0000i 1.11178i
\(467\) 18.0000i 0.832941i −0.909149 0.416470i \(-0.863267\pi\)
0.909149 0.416470i \(-0.136733\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 8.00000 16.0000i 0.369012 0.738025i
\(471\) 0 0
\(472\) 6.00000i 0.276172i
\(473\) −12.0000 −0.551761
\(474\) 0 0
\(475\) −24.0000 + 18.0000i −1.10120 + 0.825897i
\(476\) 0 0
\(477\) 0 0
\(478\) 10.0000i 0.457389i
\(479\) 22.0000i 1.00521i −0.864517 0.502603i \(-0.832376\pi\)
0.864517 0.502603i \(-0.167624\pi\)
\(480\) 0 0
\(481\) 18.0000 12.0000i 0.820729 0.547153i
\(482\) 0 0
\(483\) 0 0
\(484\) −7.00000 −0.318182
\(485\) −6.00000 + 12.0000i −0.272446 + 0.544892i
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) −18.0000 −0.814822
\(489\) 0 0
\(490\) −7.00000 + 14.0000i −0.316228 + 0.632456i
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −12.0000 18.0000i −0.539906 0.809858i
\(495\) 0 0
\(496\) 6.00000i 0.269408i
\(497\) 0 0
\(498\) 0 0
\(499\) 6.00000i 0.268597i −0.990941 0.134298i \(-0.957122\pi\)
0.990941 0.134298i \(-0.0428781\pi\)
\(500\) 11.0000 2.00000i 0.491935 0.0894427i
\(501\) 0 0
\(502\) −12.0000 −0.535586
\(503\) 6.00000i 0.267527i −0.991013 0.133763i \(-0.957294\pi\)
0.991013 0.133763i \(-0.0427062\pi\)
\(504\) 0 0
\(505\) −6.00000 + 12.0000i −0.266996 + 0.533993i
\(506\) −12.0000 −0.533465
\(507\) 0 0
\(508\) 2.00000i 0.0887357i
\(509\) 20.0000i 0.886484i 0.896402 + 0.443242i \(0.146172\pi\)
−0.896402 + 0.443242i \(0.853828\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −11.0000 −0.486136
\(513\) 0 0
\(514\) 0 0
\(515\) 12.0000 + 6.00000i 0.528783 + 0.264392i
\(516\) 0 0
\(517\) 16.0000i 0.703679i
\(518\) 0 0
\(519\) 0 0
\(520\) 3.00000 + 24.0000i 0.131559 + 1.05247i
\(521\) 30.0000 1.31432 0.657162 0.753749i \(-0.271757\pi\)
0.657162 + 0.753749i \(0.271757\pi\)
\(522\) 0 0
\(523\) 42.0000i 1.83653i 0.395964 + 0.918266i \(0.370410\pi\)
−0.395964 + 0.918266i \(0.629590\pi\)
\(524\) −12.0000 −0.524222
\(525\) 0 0
\(526\) 6.00000i 0.261612i
\(527\) 0 0
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) 24.0000 + 12.0000i 1.04249 + 0.521247i
\(531\) 0 0
\(532\) 0 0
\(533\) 16.0000 + 24.0000i 0.693037 + 1.03956i
\(534\) 0 0
\(535\) 12.0000 + 6.00000i 0.518805 + 0.259403i
\(536\) −36.0000 −1.55496
\(537\) 0 0
\(538\) 18.0000 0.776035
\(539\) 14.0000i 0.603023i
\(540\) 0 0
\(541\) 12.0000i 0.515920i 0.966156 + 0.257960i \(0.0830503\pi\)
−0.966156 + 0.257960i \(0.916950\pi\)
\(542\) 6.00000i 0.257722i
\(543\) 0 0
\(544\) 0 0
\(545\) 24.0000 + 12.0000i 1.02805 + 0.514024i
\(546\) 0 0
\(547\) 18.0000i 0.769624i 0.922995 + 0.384812i \(0.125734\pi\)
−0.922995 + 0.384812i \(0.874266\pi\)
\(548\) 2.00000 0.0854358
\(549\) 0 0
