Properties

Label 585.2.dp.a.253.3
Level $585$
Weight $2$
Character 585.253
Analytic conductor $4.671$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [585,2,Mod(28,585)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(585, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 9, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("585.28"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.dp (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,6,0,6,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 253.3
Root \(0.131303i\) of defining polynomial
Character \(\chi\) \(=\) 585.253
Dual form 585.2.dp.a.37.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.113711 + 0.0656513i) q^{2} +(-0.991380 - 1.71712i) q^{4} +(-2.08297 + 0.813169i) q^{5} +(1.39069 + 2.40874i) q^{7} -0.522947i q^{8} +(-0.290243 - 0.0442830i) q^{10} +(3.91706 - 1.04957i) q^{11} +(0.756068 - 3.52539i) q^{13} +0.365201i q^{14} +(-1.94843 + 3.37478i) q^{16} +(0.627499 - 2.34186i) q^{17} +(0.491577 - 1.83459i) q^{19} +(3.46132 + 2.77055i) q^{20} +(0.514321 + 0.137812i) q^{22} +(-2.06467 - 7.70544i) q^{23} +(3.67751 - 3.38761i) q^{25} +(0.317420 - 0.351240i) q^{26} +(2.75740 - 4.77595i) q^{28} +(3.96565 + 2.28957i) q^{29} +(3.87352 - 3.87352i) q^{31} +(-1.34889 + 0.778780i) q^{32} +(0.225100 - 0.225100i) q^{34} +(-4.85547 - 3.88646i) q^{35} +(3.50510 - 6.07101i) q^{37} +(0.176341 - 0.176341i) q^{38} +(0.425244 + 1.08928i) q^{40} +(1.66178 + 6.20184i) q^{41} +(-6.24368 - 1.67299i) q^{43} +(-5.68554 - 5.68554i) q^{44} +(0.271096 - 1.01174i) q^{46} +0.512375 q^{47} +(-0.368015 + 0.637420i) q^{49} +(0.640576 - 0.143776i) q^{50} +(-6.80307 + 2.19674i) q^{52} +(1.32662 + 1.32662i) q^{53} +(-7.30564 + 5.37147i) q^{55} +(1.25964 - 0.727255i) q^{56} +(0.300626 + 0.520700i) q^{58} +(-2.53667 - 0.679700i) q^{59} +(0.641767 + 1.11157i) q^{61} +(0.694764 - 0.186162i) q^{62} +7.58920 q^{64} +(1.29187 + 7.95808i) q^{65} +(3.13180 + 1.80814i) q^{67} +(-4.64334 + 1.24418i) q^{68} +(-0.296970 - 0.760703i) q^{70} +(6.20800 + 1.66343i) q^{71} +9.93250i q^{73} +(0.797139 - 0.460228i) q^{74} +(-3.63755 + 0.974678i) q^{76} +(7.97556 + 7.97556i) q^{77} +8.37577i q^{79} +(1.31425 - 8.61395i) q^{80} +(-0.218196 + 0.814318i) q^{82} -3.17194 q^{83} +(0.597266 + 5.38828i) q^{85} +(-0.600143 - 0.600143i) q^{86} +(-0.548871 - 2.04842i) q^{88} +(-1.61226 - 6.01705i) q^{89} +(9.54319 - 3.08154i) q^{91} +(-11.1843 + 11.1843i) q^{92} +(0.0582629 + 0.0336381i) q^{94} +(0.467892 + 4.22112i) q^{95} +(10.1931 - 5.88500i) q^{97} +(-0.0836950 + 0.0483213i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{2} + 6 q^{4} - 2 q^{7} - 2 q^{10} + 16 q^{11} - 4 q^{13} - 2 q^{16} - 4 q^{17} - 20 q^{19} + 16 q^{22} + 10 q^{23} + 18 q^{25} + 24 q^{26} + 18 q^{28} - 48 q^{32} + 2 q^{34} - 40 q^{35} - 4 q^{37}+ \cdots + 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.113711 + 0.0656513i 0.0804061 + 0.0464225i 0.539664 0.841881i \(-0.318551\pi\)
−0.459258 + 0.888303i \(0.651885\pi\)
\(3\) 0 0
\(4\) −0.991380 1.71712i −0.495690 0.858560i
\(5\) −2.08297 + 0.813169i −0.931532 + 0.363660i
\(6\) 0 0
\(7\) 1.39069 + 2.40874i 0.525630 + 0.910418i 0.999554 + 0.0298522i \(0.00950365\pi\)
−0.473924 + 0.880566i \(0.657163\pi\)
\(8\) 0.522947i 0.184890i
\(9\) 0 0
\(10\) −0.290243 0.0442830i −0.0917828 0.0140035i
\(11\) 3.91706 1.04957i 1.18104 0.316459i 0.385701 0.922624i \(-0.373960\pi\)
0.795339 + 0.606165i \(0.207293\pi\)
\(12\) 0 0
\(13\) 0.756068 3.52539i 0.209695 0.977767i
\(14\) 0.365201i 0.0976042i
\(15\) 0 0
\(16\) −1.94843 + 3.37478i −0.487107 + 0.843694i
\(17\) 0.627499 2.34186i 0.152191 0.567984i −0.847139 0.531372i \(-0.821677\pi\)
0.999330 0.0366120i \(-0.0116566\pi\)
\(18\) 0 0
\(19\) 0.491577 1.83459i 0.112775 0.420883i −0.886335 0.463044i \(-0.846757\pi\)
0.999111 + 0.0421602i \(0.0134240\pi\)
\(20\) 3.46132 + 2.77055i 0.773975 + 0.619513i
\(21\) 0 0
\(22\) 0.514321 + 0.137812i 0.109654 + 0.0293816i
\(23\) −2.06467 7.70544i −0.430513 1.60670i −0.751582 0.659640i \(-0.770709\pi\)
0.321069 0.947056i \(-0.395958\pi\)
\(24\) 0 0
\(25\) 3.67751 3.38761i 0.735502 0.677522i
\(26\) 0.317420 0.351240i 0.0622511 0.0688838i
\(27\) 0 0
\(28\) 2.75740 4.77595i 0.521099 0.902570i
\(29\) 3.96565 + 2.28957i 0.736403 + 0.425162i 0.820760 0.571273i \(-0.193550\pi\)
−0.0843571 + 0.996436i \(0.526884\pi\)
\(30\) 0 0
\(31\) 3.87352 3.87352i 0.695704 0.695704i −0.267777 0.963481i \(-0.586289\pi\)
0.963481 + 0.267777i \(0.0862890\pi\)
\(32\) −1.34889 + 0.778780i −0.238452 + 0.137670i
\(33\) 0 0
\(34\) 0.225100 0.225100i 0.0386043 0.0386043i
\(35\) −4.85547 3.88646i −0.820724 0.656932i
\(36\) 0 0
\(37\) 3.50510 6.07101i 0.576234 0.998067i −0.419672 0.907676i \(-0.637855\pi\)
0.995906 0.0903914i \(-0.0288118\pi\)
\(38\) 0.176341 0.176341i 0.0286063 0.0286063i
\(39\) 0 0
\(40\) 0.425244 + 1.08928i 0.0672370 + 0.172230i
\(41\) 1.66178 + 6.20184i 0.259526 + 0.968565i 0.965516 + 0.260343i \(0.0838357\pi\)
−0.705990 + 0.708222i \(0.749498\pi\)
\(42\) 0 0
\(43\) −6.24368 1.67299i −0.952152 0.255128i −0.250877 0.968019i \(-0.580719\pi\)
−0.701275 + 0.712891i \(0.747386\pi\)
\(44\) −5.68554 5.68554i −0.857128 0.857128i
\(45\) 0 0
\(46\) 0.271096 1.01174i 0.0399709 0.149174i
\(47\) 0.512375 0.0747376 0.0373688 0.999302i \(-0.488102\pi\)
0.0373688 + 0.999302i \(0.488102\pi\)
\(48\) 0 0
\(49\) −0.368015 + 0.637420i −0.0525736 + 0.0910601i
\(50\) 0.640576 0.143776i 0.0905911 0.0203331i
\(51\) 0 0
\(52\) −6.80307 + 2.19674i −0.943415 + 0.304633i
\(53\) 1.32662 + 1.32662i 0.182225 + 0.182225i 0.792325 0.610100i \(-0.208871\pi\)
−0.610100 + 0.792325i \(0.708871\pi\)
\(54\) 0 0
\(55\) −7.30564 + 5.37147i −0.985092 + 0.724288i
\(56\) 1.25964 0.727255i 0.168327 0.0971835i
\(57\) 0 0
\(58\) 0.300626 + 0.520700i 0.0394742 + 0.0683713i
\(59\) −2.53667 0.679700i −0.330247 0.0884894i 0.0898858 0.995952i \(-0.471350\pi\)
−0.420133 + 0.907463i \(0.638016\pi\)
\(60\) 0 0
\(61\) 0.641767 + 1.11157i 0.0821698 + 0.142322i 0.904182 0.427148i \(-0.140482\pi\)
−0.822012 + 0.569470i \(0.807148\pi\)
\(62\) 0.694764 0.186162i 0.0882352 0.0236425i
\(63\) 0 0
\(64\) 7.58920 0.948650
\(65\) 1.29187 + 7.95808i 0.160237 + 0.987079i
\(66\) 0 0
\(67\) 3.13180 + 1.80814i 0.382610 + 0.220900i 0.678953 0.734181i \(-0.262434\pi\)
−0.296343 + 0.955082i \(0.595767\pi\)
\(68\) −4.64334 + 1.24418i −0.563088 + 0.150879i
\(69\) 0 0
\(70\) −0.296970 0.760703i −0.0354948 0.0909214i
\(71\) 6.20800 + 1.66343i 0.736754 + 0.197413i 0.607635 0.794216i \(-0.292118\pi\)
