Properties

Label 585.2.cf.a.262.1
Level $585$
Weight $2$
Character 585.262
Analytic conductor $4.671$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [585,2,Mod(163,585)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("585.163"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(585, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 9, 11])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.cf (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 262.1
Root \(-1.51805i\) of defining polynomial
Character \(\chi\) \(=\) 585.262
Dual form 585.2.cf.a.163.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.759023 - 1.31467i) q^{2} +(-0.152233 + 0.263675i) q^{4} +(-0.600231 - 2.15400i) q^{5} +(-2.24723 - 1.29744i) q^{7} -2.57390 q^{8} +(-2.37621 + 2.42404i) q^{10} +(-1.29395 + 4.82908i) q^{11} +(-2.71223 + 2.37567i) q^{13} +3.93915i q^{14} +(2.25812 + 3.91117i) q^{16} +(-0.0211881 - 0.0790751i) q^{17} +(2.71143 - 0.726525i) q^{19} +(0.659330 + 0.169644i) q^{20} +(7.33077 - 1.96427i) q^{22} +(1.05016 - 3.91925i) q^{23} +(-4.27945 + 2.58580i) q^{25} +(5.18186 + 1.76249i) q^{26} +(0.684205 - 0.395026i) q^{28} +(4.31701 - 2.49243i) q^{29} +(-2.32124 + 2.32124i) q^{31} +(0.854024 - 1.47921i) q^{32} +(-0.0878751 + 0.0878751i) q^{34} +(-1.44583 + 5.61931i) q^{35} +(0.494934 - 0.285750i) q^{37} +(-3.01318 - 3.01318i) q^{38} +(1.54493 + 5.54419i) q^{40} +(-10.0563 - 2.69458i) q^{41} +(0.132121 - 0.0354017i) q^{43} +(-1.07633 - 1.07633i) q^{44} +(-5.94960 + 1.59419i) q^{46} +2.30053i q^{47} +(-0.133293 - 0.230870i) q^{49} +(6.64766 + 3.66337i) q^{50} +(-0.213514 - 1.07680i) q^{52} +(-6.70735 + 6.70735i) q^{53} +(11.1785 - 0.111396i) q^{55} +(5.78416 + 3.33948i) q^{56} +(-6.55343 - 3.78362i) q^{58} +(-0.694109 - 2.59045i) q^{59} +(-2.74237 + 4.74992i) q^{61} +(4.81352 + 1.28978i) q^{62} +6.43957 q^{64} +(6.74516 + 4.41620i) q^{65} +(-7.89339 - 13.6718i) q^{67} +(0.0240756 + 0.00645104i) q^{68} +(8.48494 - 2.36440i) q^{70} +(1.98951 + 7.42495i) q^{71} -6.61894 q^{73} +(-0.751333 - 0.433783i) q^{74} +(-0.221202 + 0.825536i) q^{76} +(9.17326 - 9.17326i) q^{77} +5.71054i q^{79} +(7.06928 - 7.21159i) q^{80} +(4.09050 + 15.2660i) q^{82} +3.70736i q^{83} +(-0.157610 + 0.0931025i) q^{85} +(-0.146824 - 0.146824i) q^{86} +(3.33050 - 12.4296i) q^{88} +(-17.2829 - 4.63094i) q^{89} +(9.17731 - 1.81973i) q^{91} +(0.873538 + 0.873538i) q^{92} +(3.02443 - 1.74616i) q^{94} +(-3.19242 - 5.40434i) q^{95} +(-2.68493 + 4.65043i) q^{97} +(-0.202345 + 0.350471i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{2} - 6 q^{4} + 6 q^{5} - 6 q^{7} - 12 q^{8} - 10 q^{10} + 16 q^{11} + 2 q^{13} - 2 q^{16} + 10 q^{17} + 20 q^{19} - 14 q^{20} + 16 q^{22} + 2 q^{23} - 18 q^{25} + 24 q^{26} + 6 q^{28} + 6 q^{32}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.759023 1.31467i −0.536710 0.929610i −0.999078 0.0429217i \(-0.986333\pi\)
0.462368 0.886688i \(-0.347000\pi\)
\(3\) 0 0
\(4\) −0.152233 + 0.263675i −0.0761163 + 0.131837i
\(5\) −0.600231 2.15400i −0.268431 0.963299i
\(6\) 0 0
\(7\) −2.24723 1.29744i −0.849375 0.490387i 0.0110652 0.999939i \(-0.496478\pi\)
−0.860440 + 0.509552i \(0.829811\pi\)
\(8\) −2.57390 −0.910011
\(9\) 0 0
\(10\) −2.37621 + 2.42404i −0.751422 + 0.766549i
\(11\) −1.29395 + 4.82908i −0.390140 + 1.45602i 0.439762 + 0.898114i \(0.355063\pi\)
−0.829902 + 0.557909i \(0.811604\pi\)
\(12\) 0 0
\(13\) −2.71223 + 2.37567i −0.752237 + 0.658892i