\(550\) −8.00000 + 6.00000i −0.341121 + 0.255841i
\(551\) 36.0000i 1.53365i
\(552\) 0 0
\(553\) 0 0
\(554\) 12.0000i 0.509831i
\(555\) 0 0
\(556\) 4.00000 0.169638
\(557\) −14.0000 −0.593199 −0.296600 0.955002i \(-0.595853\pi\)
−0.296600 + 0.955002i \(0.595853\pi\)
\(558\) 0 0
\(559\) −12.0000 18.0000i −0.507546 0.761319i
\(560\) 0 0
\(561\) 0 0
\(562\) 8.00000i 0.337460i
\(563\) 30.0000i 1.26435i 0.774826 + 0.632175i \(0.217837\pi\)
−0.774826 + 0.632175i \(0.782163\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 22.0000i 0.924729i
\(567\) 0 0
\(568\) 6.00000i 0.251754i
\(569\) −18.0000 −0.754599 −0.377300 0.926091i \(-0.623147\pi\)
−0.377300 + 0.926091i \(0.623147\pi\)
\(570\) 0 0
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) 4.00000 + 6.00000i 0.167248 + 0.250873i
\(573\) 0 0
\(574\) 0 0
\(575\) −24.0000 + 18.0000i −1.00087 + 0.750652i
\(576\) 0 0
\(577\) 18.0000 0.749350 0.374675 0.927156i \(-0.377754\pi\)
0.374675 + 0.927156i \(0.377754\pi\)
\(578\) 17.0000 0.707107
\(579\) 0 0
\(580\) 6.00000 12.0000i 0.249136 0.498273i
\(581\) 0 0
\(582\) 0 0
\(583\) 24.0000 0.993978
\(584\) 18.0000 0.744845
\(585\) 0 0
\(586\) 26.0000 1.07405
\(587\) −20.0000 −0.825488 −0.412744 0.910847i \(-0.635430\pi\)
−0.412744 + 0.910847i \(0.635430\pi\)
\(588\) 0 0
\(589\) 36.0000 1.48335
\(590\) −4.00000 2.00000i −0.164677 0.0823387i
\(591\) 0 0
\(592\) −6.00000 −0.246598
\(593\) 22.0000 0.903432 0.451716 0.892162i \(-0.350812\pi\)
0.451716 + 0.892162i \(0.350812\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 20.0000i 0.819232i
\(597\) 0 0
\(598\) −12.0000 18.0000i −0.490716 0.736075i
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) −6.00000 −0.244745 −0.122373 0.992484i \(-0.539050\pi\)
−0.122373 + 0.992484i \(0.539050\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 18.0000i 0.732410i
\(605\) 7.00000 14.0000i 0.284590 0.569181i
\(606\) 0 0
\(607\) 18.0000i 0.730597i −0.930890 0.365299i \(-0.880967\pi\)
0.930890 0.365299i \(-0.119033\pi\)
\(608\) 30.0000i 1.21666i
\(609\) 0 0
\(610\) 6.00000 12.0000i 0.242933 0.485866i
\(611\) 24.0000 16.0000i 0.970936 0.647291i
\(612\) 0 0
\(613\) 30.0000 1.21169 0.605844 0.795583i \(-0.292835\pi\)
0.605844 + 0.795583i \(0.292835\pi\)
\(614\) 12.0000 0.484281
\(615\) 0 0
\(616\) 0 0
\(617\) −34.0000 −1.36879 −0.684394 0.729112i \(-0.739933\pi\)
−0.684394 + 0.729112i \(0.739933\pi\)
\(618\) 0 0
\(619\) 18.0000i 0.723481i 0.932279 + 0.361741i \(0.117817\pi\)
−0.932279 + 0.361741i \(0.882183\pi\)
\(620\) −12.0000 6.00000i −0.481932 0.240966i
\(621\) 0 0
\(622\) −24.0000 −0.962312
\(623\) 0 0
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 8.00000i 0.319744i