0.129119 + 0.991629i \(0.458785\pi\)
\(72\) 0 0
\(73\) 9.93250i 1.16251i 0.813721 + 0.581256i \(0.197438\pi\)
−0.813721 + 0.581256i \(0.802562\pi\)
\(74\) 0.797139 0.460228i 0.0926655 0.0535005i
\(75\) 0 0
\(76\) −3.63755 + 0.974678i −0.417255 + 0.111803i
\(77\) 7.97556 + 7.97556i 0.908899 + 0.908899i
\(78\) 0 0
\(79\) 8.37577i 0.942347i 0.882040 + 0.471174i \(0.156169\pi\)
−0.882040 + 0.471174i \(0.843831\pi\)
\(80\) 1.31425 8.61395i 0.146938 0.963069i
\(81\) 0 0
\(82\) −0.218196 + 0.814318i −0.0240957 + 0.0899264i
\(83\) −3.17194 −0.348166 −0.174083 0.984731i \(-0.555696\pi\)
−0.174083 + 0.984731i \(0.555696\pi\)
\(84\) 0 0
\(85\) 0.597266 + 5.38828i 0.0647826 + 0.584441i
\(86\) −0.600143 0.600143i −0.0647151 0.0647151i
\(87\) 0 0
\(88\) −0.548871 2.04842i −0.0585099 0.218362i
\(89\) −1.61226 6.01705i −0.170900 0.637806i −0.997214 0.0745967i \(-0.976233\pi\)
0.826314 0.563210i \(-0.190434\pi\)
\(90\) 0 0
\(91\) 9.54319 3.08154i 1.00040 0.323033i
\(92\) −11.1843 + 11.1843i −1.16604 + 1.16604i
\(93\) 0 0
\(94\) 0.0582629 + 0.0336381i 0.00600936 + 0.00346951i
\(95\) 0.467892 + 4.22112i 0.0480048 + 0.433078i
\(96\) 0 0
\(97\) 10.1931 5.88500i 1.03495 0.597531i 0.116554 0.993184i \(-0.462815\pi\)
0.918400 + 0.395654i \(0.129482\pi\)
\(98\) −0.0836950 + 0.0483213i −0.00845447 + 0.00488119i
\(99\) 0 0
\(100\) −9.46275 2.95632i −0.946275 0.295632i
\(101\) −0.873807 0.504493i −0.0869471 0.0501989i 0.455896 0.890033i \(-0.349319\pi\)
−0.542843 + 0.839834i \(0.682652\pi\)
\(102\) 0 0
\(103\) −6.00002 + 6.00002i −0.591200 + 0.591200i −0.937955 0.346756i \(-0.887283\pi\)
0.346756 + 0.937955i \(0.387283\pi\)
\(104\) −1.84359 0.395383i −0.180779 0.0387705i
\(105\) 0 0
\(106\) 0.0637574 + 0.237946i 0.00619267 + 0.0231113i
\(107\) −1.28261 4.78678i −0.123995 0.462755i 0.875807 0.482662i \(-0.160330\pi\)
−0.999802 + 0.0199063i \(0.993663\pi\)
\(108\) 0 0
\(109\) −6.51002 6.51002i −0.623546 0.623546i 0.322890 0.946436i \(-0.395346\pi\)
−0.946436 + 0.322890i \(0.895346\pi\)
\(110\) −1.18338 + 0.131172i −0.112831 + 0.0125068i
\(111\) 0 0
\(112\) −10.8386 −1.02415
\(113\) −1.94191 + 7.24731i −0.182680 + 0.681769i 0.812436 + 0.583051i \(0.198141\pi\)
−0.995115 + 0.0987188i \(0.968526\pi\)
\(114\) 0 0
\(115\) 10.5665 + 14.3713i 0.985327 + 1.34013i
\(116\) 9.07933i 0.842995i
\(117\) 0 0
\(118\) −0.243826 0.243826i −0.0224460 0.0224460i
\(119\) 6.51358 1.74531i 0.597099 0.159992i
\(120\) 0 0
\(121\) 4.71551 2.72250i 0.428683 0.247500i
\(122\) 0.168531i 0.0152581i
\(123\) 0 0
\(124\) −10.4914 2.81117i −0.942157 0.252450i
\(125\) −4.90544 + 10.0467i −0.438756 + 0.898606i
\(126\) 0 0
\(127\) −15.9847 + 4.28310i −1.41842 + 0.380064i −0.884922 0.465739i \(-0.845788\pi\)
−0.533495 + 0.845803i \(0.679122\pi\)
\(128\) 3.56075 + 2.05580i 0.314729 + 0.181709i
\(129\) 0 0
\(130\) −0.375558 + 0.989737i −0.0329386 + 0.0868057i
\(131\) 12.6880 1.10856 0.554278 0.832332i \(-0.312994\pi\)
0.554278 + 0.832332i \(0.312994\pi\)
\(132\) 0 0
\(133\) 5.10267 1.36726i 0.442458 0.118556i
\(134\) 0.237414 + 0.411213i 0.0205095 + 0.0355234i
\(135\) 0 0
\(136\) −1.22467 0.328148i −0.105014 0.0281385i
\(137\) −7.47254 12.9428i −0.638422 1.10578i −0.985779 0.168046i \(-0.946254\pi\)
0.347357 0.937733i \(-0.387079\pi\)
\(138\) 0 0
\(139\) 7.42380 4.28613i 0.629679 0.363545i −0.150949 0.988542i \(-0.548233\pi\)
0.780628 + 0.624996i \(0.214900\pi\)
\(140\) −1.85991 + 12.1904i −0.157191 + 1.03028i
\(141\) 0 0
\(142\) 0.596714 + 0.596714i 0.0500751 + 0.0500751i
\(143\) −0.738590 14.6027i −0.0617640 1.22114i
\(144\) 0 0
\(145\) −10.1221 1.54436i −0.840597 0.128252i
\(146\) −0.652082 + 1.12944i −0.0539666 + 0.0934730i
\(147\) 0 0
\(148\) −13.8995 −1.14253
\(149\) 3.14239 11.7276i 0.257435 0.960759i −0.709285 0.704922i \(-0.750982\pi\)
0.966720 0.255837i \(-0.0823511\pi\)
\(150\) 0 0
\(151\) 1.86999 + 1.86999i 0.152177 + 0.152177i 0.779090 0.626912i \(-0.215682\pi\)
−0.626912 + 0.779090i \(0.715682\pi\)
\(152\) −0.959392 0.257068i −0.0778170 0.0208510i
\(153\) 0 0
\(154\) 0.383306 + 1.43052i 0.0308877 + 0.115274i
\(155\) −4.91859 + 11.2182i −0.395071 + 0.901071i
\(156\) 0 0
\(157\) −10.3194 + 10.3194i −0.823581 + 0.823581i −0.986620 0.163039i \(-0.947870\pi\)
0.163039 + 0.986620i \(0.447870\pi\)
\(158\) −0.549880 + 0.952420i −0.0437461 + 0.0757705i
\(159\) 0 0
\(160\) 2.17641 2.71905i 0.172060 0.214960i
\(161\) 15.6891 15.6891i 1.23647 1.23647i
\(162\) 0 0
\(163\) 16.1907 9.34772i 1.26815 0.732170i 0.293516 0.955954i \(-0.405174\pi\)
0.974639 + 0.223784i \(0.0718412\pi\)
\(164\) 9.00186 9.00186i 0.702927 0.702927i
\(165\) 0 0
\(166\) −0.360686 0.208242i −0.0279947 0.0161627i
\(167\) −10.3389 + 17.9075i −0.800049 + 1.38572i 0.119535 + 0.992830i \(0.461860\pi\)
−0.919583 + 0.392895i \(0.871474\pi\)
\(168\) 0 0
\(169\) −11.8567 5.33087i −0.912056 0.410067i
\(170\) −0.285831 + 0.651920i −0.0219223 + 0.0500000i
\(171\) 0 0
\(172\) 3.31713 + 12.3797i 0.252929 + 0.943944i
\(173\) −17.5278 4.69655i −1.33261 0.357072i −0.478924 0.877856i \(-0.658973\pi\)
−0.853688 + 0.520784i \(0.825640\pi\)
\(174\) 0 0
\(175\) 13.2741 + 4.14706i 1.00343 + 0.313489i
\(176\) −4.09004 + 15.2642i −0.308298 + 1.15058i
\(177\) 0 0
\(178\) 0.211694 0.790055i 0.0158672 0.0592171i
\(179\) −8.68110 + 15.0361i −0.648856 + 1.12385i 0.334540 + 0.942382i \(0.391419\pi\)
−0.983396 + 0.181470i \(0.941914\pi\)
\(180\) 0 0
\(181\) 24.9284i 1.85291i 0.376406 + 0.926455i \(0.377160\pi\)
−0.376406 + 0.926455i \(0.622840\pi\)
\(182\) 1.28748 + 0.276117i 0.0954341 + 0.0204672i
\(183\) 0 0
\(184\) −4.02953 + 1.07971i −0.297061 + 0.0795973i
\(185\) −2.36425 + 15.4959i −0.173823 + 1.13928i
\(186\) 0 0
\(187\) 9.83181i 0.718973i
\(188\) −0.507958 0.879810i −0.0370467 0.0641667i
\(189\) 0 0
\(190\) −0.223918 + 0.510708i −0.0162447 + 0.0370506i
\(191\) 3.39354 + 5.87779i 0.245548 + 0.425302i 0.962286 0.272041i \(-0.0876987\pi\)
−0.716737 + 0.697343i \(0.754365\pi\)
\(192\) 0 0
\(193\) −1.03504 0.597582i −0.0745040 0.0430149i 0.462285 0.886731i \(-0.347030\pi\)
−0.536789 + 0.843716i \(0.680363\pi\)
\(194\) 1.54543 0.110955
\(195\) 0 0
\(196\) 1.45937 0.104241
\(197\) −17.4253 10.0605i −1.24150 0.716780i −0.272100 0.962269i \(-0.587718\pi\)
−0.969399 + 0.245489i \(0.921051\pi\)
\(198\) 0 0
\(199\) −1.08885 1.88594i −0.0771862 0.133690i 0.824849 0.565354i \(-0.191260\pi\)
−0.902035 + 0.431663i \(0.857927\pi\)
\(200\) −1.77154 1.92314i −0.125267 0.135987i
\(201\) 0 0