\(14\) 3.93915i 1.05278i
\(15\) 0 0
\(16\) 2.25812 + 3.91117i 0.564529 + 0.977793i
\(17\) −0.0211881 0.0790751i −0.00513887 0.0191785i 0.963309 0.268396i \(-0.0864934\pi\)
−0.968448 + 0.249217i \(0.919827\pi\)
\(18\) 0 0
\(19\) 2.71143 0.726525i 0.622045 0.166676i 0.0659876 0.997820i \(-0.478980\pi\)
0.556057 + 0.831144i \(0.312314\pi\)
\(20\) 0.659330 + 0.169644i 0.147431 + 0.0379335i
\(21\) 0 0
\(22\) 7.33077 1.96427i 1.56293 0.418785i
\(23\) 1.05016 3.91925i 0.218973 0.817220i −0.765756 0.643131i \(-0.777635\pi\)
0.984730 0.174089i \(-0.0556982\pi\)
\(24\) 0 0
\(25\) −4.27945 + 2.58580i −0.855889 + 0.517159i
\(26\) 5.18186 + 1.76249i 1.01625 + 0.345653i
\(27\) 0 0
\(28\) 0.684205 0.395026i 0.129303 0.0746528i
\(29\) 4.31701 2.49243i 0.801649 0.462833i −0.0423981 0.999101i \(-0.513500\pi\)
0.844048 + 0.536268i \(0.180166\pi\)
\(30\) 0 0
\(31\) −2.32124 + 2.32124i −0.416906 + 0.416906i −0.884136 0.467230i \(-0.845252\pi\)
0.467230 + 0.884136i \(0.345252\pi\)
\(32\) 0.854024 1.47921i 0.150972 0.261490i
\(33\) 0 0
\(34\) −0.0878751 + 0.0878751i −0.0150705 + 0.0150705i
\(35\) −1.44583 + 5.61931i −0.244390 + 0.949837i
\(36\) 0 0
\(37\) 0.494934 0.285750i 0.0813667 0.0469771i −0.458765 0.888558i \(-0.651708\pi\)
0.540131 + 0.841581i \(0.318375\pi\)
\(38\) −3.01318 3.01318i −0.488802 0.488802i
\(39\) 0 0
\(40\) 1.54493 + 5.54419i 0.244276 + 0.876613i
\(41\) −10.0563 2.69458i −1.57053 0.420823i −0.634554 0.772879i \(-0.718816\pi\)
−0.935979 + 0.352056i \(0.885483\pi\)
\(42\) 0 0
\(43\) 0.132121 0.0354017i 0.0201483 0.00539871i −0.248731 0.968573i \(-0.580013\pi\)
0.268879 + 0.963174i \(0.413347\pi\)
\(44\) −1.07633 1.07633i −0.162262 0.162262i
\(45\) 0 0
\(46\) −5.94960 + 1.59419i −0.877221 + 0.235051i
\(47\) 2.30053i 0.335567i 0.985824 + 0.167784i \(0.0536610\pi\)
−0.985824 + 0.167784i \(0.946339\pi\)
\(48\) 0 0
\(49\) −0.133293 0.230870i −0.0190418 0.0329814i
\(50\) 6.64766 + 3.66337i 0.940121 + 0.518078i
\(51\) 0 0
\(52\) −0.213514 1.07680i −0.0296090 0.149325i
\(53\) −6.70735 + 6.70735i −0.921326 + 0.921326i −0.997123 0.0757974i \(-0.975850\pi\)
0.0757974 + 0.997123i \(0.475850\pi\)
\(54\) 0 0
\(55\) 11.1785 0.111396i 1.50731 0.0150206i
\(56\) 5.78416 + 3.33948i 0.772941 + 0.446257i
\(57\) 0 0
\(58\) −6.55343 3.78362i −0.860507 0.496814i
\(59\) −0.694109 2.59045i −0.0903653 0.337248i 0.905911 0.423469i \(-0.139188\pi\)
−0.996276 + 0.0862207i \(0.972521\pi\)
\(60\) 0 0
\(61\) −2.74237 + 4.74992i −0.351124 + 0.608165i −0.986447 0.164082i \(-0.947534\pi\)
0.635322 + 0.772247i \(0.280867\pi\)
\(62\) 4.81352 + 1.28978i 0.611318 + 0.163802i
\(63\) 0 0
\(64\) 6.43957 0.804946
\(65\) 6.74516 + 4.41620i 0.836634 + 0.547762i
\(66\) 0 0
\(67\) −7.89339 13.6718i −0.964331 1.67027i −0.711401 0.702786i \(-0.751939\pi\)
−0.252930 0.967485i \(-0.581394\pi\)
\(68\) 0.0240756 + 0.00645104i 0.00291960 + 0.000782303i
\(69\) 0 0
\(70\) 8.48494 2.36440i 1.01414 0.282600i
\(71\) 1.98951 + 7.42495i 0.236111 + 0.881180i 0.977645 + 0.210264i \(0.0674322\pi\)
−0.741533 + 0.670916i \(0.765901\pi\)
\(72\) 0 0
\(73\) −6.61894 −0.774688 −0.387344 0.921935i \(-0.626607\pi\)
−0.387344 + 0.921935i \(0.626607\pi\)
\(74\) −0.751333 0.433783i −0.0873407 0.0504262i
\(75\) 0 0
\(76\) −0.221202 + 0.825536i −0.0253736 + 0.0946955i
\(77\) 9.17326 9.17326i 1.04539 1.04539i
\(78\) 0 0
\(79\) 5.71054i 0.642486i 0.946997 + 0.321243i \(0.104101\pi\)
−0.946997 + 0.321243i \(0.895899\pi\)