\(627\) 0 0
\(628\) 12.0000i 0.478852i
\(629\) 0 0
\(630\) 0 0
\(631\) 30.0000i 1.19428i 0.802137 + 0.597141i \(0.203697\pi\)
−0.802137 + 0.597141i \(0.796303\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 2.00000 0.0794301
\(635\) −4.00000 2.00000i −0.158735 0.0793676i
\(636\) 0 0
\(637\) −21.0000 + 14.0000i −0.832050 + 0.554700i
\(638\) 12.0000i 0.475085i
\(639\) 0 0
\(640\) −3.00000 + 6.00000i −0.118585 + 0.237171i
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) −36.0000 −1.41970 −0.709851 0.704352i \(-0.751238\pi\)
−0.709851 + 0.704352i \(0.751238\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6.00000i 0.235884i −0.993020 0.117942i \(-0.962370\pi\)
0.993020 0.117942i \(-0.0376297\pi\)
\(648\) 0 0
\(649\) −4.00000 −0.157014
\(650\) −17.0000 6.00000i −0.666795 0.235339i
\(651\) 0 0
\(652\) −12.0000 −0.469956
\(653\) 36.0000i 1.40879i 0.709809 + 0.704394i \(0.248781\pi\)
−0.709809 + 0.704394i \(0.751219\pi\)
\(654\) 0 0
\(655\) 12.0000 24.0000i 0.468879 0.937758i
\(656\) 8.00000i 0.312348i
\(657\) 0 0
\(658\) 0 0
\(659\) −36.0000 −1.40236 −0.701180 0.712984i \(-0.747343\pi\)
−0.701180 + 0.712984i \(0.747343\pi\)
\(660\) 0 0
\(661\) 12.0000i 0.466746i −0.972387 0.233373i \(-0.925024\pi\)
0.972387 0.233373i \(-0.0749763\pi\)
\(662\) 30.0000i 1.16598i
\(663\) 0 0
\(664\) −12.0000 −0.465690
\(665\) 0 0
\(666\) 0 0
\(667\) 36.0000i 1.39393i
\(668\) −16.0000 −0.619059
\(669\) 0 0
\(670\) 12.0000 24.0000i 0.463600 0.927201i
\(671\) 12.0000i 0.463255i
\(672\) 0 0
\(673\) 48.0000i 1.85026i 0.379646 + 0.925132i \(0.376046\pi\)
−0.379646 + 0.925132i \(0.623954\pi\)
\(674\) 32.0000i 1.23259i
\(675\) 0 0
\(676\) −5.00000 + 12.0000i −0.192308 + 0.461538i
\(677\) 36.0000i 1.38359i −0.722093 0.691796i \(-0.756820\pi\)
0.722093 0.691796i \(-0.243180\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 12.0000 0.459504
\(683\) 44.0000 1.68361 0.841807 0.539779i \(-0.181492\pi\)
0.841807 + 0.539779i \(0.181492\pi\)
\(684\) 0 0
\(685\) −2.00000 + 4.00000i −0.0764161 + 0.152832i
\(686\) 0 0
\(687\) 0 0
\(688\) 6.00000i 0.228748i
\(689\) 24.0000 + 36.0000i 0.914327 + 1.37149i
\(690\) 0 0
\(691\) 42.0000i 1.59776i 0.601494 + 0.798878i \(0.294573\pi\)
−0.601494 + 0.798878i \(0.705427\pi\)
\(692\) 12.0000i 0.456172i
\(693\) 0 0
\(694\) 6.00000i 0.227757i
\(695\) −4.00000 + 8.00000i −0.151729 + 0.303457i
\(696\) 0 0
\(697\) 0 0
\(698\) 12.0000i 0.454207i
\(699\) 0 0
\(700\) 0 0
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 0 0
\(703\) 36.0000i 1.35777i
\(704\) 14.0000i 0.527645i
\(705\) 0 0
\(706\) 14.0000 0.526897
\(707\) 0 0
\(708\) 0 0
\(709\) 12.0000i 0.450669i −0.974281 0.225335i \(-0.927652\pi\)