\(202\) −0.0662412 0.114733i −0.00466071 0.00807259i
\(203\) 12.7363i 0.893912i
\(204\) 0 0
\(205\) −8.50458 11.5669i −0.593986 0.807870i
\(206\) −1.07618 + 0.288362i −0.0749810 + 0.0200911i
\(207\) 0 0
\(208\) 10.4242 + 9.42052i 0.722792 + 0.653196i
\(209\) 7.70215i 0.532769i
\(210\) 0 0
\(211\) 9.97642 17.2797i 0.686805 1.18958i −0.286061 0.958211i \(-0.592346\pi\)
0.972866 0.231370i \(-0.0743208\pi\)
\(212\) 0.962781 3.59315i 0.0661240 0.246778i
\(213\) 0 0
\(214\) 0.168410 0.628516i 0.0115123 0.0429645i
\(215\) 14.3658 1.59238i 0.979740 0.108600i
\(216\) 0 0
\(217\) 14.7171 + 3.94345i 0.999064 + 0.267698i
\(218\) −0.312872 1.16765i −0.0211904 0.0790835i
\(219\) 0 0
\(220\) 16.4661 + 7.21950i 1.11015 + 0.486738i
\(221\) −7.78152 3.98278i −0.523442 0.267911i
\(222\) 0 0
\(223\) −6.70672 + 11.6164i −0.449115 + 0.777891i −0.998329 0.0577915i \(-0.981594\pi\)
0.549213 + 0.835682i \(0.314927\pi\)
\(224\) −3.75176 2.16608i −0.250675 0.144727i
\(225\) 0 0
\(226\) −0.696612 + 0.696612i −0.0463380 + 0.0463380i
\(227\) 12.7144 7.34064i 0.843882 0.487215i −0.0147000 0.999892i \(-0.504679\pi\)
0.858582 + 0.512677i \(0.171346\pi\)
\(228\) 0 0
\(229\) 2.65280 2.65280i 0.175302 0.175302i −0.614002 0.789304i \(-0.710442\pi\)
0.789304 + 0.614002i \(0.210442\pi\)
\(230\) 0.258035 + 2.32788i 0.0170143 + 0.153496i
\(231\) 0 0
\(232\) 1.19732 2.07382i 0.0786081 0.136153i
\(233\) 13.9459 13.9459i 0.913629 0.913629i −0.0829267 0.996556i \(-0.526427\pi\)
0.996556 + 0.0829267i \(0.0264267\pi\)
\(234\) 0 0
\(235\) −1.06726 + 0.416648i −0.0696205 + 0.0271791i
\(236\) 1.34768 + 5.02962i 0.0877266 + 0.327400i
\(237\) 0 0
\(238\) 0.855249 + 0.229163i 0.0554376 + 0.0148545i
\(239\) 10.1890 + 10.1890i 0.659074 + 0.659074i 0.955161 0.296087i \(-0.0956818\pi\)
−0.296087 + 0.955161i \(0.595682\pi\)
\(240\) 0 0
\(241\) −2.09750 + 7.82799i −0.135112 + 0.504245i 0.864885 + 0.501970i \(0.167391\pi\)
−0.999997 + 0.00227574i \(0.999276\pi\)
\(242\) 0.714943 0.0459582
\(243\) 0 0
\(244\) 1.27247 2.20398i 0.0814615 0.141095i
\(245\) 0.248233 1.62698i 0.0158590 0.103944i
\(246\) 0 0
\(247\) −6.09597 3.12007i −0.387877 0.198525i
\(248\) −2.02564 2.02564i −0.128628 0.128628i
\(249\) 0 0
\(250\) −1.21738 + 0.820378i −0.0769942 + 0.0518853i
\(251\) 4.04904 2.33771i 0.255573 0.147555i −0.366740 0.930323i \(-0.619526\pi\)
0.622313 + 0.782768i \(0.286193\pi\)
\(252\) 0 0
\(253\) −16.1749 28.0157i −1.01690 1.76133i
\(254\) −2.09884 0.562382i −0.131693 0.0352870i
\(255\) 0 0
\(256\) −7.31927 12.6773i −0.457454 0.792334i
\(257\) 16.7639 4.49187i 1.04570 0.280195i 0.305227 0.952280i \(-0.401268\pi\)
0.740474 + 0.672085i \(0.234601\pi\)
\(258\) 0 0
\(259\) 19.4980 1.21154
\(260\) 12.3842 10.1078i 0.768038 0.626858i
\(261\) 0 0
\(262\) 1.44277 + 0.832984i 0.0891346 + 0.0514619i
\(263\) 2.33916 0.626777i 0.144239 0.0386487i −0.185977 0.982554i \(-0.559545\pi\)
0.330216 + 0.943905i \(0.392878\pi\)
\(264\) 0 0
\(265\) −3.84207 1.68454i −0.236016 0.103480i
\(266\) 0.669994 + 0.179524i 0.0410800 + 0.0110073i
\(267\) 0 0
\(268\) 7.17023i 0.437992i
\(269\) 8.42829 4.86608i 0.513882 0.296690i −0.220546 0.975377i \(-0.570784\pi\)
0.734428 + 0.678687i \(0.237451\pi\)
\(270\) 0 0
\(271\) −21.1708 + 5.67269i −1.28603 + 0.344591i −0.836152 0.548498i \(-0.815200\pi\)
−0.449880 + 0.893089i \(0.648533\pi\)
\(272\) 6.68061 + 6.68061i 0.405071 + 0.405071i
\(273\) 0 0
\(274\) 1.96233i 0.118548i
\(275\) 10.8495 17.1293i 0.654250 1.03294i
\(276\) 0 0
\(277\) 4.67325 17.4408i 0.280788 1.04792i −0.671074 0.741390i \(-0.734167\pi\)
0.951862 0.306526i \(-0.0991666\pi\)
\(278\) 1.12556 0.0675067
\(279\) 0 0
\(280\) −2.03241 + 2.53915i −0.121460 + 0.151743i
\(281\) −11.3739 11.3739i −0.678510 0.678510i 0.281153 0.959663i \(-0.409283\pi\)
−0.959663 + 0.281153i \(0.909283\pi\)
\(282\) 0 0
\(283\) 2.93892 + 10.9682i 0.174700 + 0.651991i 0.996602 + 0.0823620i \(0.0262464\pi\)
−0.821902 + 0.569629i \(0.807087\pi\)
\(284\) −3.29818 12.3090i −0.195711 0.730403i
\(285\) 0 0
\(286\) 0.874701 1.70899i 0.0517222 0.101054i
\(287\) −12.6276 + 12.6276i −0.745384 + 0.745384i
\(288\) 0 0
\(289\) 9.63189 + 5.56098i 0.566582 + 0.327116i
\(290\) −1.04961 0.840142i −0.0616354 0.0493348i
\(291\) 0 0
\(292\) 17.0553 9.84688i 0.998086 0.576245i
\(293\) −0.605883 + 0.349807i −0.0353961 + 0.0204359i −0.517594 0.855627i \(-0.673172\pi\)
0.482198 + 0.876063i \(0.339839\pi\)
\(294\) 0 0
\(295\) 5.83652 0.646952i 0.339815 0.0376670i
\(296\) −3.17481 1.83298i −0.184532 0.106540i
\(297\) 0 0
\(298\) 1.12725 1.12725i 0.0653001 0.0653001i
\(299\) −28.7257 + 1.45292i −1.66125 + 0.0840243i
\(300\) 0 0
\(301\) −4.65320 17.3660i −0.268206 1.00096i
\(302\) 0.0898718 + 0.335406i 0.00517154 + 0.0193004i
\(303\) 0 0
\(304\) 5.23352 + 5.23352i 0.300163 + 0.300163i
\(305\) −2.24068 1.79351i −0.128301 0.102696i
\(306\) 0 0
\(307\) −14.2048 −0.810709 −0.405355 0.914159i \(-0.632852\pi\)
−0.405355 + 0.914159i \(0.632852\pi\)
\(308\) 5.78818 21.6018i 0.329812 1.23088i
\(309\) 0 0
\(310\) −1.29579 + 0.952730i −0.0735960 + 0.0541114i
\(311\) 21.4961i 1.21893i 0.792812 + 0.609466i \(0.208616\pi\)
−0.792812 + 0.609466i \(0.791384\pi\)
\(312\) 0 0
\(313\) −9.36303 9.36303i −0.529230 0.529230i 0.391113 0.920343i \(-0.372090\pi\)
−0.920343 + 0.391113i \(0.872090\pi\)
\(314\) −1.85092 + 0.495953i −0.104454 + 0.0279882i
\(315\) 0 0
\(316\) 14.3822 8.30357i 0.809062 0.467112i
\(317\) 17.3024i 0.971798i 0.874015 + 0.485899i \(0.161508\pi\)
−0.874015 + 0.485899i \(0.838492\pi\)
\(318\) 0 0
\(319\) 17.9368 + 4.80615i 1.00427 + 0.269093i
\(320\) −15.8081 + 6.17130i −0.883697 + 0.344986i
\(321\) 0 0
\(322\) 2.81404 0.754019i 0.156820 0.0420198i
\(323\) −3.98788 2.30240i −0.221892 0.128109i
\(324\) 0 0
\(325\) −9.16219 15.5259i −0.508227 0.861223i
\(326\) 2.45476 0.135957
\(327\) 0 0
\(328\) 3.24323 0.869022i 0.179078 0.0479837i
\(329\) 0.712553 + 1.23418i 0.0392843 + 0.0680424i
\(330\) 0 0
\(331\) 17.3574 + 4.65090i 0.954049 + 0.255637i 0.702079 0.712099i \(-0.252255\pi\)
0.251969 + 0.967735i \(0.418922\pi\)
\(332\) 3.14460 + 5.44661i 0.172582 + 0.298921i
\(333\) 0 0
\(334\) −2.35130 + 1.35753i −0.128658 + 0.0742805i
\(335\) −7.99376 1.21963i −0.436746 0.0666353i
\(336\) 0 0
\(337\) 4.83668 + 4.83668i 0.263471 + 0.263471i 0.826462 0.562992i \(-0.190350\pi\)
−0.562992 + 0.826462i \(0.690350\pi\)
\(338\) −0.998266 1.38459i −0.0542985 0.0753117i
\(339\) 0 0
\(340\) 8.66020 6.36741i 0.469665 0.345321i
\(341\) 11.1073 19.2384i 0.601493 1.04182i
\(342\) 0 0