\(80\) 7.06928 7.21159i 0.790369 0.806280i
\(81\) 0 0
\(82\) 4.09050 + 15.2660i 0.451720 + 1.68584i
\(83\) 3.70736i 0.406936i 0.979082 + 0.203468i \(0.0652213\pi\)
−0.979082 + 0.203468i \(0.934779\pi\)
\(84\) 0 0
\(85\) −0.157610 + 0.0931025i −0.0170952 + 0.0100984i
\(86\) −0.146824 0.146824i −0.0158325 0.0158325i
\(87\) 0 0
\(88\) 3.33050 12.4296i 0.355032 1.32500i
\(89\) −17.2829 4.63094i −1.83198 0.490878i −0.833851 0.551989i \(-0.813869\pi\)
−0.998131 + 0.0611111i \(0.980536\pi\)
\(90\) 0 0
\(91\) 9.17731 1.81973i 0.962043 0.190759i
\(92\) 0.873538 + 0.873538i 0.0910726 + 0.0910726i
\(93\) 0 0
\(94\) 3.02443 1.74616i 0.311946 0.180102i
\(95\) −3.19242 5.40434i −0.327535 0.554474i
\(96\) 0 0
\(97\) −2.68493 + 4.65043i −0.272613 + 0.472180i −0.969530 0.244972i \(-0.921221\pi\)
0.696917 + 0.717152i \(0.254555\pi\)
\(98\) −0.202345 + 0.350471i −0.0204399 + 0.0354029i
\(99\) 0 0
\(100\) −0.0303375 1.52202i −0.00303375 0.152202i
\(101\) −2.17443 + 1.25541i −0.216363 + 0.124918i −0.604265 0.796783i \(-0.706533\pi\)
0.387902 + 0.921701i \(0.373200\pi\)
\(102\) 0 0
\(103\) −4.71738 4.71738i −0.464817 0.464817i 0.435414 0.900230i \(-0.356602\pi\)
−0.900230 + 0.435414i \(0.856602\pi\)
\(104\) 6.98101 6.11474i 0.684545 0.599599i
\(105\) 0 0
\(106\) 13.9090 + 3.72690i 1.35096 + 0.361988i
\(107\) −0.939155 + 3.50497i −0.0907915 + 0.338838i −0.996348 0.0853876i \(-0.972787\pi\)
0.905556 + 0.424226i \(0.139454\pi\)
\(108\) 0 0
\(109\) −1.58528 1.58528i −0.151843 0.151843i 0.627098 0.778941i \(-0.284243\pi\)
−0.778941 + 0.627098i \(0.784243\pi\)
\(110\) −8.63120 14.6115i −0.822953 1.39315i
\(111\) 0 0
\(112\) 11.7191i 1.10735i
\(113\) −1.48231 5.53206i −0.139444 0.520412i −0.999940 0.0109551i \(-0.996513\pi\)
0.860496 0.509457i \(-0.170154\pi\)
\(114\) 0 0
\(115\) −9.07241 + 0.0904081i −0.846006 + 0.00843060i
\(116\) 1.51772i 0.140916i
\(117\) 0 0
\(118\) −2.87873 + 2.87873i −0.265009 + 0.265009i
\(119\) −0.0549806 + 0.205190i −0.00504007 + 0.0188098i
\(120\) 0 0
\(121\) −12.1195 6.99717i −1.10177 0.636106i
\(122\) 8.32609 0.753809
\(123\) 0 0
\(124\) −0.258683 0.965419i −0.0232304 0.0866972i
\(125\) 8.13846 + 7.66586i 0.727926 + 0.685655i
\(126\) 0 0
\(127\) 0.786718 + 0.210801i 0.0698100 + 0.0187055i 0.293555 0.955942i \(-0.405162\pi\)
−0.223745 + 0.974648i \(0.571828\pi\)
\(128\) −6.59583 11.4243i −0.582994 1.00978i
\(129\) 0 0
\(130\) 0.686097 12.2196i 0.0601747 1.07173i
\(131\) 16.1062 1.40721 0.703604 0.710592i \(-0.251573\pi\)
0.703604 + 0.710592i \(0.251573\pi\)
\(132\) 0 0
\(133\) −7.03584 1.88525i −0.610085 0.163472i
\(134\) −11.9825 + 20.7544i −1.03513 + 1.79290i
\(135\) 0 0
\(136\) 0.0545361 + 0.203531i 0.00467643 + 0.0174527i
\(137\) −16.6601 9.61871i −1.42337 0.821782i −0.426783 0.904354i \(-0.640353\pi\)
−0.996585 + 0.0825721i \(0.973687\pi\)
\(138\) 0 0
\(139\) −13.7257 7.92451i −1.16419 0.672148i −0.211889 0.977294i \(-0.567962\pi\)
−0.952306 + 0.305146i \(0.901295\pi\)
\(140\) −1.26157 1.23667i −0.106622 0.104518i
\(141\) 0 0
\(142\) 8.25125 8.25125i 0.692430 0.692430i
\(143\) −7.96282 16.1716i −0.665884 1.35234i
\(144\) 0 0
\(145\) −7.95990 7.80282i −0.661034 0.647989i
\(146\) 5.02393 + 8.70170i 0.415783 + 0.720158i
\(147\) 0 0
\(148\) 0.174002i 0.0143029i
\(149\) −1.39120 + 0.372772i −0.113972 + 0.0305387i −0.315354 0.948974i \(-0.602123\pi\)
0.201382 + 0.979513i \(0.435457\pi\)
\(150\) 0 0
\(151\) 13.9253 + 13.9253i 1.13322 + 1.13322i 0.989638 + 0.143585i \(0.0458631\pi\)