0.974281 0.225335i \(-0.0723476\pi\)
\(710\) 4.00000 + 2.00000i 0.150117 + 0.0750587i
\(711\) 0 0
\(712\) 24.0000i 0.899438i
\(713\) 36.0000 1.34821
\(714\) 0 0
\(715\) −16.0000 + 2.00000i −0.598366 + 0.0747958i
\(716\) −12.0000 −0.448461
\(717\) 0 0
\(718\) 2.00000i 0.0746393i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −17.0000 −0.632674
\(723\) 0 0
\(724\) 2.00000 0.0743294
\(725\) 18.0000 + 24.0000i 0.668503 + 0.891338i
\(726\) 0 0
\(727\) 26.0000i 0.964287i −0.876092 0.482143i \(-0.839858\pi\)
0.876092 0.482143i \(-0.160142\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −6.00000 + 12.0000i −0.222070 + 0.444140i
\(731\) 0 0
\(732\) 0 0
\(733\) −42.0000 −1.55131 −0.775653 0.631160i \(-0.782579\pi\)
−0.775653 + 0.631160i \(0.782579\pi\)
\(734\) 18.0000i 0.664392i
\(735\) 0 0
\(736\) 30.0000i 1.10581i
\(737\) 24.0000i 0.884051i
\(738\) 0 0
\(739\) 6.00000i 0.220714i −0.993892 0.110357i \(-0.964801\pi\)
0.993892 0.110357i \(-0.0351994\pi\)
\(740\) −6.00000 + 12.0000i −0.220564 + 0.441129i
\(741\) 0 0
\(742\) 0 0
\(743\) 16.0000 0.586983 0.293492 0.955962i \(-0.405183\pi\)
0.293492 + 0.955962i \(0.405183\pi\)
\(744\) 0 0
\(745\) −40.0000 20.0000i −1.46549 0.732743i
\(746\) 4.00000i 0.146450i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) −8.00000 −0.291730
\(753\) 0 0
\(754\) −18.0000 + 12.0000i −0.655521 + 0.437014i
\(755\) −36.0000 18.0000i −1.31017 0.655087i
\(756\) 0 0
\(757\) 20.0000i 0.726912i 0.931611 + 0.363456i \(0.118403\pi\)
−0.931611 + 0.363456i \(0.881597\pi\)
\(758\) 18.0000i 0.653789i
\(759\) 0 0
\(760\) 36.0000 + 18.0000i 1.30586 + 0.652929i
\(761\) 40.0000i 1.45000i 0.688749 + 0.724999i \(0.258160\pi\)
−0.688749 + 0.724999i \(0.741840\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) −8.00000 −0.289052
\(767\) −4.00000 6.00000i −0.144432 0.216647i
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 6.00000 0.215945
\(773\) −38.0000 −1.36677 −0.683383 0.730061i \(-0.739492\pi\)
−0.683383 + 0.730061i \(0.739492\pi\)
\(774\) 0 0
\(775\) 24.0000 18.0000i 0.862105 0.646579i
\(776\) 18.0000 0.646162
\(777\) 0 0
\(778\) −6.00000 −0.215110
\(779\) 48.0000 1.71978
\(780\) 0 0
\(781\) 4.00000 0.143131
\(782\) 0 0
\(783\) 0 0
\(784\) 7.00000 0.250000
\(785\) 24.0000 + 12.0000i 0.856597 + 0.428298i
\(786\) 0 0
\(787\) 12.0000 0.427754 0.213877 0.976861i \(-0.431391\pi\)
0.213877 + 0.976861i \(0.431391\pi\)
\(788\) −2.00000 −0.0712470
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 18.0000 12.0000i 0.639199 0.426132i
\(794\) −18.0000 −0.638796
\(795\) 0 0
\(796\) 24.0000 0.850657
\(797\) 12.0000i 0.425062i −0.977154 0.212531i \(-0.931829\pi\)
0.977154 0.212531i \(-0.0681706\pi\)
\(798\) 0