\(343\) 17.4224 0.940723
\(344\) −0.874884 + 3.26511i −0.0471706 + 0.176043i
\(345\) 0 0
\(346\) −1.68477 1.68477i −0.0905740 0.0905740i
\(347\) 17.9682 + 4.81456i 0.964582 + 0.258459i 0.706539 0.707674i \(-0.250256\pi\)
0.258043 + 0.966133i \(0.416922\pi\)
\(348\) 0 0
\(349\) 0.651455 + 2.43126i 0.0348716 + 0.130143i 0.981167 0.193160i \(-0.0618736\pi\)
−0.946296 + 0.323302i \(0.895207\pi\)
\(350\) 1.23716 + 1.34303i 0.0661290 + 0.0717881i
\(351\) 0 0
\(352\) −4.46629 + 4.46629i −0.238054 + 0.238054i
\(353\) −16.3608 + 28.3377i −0.870795 + 1.50826i −0.00962005 + 0.999954i \(0.503062\pi\)
−0.861175 + 0.508308i \(0.830271\pi\)
\(354\) 0 0
\(355\) −14.2837 + 1.58329i −0.758101 + 0.0840320i
\(356\) −8.73364 + 8.73364i −0.462882 + 0.462882i
\(357\) 0 0
\(358\) −1.97428 + 1.13985i −0.104344 + 0.0602430i
\(359\) 0.699684 0.699684i 0.0369279 0.0369279i −0.688402 0.725330i \(-0.741687\pi\)
0.725330 + 0.688402i \(0.241687\pi\)
\(360\) 0 0
\(361\) 13.3304 + 7.69632i 0.701601 + 0.405069i
\(362\) −1.63658 + 2.83464i −0.0860167 + 0.148985i
\(363\) 0 0
\(364\) −14.7523 13.3318i −0.773231 0.698778i
\(365\) −8.07680 20.6891i −0.422759 1.08292i
\(366\) 0 0
\(367\) 3.74601 + 13.9803i 0.195540 + 0.729767i 0.992126 + 0.125241i \(0.0399705\pi\)
−0.796586 + 0.604525i \(0.793363\pi\)
\(368\) 30.0270 + 8.04571i 1.56526 + 0.419411i
\(369\) 0 0
\(370\) −1.28617 + 1.60685i −0.0668649 + 0.0835361i
\(371\) −1.35057 + 5.04039i −0.0701180 + 0.261684i
\(372\) 0 0
\(373\) −2.62454 + 9.79493i −0.135894 + 0.507162i 0.864099 + 0.503322i \(0.167889\pi\)
−0.999993 + 0.00384023i \(0.998778\pi\)
\(374\) 0.645471 1.11799i 0.0333765 0.0578098i
\(375\) 0 0
\(376\) 0.267945i 0.0138182i
\(377\) 11.0699 12.2494i 0.570130 0.630876i
\(378\) 0 0
\(379\) 1.01470 0.271887i 0.0521215 0.0139659i −0.232664 0.972557i \(-0.574744\pi\)
0.284786 + 0.958591i \(0.408078\pi\)
\(380\) 6.78432 4.98817i 0.348028 0.255887i
\(381\) 0 0
\(382\) 0.891162i 0.0455958i
\(383\) −6.00353 10.3984i −0.306766 0.531334i 0.670887 0.741560i \(-0.265914\pi\)
−0.977653 + 0.210225i \(0.932580\pi\)
\(384\) 0 0
\(385\) −23.0983 10.1274i −1.17720 0.516138i
\(386\) −0.0784640 0.135904i −0.00399371 0.00691732i
\(387\) 0 0
\(388\) −20.2105 11.6685i −1.02603 0.592380i
\(389\) −7.37166 −0.373758 −0.186879 0.982383i \(-0.559837\pi\)
−0.186879 + 0.982383i \(0.559837\pi\)
\(390\) 0 0
\(391\) −19.3406 −0.978097
\(392\) 0.333337 + 0.192452i 0.0168361 + 0.00972030i
\(393\) 0 0
\(394\) −1.32097 2.28798i −0.0665494 0.115267i
\(395\) −6.81091 17.4465i −0.342694 0.877826i
\(396\) 0 0
\(397\) −3.02739 5.24359i −0.151940 0.263168i 0.780001 0.625779i \(-0.215219\pi\)
−0.931941 + 0.362611i \(0.881885\pi\)
\(398\) 0.285937i 0.0143327i
\(399\) 0 0
\(400\) 4.26706 + 19.0113i 0.213353 + 0.950565i
\(401\) 2.33226 0.624928i 0.116468 0.0312074i −0.200114 0.979773i \(-0.564131\pi\)
0.316582 + 0.948565i \(0.397465\pi\)
\(402\) 0 0
\(403\) −10.7270 16.5843i −0.534350 0.826123i
\(404\) 2.00058i 0.0995324i
\(405\) 0 0
\(406\) −0.836154 + 1.44826i −0.0414976 + 0.0718760i
\(407\) 7.35772 27.4594i 0.364709 1.36111i
\(408\) 0 0
\(409\) 5.21187 19.4510i 0.257710 0.961788i −0.708852 0.705357i \(-0.750787\pi\)
0.966563 0.256431i \(-0.0825466\pi\)
\(410\) −0.207683 1.87363i −0.0102567 0.0925319i
\(411\) 0 0
\(412\) 16.2511 + 4.35446i 0.800632 + 0.214529i
\(413\) −1.89050 7.05543i −0.0930253 0.347175i
\(414\) 0 0
\(415\) 6.60706 2.57933i 0.324328 0.126614i
\(416\) 1.72565 + 5.34416i 0.0846071 + 0.262019i
\(417\) 0 0
\(418\) 0.505656 0.875822i 0.0247324 0.0428378i
\(419\) 26.0503 + 15.0401i 1.27264 + 0.734759i 0.975484 0.220070i \(-0.0706287\pi\)
0.297156 + 0.954829i \(0.403962\pi\)
\(420\) 0 0
\(421\) 9.24685 9.24685i 0.450664 0.450664i −0.444911 0.895575i \(-0.646765\pi\)
0.895575 + 0.444911i \(0.146765\pi\)
\(422\) 2.26887 1.30993i 0.110447 0.0637664i
\(423\) 0 0
\(424\) 0.693751 0.693751i 0.0336915 0.0336915i
\(425\) −5.62567 10.7379i −0.272885 0.520866i
\(426\) 0 0
\(427\) −1.78499 + 3.09170i −0.0863818 + 0.149618i
\(428\) −6.94792 + 6.94792i −0.335840 + 0.335840i
\(429\) 0 0
\(430\) 1.73810 + 0.762061i 0.0838185 + 0.0367499i
\(431\) 1.63348 + 6.09624i 0.0786821 + 0.293646i 0.994043 0.108989i \(-0.0347613\pi\)
−0.915361 + 0.402634i \(0.868095\pi\)
\(432\) 0 0
\(433\) 11.8706 + 3.18071i 0.570463 + 0.152855i 0.532509 0.846424i \(-0.321249\pi\)
0.0379543 + 0.999279i \(0.487916\pi\)
\(434\) 1.41461 + 1.41461i 0.0679036 + 0.0679036i
\(435\) 0 0
\(436\) −4.72458 + 17.6324i −0.226266 + 0.844438i
\(437\) −15.1513 −0.724783
\(438\) 0 0
\(439\) −17.2223 + 29.8300i −0.821977 + 1.42371i 0.0822306 + 0.996613i \(0.473796\pi\)
−0.904208 + 0.427093i \(0.859538\pi\)
\(440\) 2.80899 + 3.82046i 0.133913 + 0.182133i
\(441\) 0 0
\(442\) −0.623373 0.963754i −0.0296508 0.0458411i
\(443\) 5.39452 + 5.39452i 0.256301 + 0.256301i 0.823548 0.567247i \(-0.191991\pi\)
−0.567247 + 0.823548i \(0.691991\pi\)
\(444\) 0 0
\(445\) 8.25118 + 11.2223i 0.391143 + 0.531987i
\(446\) −1.52526 + 0.880610i −0.0722232 + 0.0416981i
\(447\) 0 0
\(448\) 10.5542 + 18.2804i 0.498639 + 0.863668i
\(449\) 30.0741 + 8.05832i 1.41928 + 0.380296i 0.885229 0.465155i \(-0.154002\pi\)
0.534053 + 0.845451i \(0.320668\pi\)
\(450\) 0 0
\(451\) 13.0186 + 22.5489i 0.613021 + 1.06178i
\(452\) 14.3697 3.85034i 0.675892 0.181105i
\(453\) 0 0
\(454\) 1.92769 0.0904710
\(455\) −17.3724 + 14.1790i −0.814428 + 0.664721i
\(456\) 0 0
\(457\) −2.69118 1.55375i −0.125888 0.0726814i 0.435734 0.900076i \(-0.356489\pi\)
−0.561622 + 0.827394i \(0.689822\pi\)
\(458\) 0.475812 0.127494i 0.0222333 0.00595738i
\(459\) 0 0
\(460\) 14.2018 32.3913i 0.662163 1.51025i
\(461\) 16.1274 + 4.32132i 0.751126 + 0.201264i 0.614018 0.789292i \(-0.289552\pi\)
0.137109 + 0.990556i \(0.456219\pi\)
\(462\) 0 0
\(463\) 15.6396i 0.726832i 0.931627 + 0.363416i \(0.118390\pi\)
−0.931627 + 0.363416i \(0.881610\pi\)
\(464\) −15.4536 + 8.92212i −0.717414 + 0.414199i
\(465\) 0 0
\(466\) 2.50138 0.670243i 0.115874 0.0310484i
\(467\) −15.0821 15.0821i −0.697916 0.697916i 0.266045 0.963961i \(-0.414283\pi\)
−0.963961 + 0.266045i \(0.914283\pi\)
\(468\) 0 0
\(469\) 10.0582i 0.464447i
\(470\) −0.148713 0.0226895i −0.00685963 0.00104659i
\(471\) 0 0
\(472\) −0.355447 + 1.32655i −0.0163608 + 0.0610592i
\(473\) −26.2128 −1.20527
\(474\) 0 0
\(475\) −4.40709 8.41199i −0.202211 0.385969i
\(476\) −9.45433 9.45433i −0.433339 0.433339i
\(477\) 0 0
\(478\) 0.489686 + 1.82753i 0.0223977 + 0.0835894i