0.143585 + 0.989638i \(0.454137\pi\)
\(152\) −6.97895 + 1.87000i −0.566068 + 0.151677i
\(153\) 0 0
\(154\) −19.0225 5.09706i −1.53288 0.410733i
\(155\) 6.39322 + 3.60667i 0.513516 + 0.289695i
\(156\) 0 0
\(157\) 4.54644 + 4.54644i 0.362845 + 0.362845i 0.864859 0.502014i \(-0.167408\pi\)
−0.502014 + 0.864859i \(0.667408\pi\)
\(158\) 7.50746 4.33444i 0.597262 0.344829i
\(159\) 0 0
\(160\) −3.69884 0.951700i −0.292419 0.0752385i
\(161\) −7.44495 + 7.44495i −0.586744 + 0.586744i
\(162\) 0 0
\(163\) 6.56789 11.3759i 0.514437 0.891031i −0.485423 0.874280i \(-0.661334\pi\)
0.999860 0.0167516i \(-0.00533245\pi\)
\(164\) 2.24139 2.24139i 0.175023 0.175023i
\(165\) 0 0
\(166\) 4.87395 2.81398i 0.378292 0.218407i
\(167\) −2.84503 + 1.64258i −0.220155 + 0.127107i −0.606022 0.795448i \(-0.707236\pi\)
0.385867 + 0.922554i \(0.373902\pi\)
\(168\) 0 0
\(169\) 1.71239 12.8867i 0.131722 0.991287i
\(170\) 0.242028 + 0.136538i 0.0185627 + 0.0104720i
\(171\) 0 0
\(172\) −0.0107786 + 0.0402263i −0.000821860 + 0.00306722i
\(173\) 4.09367 1.09689i 0.311236 0.0833953i −0.0998202 0.995005i \(-0.531827\pi\)
0.411056 + 0.911610i \(0.365160\pi\)
\(174\) 0 0
\(175\) 12.9718 0.258559i 0.980579 0.0195452i
\(176\) −21.8093 + 5.84377i −1.64393 + 0.440491i
\(177\) 0 0
\(178\) 7.02997 + 26.2362i 0.526919 + 1.96649i
\(179\) −6.98083 12.0912i −0.521772 0.903735i −0.999679 0.0253252i \(-0.991938\pi\)
0.477907 0.878410i \(-0.341395\pi\)
\(180\) 0 0
\(181\) 8.64775i 0.642782i −0.946947 0.321391i \(-0.895850\pi\)
0.946947 0.321391i \(-0.104150\pi\)
\(182\) −9.35812 10.6839i −0.693670 0.791942i
\(183\) 0 0
\(184\) −2.70301 + 10.0878i −0.199268 + 0.743680i
\(185\) −0.912582 0.894573i −0.0670944 0.0657703i
\(186\) 0 0
\(187\) 0.409276 0.0299292
\(188\) −0.606592 0.350216i −0.0442402 0.0255421i
\(189\) 0 0
\(190\) −4.68179 + 8.29899i −0.339653 + 0.602072i
\(191\) 8.45647 14.6470i 0.611889 1.05982i −0.379033 0.925383i \(-0.623743\pi\)
0.990922 0.134439i \(-0.0429232\pi\)
\(192\) 0 0
\(193\) −4.27780 7.40936i −0.307923 0.533338i 0.669985 0.742375i \(-0.266300\pi\)
−0.977908 + 0.209037i \(0.932967\pi\)
\(194\) 8.15169 0.585257
\(195\) 0 0
\(196\) 0.0811660 0.00579757
\(197\) 3.82842 + 6.63101i 0.272764 + 0.472440i 0.969568 0.244820i \(-0.0787290\pi\)
−0.696805 + 0.717261i \(0.745396\pi\)
\(198\) 0 0
\(199\) −7.66380 + 13.2741i −0.543272 + 0.940975i 0.455441 + 0.890266i \(0.349481\pi\)
−0.998713 + 0.0507092i \(0.983852\pi\)
\(200\) 11.0149 6.65558i 0.778869 0.470621i
\(201\) 0 0
\(202\) 3.30088 + 1.90576i 0.232249 + 0.134089i
\(203\) −12.9351 −0.907868
\(204\) 0 0
\(205\) 0.231976 + 23.2787i 0.0162019 + 1.62585i
\(206\) −2.62118 + 9.78238i −0.182626 + 0.681570i
\(207\) 0 0
\(208\) −15.4162 5.24346i −1.06892 0.363569i
\(209\) 14.0338i 0.970739i
\(210\) 0 0
\(211\) −9.91788 17.1783i −0.682775 1.18260i −0.974130 0.225986i \(-0.927440\pi\)
0.291355 0.956615i \(-0.405894\pi\)
\(212\) −0.747481 2.78964i −0.0513372 0.191593i
\(213\) 0 0
\(214\) 5.32071 1.42568i 0.363716 0.0974575i
\(215\) −0.155559 0.263340i −0.0106090 0.0179596i
\(216\) 0 0
\(217\) 8.22803 2.20469i 0.558555 0.149664i
\(218\) −0.880853 + 3.28739i −0.0596589 + 0.222650i
\(219\) 0 0
\(220\) −1.67236 + 2.96445i −0.112751 + 0.199863i
\(221\) 0.245323 + 0.164134i 0.0165022 + 0.0110408i
\(222\) 0 0
\(223\) 16.4311 9.48653i 1.10031 0.635265i 0.164008 0.986459i \(-0.447558\pi\)
0.936303 + 0.351194i \(0.114224\pi\)
\(224\) −3.83838 + 2.21609i −0.256463 + 0.148069i
\(225\) 0 0
\(226\) −6.14771 + 6.14771i −0.408939 + 0.408939i
\(227\) 13.4794 23.3469i 0.894656 1.54959i 0.0604265 0.998173i \(-0.480754\pi\)
0.834230 0.551417i \(-0.185913\pi\)
\(228\) 0 0
\(229\) 11.1801 11.1801i 0.738799 0.738799i −0.233547 0.972346i \(-0.575033\pi\)
0.972346 + 0.233547i \(0.0750331\pi\)
\(230\) 7.00503 + 11.8586i 0.461898 + 0.781931i
\(231\) 0 0
\(232\) −11.1116 + 6.41527i −0.729510 + 0.421183i
\(233\) 6.75797 + 6.75797i 0.442729 + 0.442729i 0.892928 0.450199i \(-0.148647\pi\)
−0.450199 + 0.892928i \(0.648647\pi\)
\(234\) 0 0
\(235\) 4.95535 1.38085i 0.323251 0.0900767i
\(236\) 0.788702 + 0.211332i 0.0513401 + 0.0137565i
\(237\) 0 0
\(238\) 0.311489 0.0834631i 0.0201908 0.00541011i
\(239\) 1.98766 + 1.98766i 0.128571 + 0.128571i 0.768464 0.639893i \(-0.221021\pi\)
−0.639893 + 0.768464i \(0.721021\pi\)
\(240\) 0 0
\(241\) −2.65141 + 0.710443i −0.170792 + 0.0457637i −0.343202 0.939262i \(-0.611511\pi\)
0.172409 + 0.985025i \(0.444845\pi\)
\(242\) 21.2441i 1.36562i
\(243\) 0 0
\(244\) −0.834956 1.44619i −0.0534526 0.0925826i
\(245\) −0.417287 + 0.425688i −0.0266595 + 0.0271962i
\(246\) 0 0
\(247\) −5.62804 + 8.41197i −0.358104 + 0.535241i
\(248\) 5.97463 5.97463i 0.379389 0.379389i
\(249\) 0 0
\(250\) 3.90077 16.5179i 0.246706 1.04469i
\(251\) 2.45414 + 1.41690i 0.154904 + 0.0894337i 0.575448 0.817838i \(-0.304828\pi\)
−0.420545 + 0.907272i \(0.638161\pi\)
\(252\) 0 0
\(253\) 17.5675 + 10.1426i 1.10446 + 0.637661i
\(254\) −0.320005 1.19428i −0.0200789 0.0749355i
\(255\) 0 0
\(256\) −3.57321 + 6.18898i −0.223325 + 0.386811i
\(257\) 19.3784 + 5.19242i 1.20879 + 0.323894i 0.806287 0.591525i \(-0.201474\pi\)
0.402502 + 0.915419i \(0.368141\pi\)
\(258\) 0 0
\(259\) −1.48298 −0.0921478
\(260\) −2.19127 + 1.10624i −0.135897 + 0.0686060i
\(261\) 0 0
\(262\) −12.2250 21.1743i −0.755264 1.30815i
\(263\) 9.10077 + 2.43854i 0.561177 + 0.150367i 0.528247 0.849091i \(-0.322849\pi\)
0.0329302 + 0.999458i \(0.489516\pi\)
\(264\) 0 0
\(265\) 18.4736 + 10.4217i 1.13482 + 0.640199i
\(266\) 2.86189 + 10.6807i 0.175474 + 0.654878i
\(267\) 0 0
\(268\) 4.80653 0.293605
\(269\) −2.78417 1.60744i −0.169754 0.0980075i 0.412716 0.910860i \(-0.364580\pi\)
−0.582470 + 0.812852i \(0.697914\pi\)
\(270\) 0 0
\(271\) −3.93065 + 14.6694i −0.238770 + 0.891102i 0.737643 + 0.675191i \(0.235939\pi\)
−0.976413 + 0.215911i \(0.930728\pi\)
\(272\) 0.261431 0.261431i 0.0158516 0.0158516i
\(273\) 0 0
\(274\) 29.2033i 1.76424i
\(275\) −6.94964 24.0117i −0.419079 1.44796i
\(276\) 0 0
\(277\) 2.76028 + 10.3015i 0.165849 + 0.618956i 0.997930 + 0.0643031i \(0.0204824\pi\)
−0.832082 + 0.554653i \(0.812851\pi\)
\(278\) 24.0595i 1.44300i
\(279\) 0 0
\(280\) 3.72143 14.4635i 0.222398 0.864362i
\(281\) 12.7630 + 12.7630i 0.761379 + 0.761379i 0.976572 0.215193i \(-0.0690380\pi\)
−0.215193 + 0.976572i \(0.569038\pi\)
\(282\) 0 0
\(283\) −1.49018 + 5.56143i −0.0885820 + 0.330592i −0.995968 0.0897050i \(-0.971408\pi\)
0.907386 + 0.420297i \(0.138074\pi\)
\(284\) −2.26064 0.605736i −0.134144 0.0359438i
\(285\) 0 0
\(286\) −15.2163 + 22.7431i −0.899757 + 1.34483i
\(287\) 19.1028 + 19.1028i 1.12760 + 1.12760i
\(288\) 0 0
\(289\) 14.7166 8.49665i 0.865684 0.499803i
\(290\) −4.21636 + 16.3871i −0.247593 + 0.962286i
\(291\) 0 0
\(292\) 1.00762 1.74525i 0.0589664 0.102133i
\(293\) −1.59804 + 2.76788i −0.0933583 + 0.161701i −0.908922 0.416966i \(-0.863094\pi\)