\(479\) 11.0386 + 41.1964i 0.504364 + 1.88231i 0.469522 + 0.882921i \(0.344426\pi\)
0.0348421 + 0.999393i \(0.488907\pi\)
\(480\) 0 0
\(481\) −18.7526 16.9469i −0.855043 0.772713i
\(482\) −0.752428 + 0.752428i −0.0342722 + 0.0342722i
\(483\) 0 0
\(484\) −9.34972 5.39806i −0.424987 0.245366i
\(485\) −16.4464 + 20.5470i −0.746794 + 0.932990i
\(486\) 0 0
\(487\) 13.1780 7.60834i 0.597154 0.344767i −0.170767 0.985311i \(-0.554625\pi\)
0.767921 + 0.640545i \(0.221291\pi\)
\(488\) 0.581293 0.335610i 0.0263139 0.0151923i
\(489\) 0 0
\(490\) 0.135041 0.168710i 0.00610051 0.00762154i
\(491\) −24.2273 13.9876i −1.09336 0.631254i −0.158894 0.987296i \(-0.550793\pi\)
−0.934470 + 0.356042i \(0.884126\pi\)
\(492\) 0 0
\(493\) 7.85029 7.85029i 0.353559 0.353559i
\(494\) −0.488345 0.754996i −0.0219717 0.0339689i
\(495\) 0 0
\(496\) 5.52498 + 20.6195i 0.248079 + 0.925844i
\(497\) 4.62661 + 17.2668i 0.207532 + 0.774520i
\(498\) 0 0
\(499\) −1.67479 1.67479i −0.0749740 0.0749740i 0.668625 0.743599i \(-0.266883\pi\)
−0.743599 + 0.668625i \(0.766883\pi\)
\(500\) 22.1146 1.53689i 0.988994 0.0687317i
\(501\) 0 0
\(502\) 0.613896 0.0273995
\(503\) −5.99415 + 22.3705i −0.267266 + 0.997451i 0.693583 + 0.720377i \(0.256031\pi\)
−0.960849 + 0.277073i \(0.910635\pi\)
\(504\) 0 0
\(505\) 2.23035 + 0.340289i 0.0992493 + 0.0151427i
\(506\) 4.24760i 0.188829i
\(507\) 0 0
\(508\) 23.2016 + 23.2016i 1.02940 + 1.02940i
\(509\) −5.82068 + 1.55965i −0.257997 + 0.0691301i −0.385499 0.922708i \(-0.625971\pi\)
0.127502 + 0.991838i \(0.459304\pi\)
\(510\) 0 0
\(511\) −23.9248 + 13.8130i −1.05837 + 0.611051i
\(512\) 10.1453i 0.448362i
\(513\) 0 0
\(514\) 2.20114 + 0.589794i 0.0970881 + 0.0260147i
\(515\) 7.61882 17.3769i 0.335725 0.765717i
\(516\) 0 0
\(517\) 2.00701 0.537776i 0.0882681 0.0236514i
\(518\) 2.21714 + 1.28007i 0.0974155 + 0.0562429i
\(519\) 0 0
\(520\) 4.16165 0.675580i 0.182501 0.0296261i
\(521\) −27.8183 −1.21874 −0.609371 0.792886i \(-0.708578\pi\)
−0.609371 + 0.792886i \(0.708578\pi\)
\(522\) 0 0
\(523\) 0.529059 0.141761i 0.0231341 0.00619877i −0.247233 0.968956i \(-0.579521\pi\)
0.270368 + 0.962757i \(0.412855\pi\)
\(524\) −12.5786 21.7868i −0.549500 0.951762i
\(525\) 0 0
\(526\) 0.307138 + 0.0822974i 0.0133919 + 0.00358834i
\(527\) −6.64060 11.5019i −0.289269 0.501029i
\(528\) 0 0
\(529\) −35.1924 + 20.3183i −1.53010 + 0.883406i
\(530\) −0.326295 0.443788i −0.0141733 0.0192769i
\(531\) 0 0
\(532\) −7.40643 7.40643i −0.321110 0.321110i
\(533\) 23.1203 1.16940i 1.00145 0.0506524i
\(534\) 0 0
\(535\) 6.56410 + 8.92772i 0.283791 + 0.385979i
\(536\) 0.945563 1.63776i 0.0408421 0.0707406i
\(537\) 0 0
\(538\) 1.27786 0.0550923
\(539\) −0.772518 + 2.88308i −0.0332747 + 0.124183i
\(540\) 0 0
\(541\) −29.7507 29.7507i −1.27908 1.27908i −0.941182 0.337899i \(-0.890284\pi\)
−0.337899 0.941182i \(-0.609716\pi\)
\(542\) −2.77978 0.744839i −0.119402 0.0319936i
\(543\) 0 0
\(544\) 0.977367 + 3.64758i 0.0419043 + 0.156389i
\(545\) 18.8539 + 8.26641i 0.807612 + 0.354094i
\(546\) 0 0
\(547\) −14.2594 + 14.2594i −0.609688 + 0.609688i −0.942864 0.333176i \(-0.891880\pi\)
0.333176 + 0.942864i \(0.391880\pi\)
\(548\) −14.8162 + 25.6625i −0.632919 + 1.09625i
\(549\) 0 0
\(550\) 2.35827 1.23551i 0.100557 0.0526825i
\(551\) 6.14984 6.14984i 0.261992 0.261992i
\(552\) 0 0
\(553\) −20.1750 + 11.6481i −0.857930 + 0.495326i
\(554\) 1.67641 1.67641i 0.0712240 0.0712240i
\(555\) 0 0
\(556\) −14.7196 8.49837i −0.624251 0.360411i
\(557\) 17.5886 30.4644i 0.745254 1.29082i −0.204822 0.978799i \(-0.565662\pi\)
0.950076 0.312018i \(-0.101005\pi\)
\(558\) 0 0
\(559\) −10.6186 + 20.7465i −0.449118 + 0.877483i
\(560\) 22.5765 8.81362i 0.954030 0.372443i
\(561\) 0 0
\(562\) −0.546631 2.04005i −0.0230582 0.0860545i
\(563\) 40.5028 + 10.8527i 1.70699 + 0.457387i 0.974684 0.223589i \(-0.0717773\pi\)
0.732306 + 0.680975i \(0.238444\pi\)
\(564\) 0 0
\(565\) −1.84835 16.6750i −0.0777607 0.701523i
\(566\) −0.385887 + 1.44015i −0.0162201 + 0.0605341i
\(567\) 0 0
\(568\) 0.869884 3.24645i 0.0364995 0.136218i
\(569\) −13.7741 + 23.8575i −0.577441 + 1.00016i 0.418331 + 0.908295i \(0.362615\pi\)
−0.995772 + 0.0918621i \(0.970718\pi\)
\(570\) 0 0
\(571\) 4.72029i 0.197538i −0.995110 0.0987690i \(-0.968510\pi\)
0.995110 0.0987690i \(-0.0314905\pi\)
\(572\) −24.3424 + 15.7451i −1.01781 + 0.658335i
\(573\) 0 0
\(574\) −2.26492 + 0.606884i −0.0945360 + 0.0253308i
\(575\) −33.6959 21.3426i −1.40521 0.890046i
\(576\) 0 0
\(577\) 6.73701i 0.280465i −0.990119 0.140233i \(-0.955215\pi\)
0.990119 0.140233i \(-0.0447851\pi\)
\(578\) 0.730170 + 1.26469i 0.0303711 + 0.0526043i
\(579\) 0 0
\(580\) 7.38303 + 18.9120i 0.306564 + 0.785276i
\(581\) −4.41118 7.64038i −0.183006 0.316977i
\(582\) 0 0
\(583\) 6.58884 + 3.80407i 0.272882 + 0.157548i
\(584\) 5.19417 0.214936
\(585\) 0 0
\(586\) −0.0918611 −0.00379475
\(587\) 4.49847 + 2.59719i 0.185672 + 0.107198i 0.589955 0.807436i \(-0.299146\pi\)
−0.404283 + 0.914634i \(0.632479\pi\)
\(588\) 0 0
\(589\) −5.20218 9.01044i −0.214352 0.371269i
\(590\) 0.706152 + 0.309609i 0.0290718 + 0.0127464i
\(591\) 0 0
\(592\) 13.6589 + 23.6578i 0.561375 + 0.972331i
\(593\) 12.9267i 0.530836i 0.964133 + 0.265418i \(0.0855100\pi\)
−0.964133 + 0.265418i \(0.914490\pi\)
\(594\) 0 0
\(595\) −12.1483 + 8.93206i −0.498033 + 0.366179i
\(596\) −23.2529 + 6.23060i −0.952477 + 0.255215i
\(597\) 0 0
\(598\) −3.36182 1.72067i −0.137475 0.0703633i
\(599\) 16.7523i 0.684481i 0.939612 + 0.342241i \(0.111186\pi\)
−0.939612 + 0.342241i \(0.888814\pi\)
\(600\) 0 0
\(601\) −6.28803 + 10.8912i −0.256494 + 0.444261i −0.965300 0.261142i \(-0.915901\pi\)
0.708806 + 0.705403i \(0.249234\pi\)
\(602\) 0.610977 2.28020i 0.0249016 0.0929340i
\(603\) 0 0
\(604\) 1.35713 5.06486i 0.0552207 0.206086i
\(605\) −7.60840 + 9.50539i −0.309325 + 0.386449i
\(606\) 0 0
\(607\) −36.1909 9.69731i −1.46894 0.393602i −0.566374 0.824149i \(-0.691654\pi\)
−0.902568 + 0.430547i \(0.858321\pi\)
\(608\) 0.765660 + 2.85748i 0.0310516 + 0.115886i
\(609\) 0 0
\(610\) −0.137044 0.351045i −0.00554877 0.0142134i
\(611\) 0.387390 1.80632i 0.0156721 0.0730760i
\(612\) 0 0
\(613\) −8.64732 + 14.9776i −0.349262 + 0.604940i −0.986119 0.166043i \(-0.946901\pi\)
0.636856 + 0.770982i \(0.280234\pi\)
\(614\) −1.61524 0.932562i −0.0651860 0.0376351i
\(615\) 0 0
\(616\) 4.17079 4.17079i 0.168046 0.168046i
\(617\) 10.5136 6.07005i 0.423263 0.244371i −0.273210 0.961955i \(-0.588085\pi\)
0.696472 + 0.717584i \(0.254752\pi\)
\(618\) 0 0
\(619\) −2.99993 + 2.99993i −0.120577 + 0.120577i −0.764821 0.644243i \(-0.777172\pi\)
0.644243 + 0.764821i \(0.277172\pi\)
\(620\) 24.1393 2.67573i 0.969456 0.107460i
\(621\) 0 0
\(622\) −1.41125 + 2.44435i −0.0565858 + 0.0980095i
\(623\) 12.2514 12.2514i 0.490840 0.490840i
\(624\) 0 0
\(625\) 2.04819 24.9160i 0.0819276 0.996638i
\(626\) −0.449988 1.67938i −0.0179851 0.0671215i
\(627\) 0 0
\(628\) 27.9502 + 7.48923i 1.11533 + 0.298853i
\(629\) −12.0180 12.0180i −0.479188 0.479188i
\(630\) 0 0
\(631\) 5.60031 20.9006i 0.222945 0.832041i −0.760273 0.649604i \(-0.774935\pi\)
0.983218 0.182437i \(-0.0583986\pi\)
\(632\) 4.38008 0.174230
\(633\) 0 0
\(634\) −1.13592 + 1.96748i −0.0451133 + 0.0781385i
\(635\) 29.8128 21.9199i 1.18309 0.869863i
\(636\) 0 0
\(637\) 1.96891 + 1.77933i 0.0780111 + 0.0704996i
\(638\) 1.72409 + 1.72409i 0.0682572 + 0.0682572i
\(639\) 0 0
\(640\) −9.08865 1.38667i −0.359260 0.0548131i
\(641\) −39.2467 + 22.6591i −1.55015 + 0.894980i −0.552022 + 0.833829i \(0.686144\pi\)
−0.998129 + 0.0611509i \(0.980523\pi\)
\(642\) 0 0
\(643\) 15.8249 + 27.4095i 0.624072 + 1.08092i 0.988719 + 0.149779i \(0.0478562\pi\)
−0.364647 + 0.931146i \(0.618810\pi\)
\(644\) −42.4939 11.3862i −1.67449 0.448679i
\(645\) 0 0
\(646\) −0.302312 0.523619i −0.0118943 0.0206015i
\(647\) −36.6924 + 9.83169i −1.44253 + 0.386524i −0.893418 0.449227i \(-0.851699\pi\)
−0.549109 + 0.835751i \(0.685033\pi\)
\(648\) 0 0
\(649\) −10.6497 −0.418038
\(650\) −0.0225488 2.36698i −0.000884437 0.0928407i
\(651\) 0 0
\(652\) −32.1023 18.5343i −1.25722 0.725858i
\(653\) 2.66385 0.713775i 0.104244 0.0279322i −0.206320 0.978485i \(-0.566149\pi\)
0.310564 + 0.950552i \(0.399482\pi\)
\(654\) 0 0
\(655\) −26.4287 + 10.3175i −1.03265 + 0.403138i
\(656\) −24.1677 6.47571i −0.943590 0.252834i
\(657\) 0 0
\(658\) 0.187120i 0.00729470i
\(659\) −1.80219 + 1.04050i −0.0702034 + 0.0405320i −0.534691 0.845048i \(-0.679572\pi\)
0.464487 + 0.885580i \(0.346239\pi\)
\(660\) 0 0
\(661\) 36.3010 9.72683i 1.41195 0.378330i 0.529326 0.848418i \(-0.322445\pi\)
0.882619 + 0.470089i \(0.155778\pi\)
\(662\) 1.66840 + 1.66840i 0.0648440 + 0.0648440i
\(663\) 0 0
\(664\) 1.65876i 0.0643723i
\(665\) −9.51689 + 6.99729i −0.369049 + 0.271343i
\(666\) 0 0
\(667\) 9.45440 35.2843i 0.366076 1.36621i
\(668\) 40.9991 1.58630
\(669\) 0 0
\(670\) −0.828912 0.663486i −0.0320237 0.0256327i
\(671\) 3.68052 + 3.68052i 0.142085 + 0.142085i
\(672\) 0 0
\(673\) −4.65984 17.3908i −0.179624 0.670364i −0.995718 0.0924454i \(-0.970532\pi\)
0.816094 0.577919i \(-0.196135\pi\)
\(674\) 0.232451 + 0.867519i 0.00895368 + 0.0334156i
\(675\) 0 0
\(676\) 2.60078 + 25.6443i 0.100030 + 0.986320i
\(677\) −15.4021 + 15.4021i −0.591952 + 0.591952i −0.938158 0.346206i \(-0.887470\pi\)
0.346206 + 0.938158i \(0.387470\pi\)
\(678\) 0 0
\(679\) 28.3508 + 16.3684i 1.08801 + 0.628160i
\(680\) 2.81778 0.312338i 0.108057 0.0119776i
\(681\) 0 0
\(682\) 2.52605 1.45841i 0.0967273 0.0558455i
\(683\) 5.34122 3.08376i 0.204376 0.117997i −0.394319 0.918974i \(-0.629019\pi\)
0.598695 + 0.800977i \(0.295686\pi\)
\(684\) 0 0
\(685\) 26.0897 + 20.8830i 0.996838 + 0.797900i
\(686\) 1.98113 + 1.14381i 0.0756398 + 0.0436707i
\(687\) 0 0
\(688\) 17.8113 17.8113i 0.679050 0.679050i
\(689\) 5.67986 3.67383i 0.216385 0.139962i
\(690\) 0 0
\(691\) 3.39841 + 12.6830i 0.129282 + 0.482486i 0.999956 0.00937405i \(-0.00298390\pi\)
−0.870674 + 0.491860i \(0.836317\pi\)
\(692\) 9.31214 + 34.7534i 0.353994 + 1.32112i
\(693\) 0 0
\(694\) 1.72710 + 1.72710i 0.0655600 + 0.0655600i
\(695\) −11.9782 + 14.9647i −0.454359 + 0.567643i
\(696\) 0 0
\(697\) 15.5666 0.589627
\(698\) −0.0855377 + 0.319231i −0.00323765 + 0.0120831i
\(699\) 0 0
\(700\) −6.03870 26.9046i −0.228241 1.01690i
\(701\) 23.2292i 0.877354i 0.898645 + 0.438677i \(0.144553\pi\)
−0.898645 + 0.438677i \(0.855447\pi\)
\(702\) 0 0
\(703\) −9.41478 9.41478i −0.355085 0.355085i
\(704\) 29.7274 7.96543i 1.12039 0.300208i
\(705\) 0 0
\(706\) −3.72081 + 2.14821i −0.140034 + 0.0808490i
\(707\) 2.80636i 0.105544i
\(708\) 0 0
\(709\) 2.00482 + 0.537189i 0.0752925 + 0.0201746i 0.296269 0.955105i \(-0.404258\pi\)
−0.220976 + 0.975279i \(0.570924\pi\)
\(710\) −1.72817 0.757707i −0.0648569 0.0284362i
\(711\) 0 0
\(712\) −3.14660 + 0.843128i −0.117924 + 0.0315976i
\(713\) −37.8447 21.8496i −1.41729 0.818275i
\(714\) 0 0
\(715\) 13.4129 + 29.8164i 0.501616 + 1.11507i
\(716\) 34.4251 1.28653
\(717\) 0 0
\(718\) 0.125497 0.0336269i 0.00468351 0.00125494i
\(719\) −3.36848 5.83438i −0.125623 0.217586i 0.796353 0.604832i \(-0.206760\pi\)
−0.921976 + 0.387246i \(0.873426\pi\)
\(720\) 0 0
\(721\) −22.7966 6.10834i −0.848991 0.227486i
\(722\) 1.01055 + 1.75032i 0.0376086 + 0.0651401i
\(723\) 0 0
\(724\) 42.8050 24.7135i 1.59083 0.918469i
\(725\) 22.3399 5.01416i 0.829683 0.186221i
\(726\) 0 0
\(727\) 34.4733 + 34.4733i 1.27854 + 1.27854i 0.941483 + 0.337062i \(0.109433\pi\)
0.337062 + 0.941483i \(0.390567\pi\)
\(728\) −1.61148 4.99058i −0.0597254 0.184963i
\(729\) 0 0
\(730\) 0.439841 2.88284i 0.0162792 0.106699i
\(731\) −7.83580 + 13.5720i −0.289817 + 0.501979i
\(732\) 0 0
\(733\) −28.7555 −1.06211 −0.531054 0.847338i \(-0.678204\pi\)
−0.531054 + 0.847338i \(0.678204\pi\)
\(734\) −0.491861 + 1.83565i −0.0181549 + 0.0677551i
\(735\) 0 0
\(736\) 8.78585 + 8.78585i 0.323851 + 0.323851i
\(737\) 14.1652 + 3.79556i 0.521783 + 0.139811i
\(738\) 0 0
\(739\) 7.94129 + 29.6373i 0.292125 + 1.09023i 0.943474 + 0.331447i \(0.107537\pi\)
−0.651349 + 0.758778i \(0.725797\pi\)
\(740\) 28.9523 11.3027i 1.06431 0.415494i
\(741\) 0 0
\(742\) −0.484483 + 0.484483i −0.0177859 + 0.0177859i
\(743\) 26.4817 45.8676i 0.971519 1.68272i 0.280543 0.959841i \(-0.409485\pi\)
0.690976 0.722878i \(-0.257181\pi\)
\(744\) 0 0
\(745\) 2.99099 + 26.9834i 0.109581 + 0.988596i
\(746\) −0.941490 + 0.941490i −0.0344704 + 0.0344704i
\(747\) 0 0
\(748\) −16.8824 + 9.74706i −0.617282 + 0.356388i
\(749\) 9.74639 9.74639i 0.356125 0.356125i
\(750\) 0 0
\(751\) −40.3780 23.3123i −1.47341 0.850676i −0.473862 0.880599i \(-0.657140\pi\)
−0.999552 + 0.0299230i \(0.990474\pi\)
\(752\) −0.998326 + 1.72915i −0.0364052 + 0.0630557i
\(753\) 0 0
\(754\) 2.06296 0.666140i 0.0751287 0.0242594i
\(755\) −5.41574 2.37451i −0.197099 0.0864172i
\(756\) 0 0
\(757\) −0.323327 1.20667i −0.0117515 0.0438572i 0.959801 0.280681i \(-0.0905603\pi\)
−0.971553 + 0.236824i \(0.923894\pi\)
\(758\) 0.133232 + 0.0356995i 0.00483922 + 0.00129666i
\(759\) 0 0