0.815564 + 0.578667i \(0.196427\pi\)
\(294\) 0 0
\(295\) −5.16321 + 3.04998i −0.300614 + 0.177577i
\(296\) −1.27391 + 0.735493i −0.0740446 + 0.0427497i
\(297\) 0 0
\(298\) 1.54603 + 1.54603i 0.0895590 + 0.0895590i
\(299\) 6.46257 + 13.1247i 0.373740 + 0.759023i
\(300\) 0 0
\(301\) −0.342839 0.0918633i −0.0197609 0.00529491i
\(302\) 7.73749 28.8767i 0.445243 1.66167i
\(303\) 0 0
\(304\) 8.96429 + 8.96429i 0.514137 + 0.514137i
\(305\) 11.8774 + 3.05602i 0.680098 + 0.174987i
\(306\) 0 0
\(307\) 24.2740i 1.38539i 0.721231 + 0.692695i \(0.243577\pi\)
−0.721231 + 0.692695i \(0.756423\pi\)
\(308\) 1.02229 + 3.81522i 0.0582501 + 0.217393i
\(309\) 0 0
\(310\) −0.111037 11.1425i −0.00630648 0.632852i
\(311\) 16.9053i 0.958614i −0.877647 0.479307i \(-0.840888\pi\)
0.877647 0.479307i \(-0.159112\pi\)
\(312\) 0 0
\(313\) −8.40997 + 8.40997i −0.475359 + 0.475359i −0.903644 0.428285i \(-0.859118\pi\)
0.428285 + 0.903644i \(0.359118\pi\)
\(314\) 2.52620 9.42790i 0.142562 0.532047i
\(315\) 0 0
\(316\) −1.50573 0.869331i −0.0847037 0.0489037i
\(317\) −11.9484 −0.671087 −0.335543 0.942025i \(-0.608920\pi\)
−0.335543 + 0.942025i \(0.608920\pi\)
\(318\) 0 0
\(319\) 6.45015 + 24.0723i 0.361139 + 1.34779i
\(320\) −3.86523 13.8708i −0.216073 0.775403i
\(321\) 0 0
\(322\) 15.4385 + 4.13674i 0.860355 + 0.230531i
\(323\) −0.114900 0.199013i −0.00639321 0.0110734i
\(324\) 0 0
\(325\) 5.46385 17.1798i 0.303080 0.952965i
\(326\) −19.9407 −1.10442
\(327\) 0 0
\(328\) 25.8840 + 6.93559i 1.42920 + 0.382954i
\(329\) 2.98480 5.16983i 0.164558 0.285022i
\(330\) 0 0
\(331\) −5.55136 20.7179i −0.305130 1.13876i −0.932833 0.360308i \(-0.882671\pi\)
0.627703 0.778453i \(-0.283995\pi\)
\(332\) −0.977538 0.564382i −0.0536494 0.0309745i
\(333\) 0 0
\(334\) 4.31889 + 2.49351i 0.236319 + 0.136439i
\(335\) −24.7111 + 25.2086i −1.35011 + 1.37729i
\(336\) 0 0
\(337\) −14.1264 + 14.1264i −0.769514 + 0.769514i −0.978021 0.208507i \(-0.933140\pi\)
0.208507 + 0.978021i \(0.433140\pi\)
\(338\) −18.2415 + 7.53011i −0.992206 + 0.409584i
\(339\) 0 0
\(340\) −0.000555369 0.0557310i −3.01191e−5 0.00302244i
\(341\) −8.20588 14.2130i −0.444373 0.769677i
\(342\) 0 0
\(343\) 18.8559i 1.01812i
\(344\) −0.340067 + 0.0911205i −0.0183352 + 0.00491289i
\(345\) 0 0
\(346\) −4.54924 4.54924i −0.244569 0.244569i
\(347\) −23.7906 + 6.37467i −1.27715 + 0.342210i −0.832765 0.553627i \(-0.813243\pi\)
−0.444382 + 0.895837i \(0.646577\pi\)
\(348\) 0 0
\(349\) −26.3190 7.05214i −1.40882 0.377493i −0.527317 0.849669i \(-0.676802\pi\)
−0.881504 + 0.472176i \(0.843469\pi\)
\(350\) −10.1858 16.8574i −0.544456 0.901065i
\(351\) 0 0
\(352\) 6.03818 + 6.03818i 0.321836 + 0.321836i
\(353\) −7.62038 + 4.39963i −0.405592 + 0.234169i −0.688894 0.724862i \(-0.741903\pi\)
0.283302 + 0.959031i \(0.408570\pi\)
\(354\) 0 0
\(355\) 14.7992 8.74209i 0.785460 0.463982i
\(356\) 3.85208 3.85208i 0.204160 0.204160i
\(357\) 0 0
\(358\) −10.5972 + 18.3549i −0.560081 + 0.970089i
\(359\) 11.1256 11.1256i 0.587186 0.587186i −0.349683 0.936868i \(-0.613711\pi\)
0.936868 + 0.349683i \(0.113711\pi\)
\(360\) 0 0
\(361\) −9.63047 + 5.56015i −0.506867 + 0.292640i
\(362\) −11.3689 + 6.56385i −0.597537 + 0.344988i
\(363\) 0 0
\(364\) −0.917270 + 2.69684i −0.0480780 + 0.141353i
\(365\) 3.97289 + 14.2572i 0.207951 + 0.746256i
\(366\) 0 0
\(367\) 2.84144 10.6044i 0.148322 0.553545i −0.851263 0.524739i \(-0.824163\pi\)
0.999585 0.0288057i \(-0.00917042\pi\)
\(368\) 17.7002 4.74276i 0.922689 0.247234i
\(369\) 0 0
\(370\) −0.483395 + 1.87874i −0.0251305 + 0.0976712i
\(371\) 23.7754 6.37060i 1.23436 0.330745i
\(372\) 0 0
\(373\) 2.73825 + 10.2193i 0.141781 + 0.529135i 0.999878 + 0.0156462i \(0.00498054\pi\)
−0.858096 + 0.513489i \(0.828353\pi\)
\(374\) −0.310650 0.538062i −0.0160633 0.0278225i
\(375\) 0 0
\(376\) 5.92134i 0.305370i
\(377\) −5.78755 + 17.0158i −0.298074 + 0.876361i
\(378\) 0 0
\(379\) 2.53694 9.46800i 0.130314 0.486338i −0.869659 0.493652i \(-0.835662\pi\)
0.999973 + 0.00731411i \(0.00232818\pi\)
\(380\) 1.91098 0.0190432i 0.0980311 0.000976897i
\(381\) 0 0
\(382\) −25.6746 −1.31363
\(383\) 22.5658 + 13.0283i 1.15306 + 0.665718i 0.949630 0.313373i \(-0.101459\pi\)
0.203426 + 0.979090i \(0.434792\pi\)
\(384\) 0 0
\(385\) −25.2653 14.2531i −1.28764 0.726407i
\(386\) −6.49390 + 11.2478i −0.330531 + 0.572496i
\(387\) 0 0
\(388\) −0.817467 1.41589i −0.0415006 0.0718812i
\(389\) −32.4888 −1.64725 −0.823623 0.567138i \(-0.808050\pi\)
−0.823623 + 0.567138i \(0.808050\pi\)
\(390\) 0 0
\(391\) −0.332166 −0.0167983
\(392\) 0.343082 + 0.594236i 0.0173283 + 0.0300134i
\(393\) 0 0
\(394\) 5.81172 10.0662i 0.292790 0.507127i
\(395\) 12.3005 3.42764i 0.618906 0.172463i
\(396\) 0 0
\(397\) −20.9451 12.0927i −1.05121 0.606914i −0.128219 0.991746i \(-0.540926\pi\)
−0.922987 + 0.384832i \(0.874259\pi\)
\(398\) 23.2680 1.16632
\(399\) 0 0
\(400\) −19.7770 10.8986i −0.988849 0.544931i
\(401\) 8.49918 31.7194i 0.424429 1.58399i −0.340738 0.940158i \(-0.610677\pi\)
0.765167 0.643832i \(-0.222657\pi\)
\(402\) 0 0
\(403\) 0.781237 11.8102i 0.0389162 0.588309i
\(404\) 0.764454i 0.0380330i
\(405\) 0 0
\(406\) 9.81806 + 17.0054i 0.487262 + 0.843963i
\(407\) 0.739493 + 2.75983i 0.0366553 + 0.136799i
\(408\) 0 0
\(409\) −13.4843 + 3.61312i −0.666758 + 0.178657i −0.576294 0.817243i \(-0.695502\pi\)
−0.0904639 + 0.995900i \(0.528835\pi\)
\(410\) 30.4277 17.9740i 1.50271 0.887675i
\(411\) 0 0
\(412\) 1.96199 0.525714i 0.0966603 0.0259001i
\(413\) −1.80113 + 6.72192i −0.0886279 + 0.330764i
\(414\) 0 0
\(415\) 7.98567 2.22527i 0.392001 0.109234i
\(416\) 1.19781 + 6.04084i 0.0587275 + 0.296177i
\(417\) 0 0
\(418\) 18.4498 10.6520i 0.902408 0.521006i
\(419\) −1.92240 + 1.10990i −0.0939155 + 0.0542221i −0.546222 0.837640i \(-0.683935\pi\)
0.452307 + 0.891862i \(0.350601\pi\)
\(420\) 0 0
\(421\) 24.4795 24.4795i 1.19306 1.19306i 0.216853 0.976204i \(-0.430421\pi\)
0.976204 0.216853i \(-0.0695792\pi\)
\(422\) −15.0558 + 26.0774i −0.732905 + 1.26943i
\(423\) 0 0
\(424\) 17.2641 17.2641i 0.838417 0.838417i
\(425\) 0.295145 + 0.283609i 0.0143166 + 0.0137571i
\(426\) 0 0
\(427\) 12.3255 7.11613i 0.596472 0.344374i
\(428\) −0.781202 0.781202i −0.0377608 0.0377608i
\(429\) 0 0
\(430\) −0.228132 + 0.404389i −0.0110015 + 0.0195014i
\(431\) −1.59621 0.427704i −0.0768868 0.0206018i 0.220171 0.975461i \(-0.429339\pi\)
−0.297057 + 0.954860i \(0.596005\pi\)
\(432\) 0 0
\(433\) −14.3111 + 3.83465i −0.687748 + 0.184281i −0.585736 0.810502i \(-0.699195\pi\)
−0.102012 + 0.994783i \(0.532528\pi\)
\(434\) −9.14370 9.14370i −0.438912 0.438912i
\(435\) 0 0
\(436\) 0.659331 0.176667i 0.0315762 0.00846083i
\(437\) 11.3897i 0.544845i
\(438\) 0 0
\(439\) −10.9363 18.9422i −0.521959 0.904060i −0.999674 0.0255448i \(-0.991868\pi\)
0.477714 0.878515i \(-0.341465\pi\)
\(440\) −28.7724 + 0.286722i −1.37167 + 0.0136689i