\(760\) 2.20742 0.244683i 0.0800716 0.00887558i
\(761\) 5.28278 19.7156i 0.191501 0.714690i −0.801644 0.597801i \(-0.796041\pi\)
0.993145 0.116889i \(-0.0372921\pi\)
\(762\) 0 0
\(763\) 6.62754 24.7343i 0.239933 0.895442i
\(764\) 6.72858 11.6542i 0.243432 0.421636i
\(765\) 0 0
\(766\) 1.57656i 0.0569633i
\(767\) −4.31410 + 8.42886i −0.155773 + 0.304349i
\(768\) 0 0
\(769\) 35.6638 9.55609i 1.28607 0.344602i 0.449904 0.893077i \(-0.351458\pi\)
0.836167 + 0.548476i \(0.184792\pi\)
\(770\) −1.96167 2.66803i −0.0706935 0.0961491i
\(771\) 0 0
\(772\) 2.36972i 0.0852882i
\(773\) 10.6918 + 18.5187i 0.384557 + 0.666072i 0.991708 0.128515i \(-0.0410209\pi\)
−0.607151 + 0.794587i \(0.707688\pi\)
\(774\) 0 0
\(775\) 1.12294 27.3669i 0.0403372 0.983047i
\(776\) −3.07754 5.33045i −0.110477 0.191352i
\(777\) 0 0
\(778\) −0.838242 0.483959i −0.0300524 0.0173508i
\(779\) 12.1947 0.436921
\(780\) 0 0
\(781\) 26.0630 0.932608
\(782\) −2.19925 1.26974i −0.0786449 0.0454057i
\(783\) 0 0
\(784\) −1.43410 2.48393i −0.0512179 0.0887120i
\(785\) 13.1036 29.8865i 0.467688 1.06670i
\(786\) 0 0
\(787\) −19.6914 34.1065i −0.701923 1.21577i −0.967790 0.251757i \(-0.918992\pi\)
0.265867 0.964010i \(-0.414342\pi\)
\(788\) 39.8950i 1.42120i
\(789\) 0 0
\(790\) 0.370904 2.43101i 0.0131962 0.0864913i
\(791\) −20.1575 + 5.40118i −0.716717 + 0.192044i
\(792\) 0 0
\(793\) 4.40394 1.42205i 0.156389 0.0504986i
\(794\) 0.795007i 0.0282138i
\(795\) 0 0
\(796\) −2.15892 + 3.73936i −0.0765209 + 0.132538i
\(797\) 10.1370 37.8319i 0.359072 1.34007i −0.516210 0.856462i \(-0.672658\pi\)
0.875282 0.483612i \(-0.160676\pi\)
\(798\) 0 0
\(799\) 0.321515 1.19991i 0.0113744 0.0424498i
\(800\) −2.32234 + 7.43348i −0.0821073 + 0.262813i
\(801\) 0 0
\(802\) 0.306232 + 0.0820546i 0.0108134 + 0.00289745i
\(803\) 10.4249 + 38.9062i 0.367887 + 1.37297i
\(804\) 0 0
\(805\) −19.9220 + 45.4378i −0.702158 + 1.60147i
\(806\) −0.131003 2.59006i −0.00461437 0.0912311i
\(807\) 0 0
\(808\) −0.263823 + 0.456954i −0.00928125 + 0.0160756i
\(809\) −23.1644 13.3740i −0.814416 0.470203i 0.0340712 0.999419i \(-0.489153\pi\)
−0.848487 + 0.529216i \(0.822486\pi\)
\(810\) 0 0
\(811\) −7.93739 + 7.93739i −0.278720 + 0.278720i −0.832598 0.553878i \(-0.813147\pi\)
0.553878 + 0.832598i \(0.313147\pi\)
\(812\) 21.8697 12.6265i 0.767477 0.443103i
\(813\) 0 0
\(814\) 2.63940 2.63940i 0.0925109 0.0925109i
\(815\) −26.1235 + 32.6368i −0.915065 + 1.14322i
\(816\) 0 0
\(817\) −6.13849 + 10.6322i −0.214759 + 0.371973i
\(818\) 1.86963 1.86963i 0.0653700 0.0653700i
\(819\) 0 0
\(820\) −11.4305 + 26.0706i −0.399172 + 0.910425i
\(821\) −6.99144 26.0924i −0.244003 0.910632i −0.973882 0.227055i \(-0.927090\pi\)
0.729879 0.683577i \(-0.239576\pi\)
\(822\) 0 0
\(823\) −9.05749 2.42695i −0.315724 0.0845980i 0.0974771 0.995238i \(-0.468923\pi\)
−0.413201 + 0.910640i \(0.635589\pi\)
\(824\) 3.13769 + 3.13769i 0.109307 + 0.109307i
\(825\) 0 0
\(826\) 0.248227 0.926397i 0.00863693 0.0322335i
\(827\) 45.0330 1.56595 0.782976 0.622052i \(-0.213701\pi\)
0.782976 + 0.622052i \(0.213701\pi\)
\(828\) 0 0
\(829\) 21.0075 36.3861i 0.729622 1.26374i −0.227421 0.973796i \(-0.573029\pi\)
0.957043 0.289946i \(-0.0936372\pi\)
\(830\) 0.920634 + 0.140463i 0.0319557 + 0.00487555i
\(831\) 0 0
\(832\) 5.73795 26.7549i 0.198928 0.927558i
\(833\) 1.26182 + 1.26182i 0.0437194 + 0.0437194i
\(834\) 0 0
\(835\) 6.97378 45.7081i 0.241338 1.58179i
\(836\) −13.2255 + 7.63575i −0.457414 + 0.264088i
\(837\) 0 0
\(838\) 1.97481 + 3.42047i 0.0682186 + 0.118158i
\(839\) 5.24673 + 1.40586i 0.181137 + 0.0485356i 0.348247 0.937403i \(-0.386777\pi\)
−0.167110 + 0.985938i \(0.553444\pi\)
\(840\) 0 0
\(841\) −4.01574 6.95547i −0.138474 0.239844i
\(842\) 1.65854 0.444405i 0.0571571 0.0153152i
\(843\) 0 0
\(844\) −39.5617 −1.36177
\(845\) 29.0321 + 1.46250i 0.998734 + 0.0503116i
\(846\) 0 0
\(847\) 13.1156 + 7.57228i 0.450657 + 0.260187i
\(848\) −7.06186 + 1.89222i −0.242505 + 0.0649791i
\(849\) 0 0
\(850\) 0.0652568 1.59036i 0.00223829 0.0545488i
\(851\) −54.0166 14.4737i −1.85167 0.496152i
\(852\) 0 0
\(853\) 23.0805i 0.790260i 0.918625 + 0.395130i \(0.129300\pi\)
−0.918625 + 0.395130i \(0.870700\pi\)
\(854\) −0.405948 + 0.234374i −0.0138912 + 0.00802012i
\(855\) 0 0
\(856\) −2.50323 + 0.670738i −0.0855586 + 0.0229254i
\(857\) −37.6679 37.6679i −1.28671 1.28671i −0.936772 0.349940i \(-0.886202\pi\)
−0.349940 0.936772i \(-0.613798\pi\)
\(858\) 0 0
\(859\) 5.08674i 0.173557i −0.996228 0.0867787i \(-0.972343\pi\)
0.996228 0.0867787i \(-0.0276573\pi\)
\(860\) −16.9763 23.0892i −0.578886 0.787333i
\(861\) 0 0
\(862\) −0.214481 + 0.800452i −0.00730524 + 0.0272635i
\(863\) −45.1879 −1.53821 −0.769107 0.639120i \(-0.779299\pi\)
−0.769107 + 0.639120i \(0.779299\pi\)
\(864\) 0 0
\(865\) 40.3289 4.47028i 1.37122 0.151994i
\(866\) 1.14100 + 1.14100i 0.0387728 + 0.0387728i
\(867\) 0 0
\(868\) −7.81890 29.1805i −0.265391 0.990452i
\(869\) 8.79099 + 32.8084i 0.298214 + 1.11295i
\(870\) 0 0
\(871\) 8.74226 9.67372i 0.296220 0.327782i
\(872\) −3.40439 + 3.40439i −0.115287 + 0.115287i
\(873\) 0 0
\(874\) −1.72287 0.994699i −0.0582769 0.0336462i
\(875\) −31.0219 + 2.15591i −1.04873 + 0.0728832i
\(876\) 0 0
\(877\) −17.6048 + 10.1641i −0.594471 + 0.343218i −0.766863 0.641810i \(-0.778184\pi\)
0.172392 + 0.985028i \(0.444850\pi\)
\(878\) −3.91675 + 2.26134i −0.132184 + 0.0763164i
\(879\) 0 0
\(880\) −3.89298 35.1208i −0.131232 1.18392i
\(881\) 28.5961 + 16.5100i 0.963428 + 0.556236i 0.897227 0.441571i \(-0.145579\pi\)
0.0662019 + 0.997806i \(0.478912\pi\)
\(882\) 0 0
\(883\) 15.9555 15.9555i 0.536944 0.536944i −0.385686 0.922630i \(-0.626035\pi\)
0.922630 + 0.385686i \(0.126035\pi\)
\(884\) 0.875535 + 17.3103i 0.0294474 + 0.582207i
\(885\) 0 0
\(886\) 0.259261 + 0.967576i 0.00871005 + 0.0325063i
\(887\) 0.163391 + 0.609784i 0.00548614 + 0.0204745i 0.968615 0.248567i \(-0.0799597\pi\)
−0.963129 + 0.269042i \(0.913293\pi\)
\(888\) 0 0
\(889\) −32.5466 32.5466i −1.09158 1.09158i
\(890\) 0.201495 + 1.81780i 0.00675413 + 0.0609329i
\(891\) 0 0
\(892\) 26.5956 0.890488
\(893\) 0.251872 0.939998i 0.00842856 0.0314558i
\(894\) 0 0
\(895\) 5.85556 38.3790i 0.195730 1.28287i
\(896\) 11.4359i 0.382046i
\(897\) 0 0
\(898\) 2.89072 + 2.89072i 0.0964647 + 0.0964647i
\(899\) 24.2297 6.49233i 0.808106 0.216531i
\(900\) 0 0
\(901\) 3.93920 2.27430i 0.131234 0.0757679i
\(902\) 3.41875i 0.113832i
\(903\) 0 0
\(904\) 3.78996 + 1.01552i 0.126052 + 0.0337755i
\(905\) −20.2710 51.9250i −0.673830 1.72604i
\(906\) 0 0
\(907\) 37.8383 10.1387i 1.25640 0.336651i 0.431594 0.902068i \(-0.357951\pi\)
0.824805 + 0.565417i \(0.191285\pi\)
\(908\) −25.2095 14.5547i −0.836607 0.483015i
\(909\) 0 0
\(910\) −2.90630 + 0.471793i −0.0963430 + 0.0156398i
\(911\) −6.21630 −0.205955 −0.102978 0.994684i \(-0.532837\pi\)
−0.102978 + 0.994684i \(0.532837\pi\)
\(912\) 0 0
\(913\) −12.4247 + 3.32919i −0.411198 + 0.110180i
\(914\) −0.204012 0.353358i −0.00674810 0.0116881i
\(915\) 0 0
\(916\) −7.18510 1.92524i −0.237402 0.0636117i
\(917\) 17.6450 + 30.5621i 0.582690 + 1.00925i
\(918\) 0 0
\(919\) −19.9013 + 11.4900i −0.656485 + 0.379022i −0.790936 0.611899i \(-0.790406\pi\)
0.134452 + 0.990920i \(0.457073\pi\)
\(920\) 7.51540 5.52569i 0.247776 0.182177i
\(921\) 0 0
\(922\) 1.55017 + 1.55017i 0.0510520 + 0.0510520i
\(923\) 10.5579 20.6279i 0.347518 0.678977i
\(924\) 0 0
\(925\) −7.67617 34.2001i −0.252391 1.12449i
\(926\) −1.02676 + 1.77840i −0.0337413 + 0.0584417i
\(927\) 0 0
\(928\) −7.13229 −0.234129
\(929\) −0.280692 + 1.04756i −0.00920921 + 0.0343692i −0.970378 0.241593i \(-0.922330\pi\)
0.961168 + 0.275963i \(0.0889966\pi\)
\(930\) 0 0
\(931\) 0.988497 + 0.988497i 0.0323967 + 0.0323967i
\(932\) −37.7726 10.1211i −1.23728 0.331529i
\(933\) 0 0
\(934\) −0.724846 2.70516i −0.0237177 0.0885157i
\(935\) 7.99493 + 20.4794i 0.261462 + 0.669746i
\(936\) 0 0
\(937\) −2.17699 + 2.17699i −0.0711191 + 0.0711191i −0.741772 0.670653i \(-0.766014\pi\)
0.670653 + 0.741772i \(0.266014\pi\)
\(938\) −0.660337 + 1.14374i −0.0215608 + 0.0373443i
\(939\) 0 0
\(940\) 1.77350 + 1.41956i 0.0578450 + 0.0463009i
\(941\) 22.9413 22.9413i 0.747866 0.747866i −0.226212 0.974078i \(-0.572634\pi\)
0.974078 + 0.226212i \(0.0726342\pi\)
\(942\) 0 0
\(943\) 44.3569 25.6095i 1.44446 0.833959i
\(944\) 7.23636 7.23636i 0.235523 0.235523i
\(945\) 0 0
\(946\) −2.98069 1.72090i −0.0969107 0.0559514i
\(947\) 13.6493 23.6413i 0.443543 0.768239i −0.554406 0.832246i \(-0.687055\pi\)
0.997949 + 0.0640069i \(0.0203880\pi\)
\(948\) 0 0
\(949\) 35.0159 + 7.50964i 1.13666 + 0.243773i
\(950\) 0.0511215 1.24587i 0.00165860 0.0404214i
\(951\) 0 0
\(952\) −0.912703 3.40625i −0.0295809 0.110397i
\(953\) −6.17827 1.65546i −0.200134 0.0536257i 0.157360 0.987541i \(-0.449702\pi\)
−0.357493 + 0.933916i \(0.616369\pi\)
\(954\) 0 0
\(955\) −11.8483 9.48372i −0.383401 0.306886i
\(956\) 7.39460 27.5970i 0.239158 0.892551i
\(957\) 0 0
\(958\) −1.44939 + 5.40920i −0.0468277 + 0.174763i
\(959\) 20.7839 35.9988i 0.671147 1.16246i
\(960\) 0 0
\(961\) 0.991728i 0.0319912i
\(962\) −1.01979 3.15819i −0.0328794 0.101824i
\(963\) 0 0
\(964\) 15.5210 4.15885i 0.499899 0.133947i
\(965\) 2.64189 + 0.403080i 0.0850456 + 0.0129756i
\(966\) 0 0
\(967\) 28.4424i 0.914647i 0.889300 + 0.457324i \(0.151192\pi\)
−0.889300 + 0.457324i \(0.848808\pi\)
\(968\) −1.42372 2.46596i −0.0457602 0.0792589i
\(969\) 0 0
\(970\) −3.21908 + 1.25670i −0.103358 + 0.0403501i
\(971\) −0.619921 1.07374i −0.0198942 0.0344578i 0.855907 0.517130i \(-0.173000\pi\)
−0.875801 + 0.482672i \(0.839666\pi\)
\(972\) 0 0
\(973\) 20.6484 + 11.9213i 0.661956 + 0.382180i
\(974\) 1.99799 0.0640197
\(975\) 0 0
\(976\) −5.00174 −0.160102
\(977\) 32.9480 + 19.0226i 1.05410 + 0.608586i 0.923795 0.382888i \(-0.125071\pi\)
0.130307 + 0.991474i \(0.458404\pi\)
\(978\) 0 0
\(979\) −12.6307 21.8770i −0.403678 0.699192i
\(980\) −3.03982 + 1.18671i −0.0971035 + 0.0379082i
\(981\) 0 0
\(982\) −1.83661 3.18111i −0.0586087 0.101513i
\(983\) 34.5934i 1.10336i 0.834056 + 0.551679i \(0.186013\pi\)
−0.834056 + 0.551679i \(0.813987\pi\)
\(984\) 0 0
\(985\) 44.4772 + 6.78598i 1.41716 + 0.216219i
\(986\) 1.40805 0.377285i 0.0448414 0.0120152i
\(987\) 0 0
\(988\) 0.685885 + 13.5607i 0.0218209 + 0.431423i
\(989\) 51.5644i 1.63965i
\(990\) 0 0
\(991\) −19.7486 + 34.2056i −0.627335 + 1.08658i 0.360750 + 0.932663i \(0.382521\pi\)
−0.988084 + 0.153913i \(0.950813\pi\)
\(992\) −2.20832 + 8.24156i −0.0701142 + 0.261670i
\(993\) 0 0
\(994\) −0.607486 + 2.26717i −0.0192683 + 0.0719103i
\(995\) 3.80162 + 3.04293i 0.120519 + 0.0964673i
\(996\) 0 0
\(997\) −7.10500 1.90378i −0.225018 0.0602933i 0.144549 0.989498i \(-0.453827\pi\)
−0.369566 + 0.929204i \(0.620494\pi\)
\(998\) −0.0804906 0.300395i −0.00254789 0.00950884i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.2.dp.a.253.3 20
3.2 odd 2 65.2.t.a.58.3 yes 20
5.2 odd 4 585.2.cf.a.487.3 20
13.11 odd 12 585.2.cf.a.388.3 20
15.2 even 4 65.2.o.a.32.3 20
15.8 even 4 325.2.s.b.32.3 20
15.14 odd 2 325.2.x.b.318.3 20
39.2 even 12 845.2.o.g.258.3 20
39.5 even 4 845.2.o.f.488.3 20
39.8 even 4 845.2.o.e.488.3 20
39.11 even 12 65.2.o.a.63.3 yes 20
39.17 odd 6 845.2.f.d.408.4 20
39.20 even 12 845.2.k.e.268.4 20
39.23 odd 6 845.2.t.e.418.3 20
39.29 odd 6 845.2.t.f.418.3 20
39.32 even 12 845.2.k.d.268.7 20
39.35 odd 6 845.2.f.e.408.7 20
39.38 odd 2 845.2.t.g.188.3 20
65.37 even 12 inner 585.2.dp.a.37.3 20
195.2 odd 12 845.2.t.g.427.3 20
195.17 even 12 845.2.k.d.577.7 20
195.32 odd 12 845.2.f.d.437.7 20
195.47 odd 4 845.2.t.f.657.3 20
195.62 even 12 845.2.o.f.587.3 20
195.77 even 4 845.2.o.g.357.3 20
195.89 even 12 325.2.s.b.193.3 20
195.107 even 12 845.2.o.e.587.3 20
195.122 odd 4 845.2.t.e.657.3 20
195.128 odd 12 325.2.x.b.232.3 20
195.137 odd 12 845.2.f.e.437.4 20
195.152 even 12 845.2.k.e.577.4 20
195.167 odd 12 65.2.t.a.37.3 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.32.3 20 15.2 even 4
65.2.o.a.63.3 yes 20 39.11 even 12
65.2.t.a.37.3 yes 20 195.167 odd 12
65.2.t.a.58.3 yes 20 3.2 odd 2
325.2.s.b.32.3 20 15.8 even 4
325.2.s.b.193.3 20 195.89 even 12
325.2.x.b.232.3 20 195.128 odd 12
325.2.x.b.318.3 20 15.14 odd 2
585.2.cf.a.388.3 20 13.11 odd 12
585.2.cf.a.487.3 20 5.2 odd 4
585.2.dp.a.37.3 20 65.37 even 12 inner
585.2.dp.a.253.3 20 1.1 even 1 trivial
845.2.f.d.408.4 20 39.17 odd 6
845.2.f.d.437.7 20 195.32 odd 12
845.2.f.e.408.7 20 39.35 odd 6
845.2.f.e.437.4 20 195.137 odd 12
845.2.k.d.268.7 20 39.32 even 12
845.2.k.d.577.7 20 195.17 even 12
845.2.k.e.268.4 20 39.20 even 12
845.2.k.e.577.4 20 195.152 even 12
845.2.o.e.488.3 20 39.8 even 4
845.2.o.e.587.3 20 195.107 even 12
845.2.o.f.488.3 20 39.5 even 4
845.2.o.f.587.3 20 195.62 even 12
845.2.o.g.258.3 20 39.2 even 12
845.2.o.g.357.3 20 195.77 even 4
845.2.t.e.418.3 20 39.23 odd 6
845.2.t.e.657.3 20 195.122 odd 4
845.2.t.f.418.3 20 39.29 odd 6
845.2.t.f.657.3 20 195.47 odd 4
845.2.t.g.188.3 20 39.38 odd 2
845.2.t.g.427.3 20 195.2 odd 12