\(441\) 0 0
\(442\) 0.0295753 0.447100i 0.00140675 0.0212664i
\(443\) 6.14972 6.14972i 0.292182 0.292182i −0.545760 0.837942i \(-0.683759\pi\)
0.837942 + 0.545760i \(0.183759\pi\)
\(444\) 0 0
\(445\) 0.398677 + 40.0070i 0.0188991 + 1.89651i
\(446\) −24.9432 14.4010i −1.18110 0.681907i
\(447\) 0 0
\(448\) −14.4712 8.35496i −0.683701 0.394735i
\(449\) 1.20994 + 4.51557i 0.0571008 + 0.213103i 0.988581 0.150688i \(-0.0481489\pi\)
−0.931481 + 0.363791i \(0.881482\pi\)
\(450\) 0 0
\(451\) 26.0247 45.0761i 1.22546 2.12255i
\(452\) 1.68432 + 0.451312i 0.0792237 + 0.0212279i
\(453\) 0 0
\(454\) −40.9246 −1.92069
\(455\) −9.42820 18.6757i −0.442001 0.875529i
\(456\) 0 0
\(457\) 15.0180 + 26.0120i 0.702514 + 1.21679i 0.967581 + 0.252560i \(0.0812725\pi\)
−0.265067 + 0.964230i \(0.585394\pi\)
\(458\) −23.1840 6.21213i −1.08332 0.290274i
\(459\) 0 0
\(460\) 1.35728 2.40593i 0.0632834 0.112177i
\(461\) −0.680045 2.53796i −0.0316729 0.118205i 0.948280 0.317436i \(-0.102822\pi\)
−0.979952 + 0.199232i \(0.936155\pi\)
\(462\) 0 0
\(463\) 25.1475 1.16870 0.584352 0.811500i \(-0.301349\pi\)
0.584352 + 0.811500i \(0.301349\pi\)
\(464\) 19.4966 + 11.2564i 0.905109 + 0.522565i
\(465\) 0 0
\(466\) 3.75502 14.0139i 0.173948 0.649183i
\(467\) −14.9907 + 14.9907i −0.693688 + 0.693688i −0.963041 0.269354i \(-0.913190\pi\)
0.269354 + 0.963041i \(0.413190\pi\)
\(468\) 0 0
\(469\) 40.9648i 1.89158i
\(470\) −5.57658 5.46654i −0.257229 0.252152i
\(471\) 0 0
\(472\) 1.78657 + 6.66756i 0.0822335 + 0.306899i
\(473\) 0.683832i 0.0314426i
\(474\) 0 0
\(475\) −9.72477 + 10.1203i −0.446203 + 0.464353i
\(476\) −0.0457337 0.0457337i −0.00209620 0.00209620i
\(477\) 0 0
\(478\) 1.10443 4.12178i 0.0505154 0.188526i
\(479\) 2.21157 + 0.592587i 0.101049 + 0.0270760i 0.308989 0.951066i \(-0.400009\pi\)
−0.207940 + 0.978142i \(0.566676\pi\)
\(480\) 0 0
\(481\) −0.663527 + 1.95082i −0.0302542 + 0.0889498i
\(482\) 2.94648 + 2.94648i 0.134208 + 0.134208i
\(483\) 0 0
\(484\) 3.68995 2.13039i 0.167725 0.0968361i
\(485\) 11.6286 + 2.99201i 0.528028 + 0.135860i
\(486\) 0 0
\(487\) 2.78321 4.82067i 0.126119 0.218445i −0.796050 0.605230i \(-0.793081\pi\)
0.922170 + 0.386785i \(0.126414\pi\)
\(488\) 7.05859 12.2258i 0.319527 0.553437i
\(489\) 0 0
\(490\) 0.876368 + 0.225487i 0.0395903 + 0.0101865i
\(491\) −5.29139 + 3.05498i −0.238797 + 0.137869i −0.614624 0.788820i \(-0.710692\pi\)
0.375827 + 0.926690i \(0.377359\pi\)
\(492\) 0 0
\(493\) −0.288558 0.288558i −0.0129960 0.0129960i
\(494\) 15.3307 + 1.01412i 0.689763 + 0.0456273i
\(495\) 0 0
\(496\) −14.3204 3.83713i −0.643004 0.172292i
\(497\) 5.16254 19.2669i 0.231572 0.864237i
\(498\) 0 0
\(499\) 6.22738 + 6.22738i 0.278776 + 0.278776i 0.832620 0.553844i \(-0.186840\pi\)
−0.553844 + 0.832620i \(0.686840\pi\)
\(500\) −3.26023 + 0.978912i −0.145802 + 0.0437783i
\(501\) 0 0
\(502\) 4.30183i 0.192000i
\(503\) −0.951461 3.55090i −0.0424236 0.158327i 0.941465 0.337112i \(-0.109450\pi\)
−0.983888 + 0.178785i \(0.942783\pi\)
\(504\) 0 0
\(505\) 4.00930 + 3.93018i 0.178412 + 0.174891i
\(506\) 30.7939i 1.36896i
\(507\) 0 0
\(508\) −0.175347 + 0.175347i −0.00777976 + 0.00777976i
\(509\) −2.90050 + 10.8248i −0.128563 + 0.479802i −0.999942 0.0108085i \(-0.996559\pi\)
0.871379 + 0.490610i \(0.163226\pi\)
\(510\) 0 0
\(511\) 14.8743 + 8.58768i 0.658000 + 0.379897i
\(512\) −15.5347 −0.686544
\(513\) 0 0
\(514\) −7.88233 29.4173i −0.347675 1.29754i
\(515\) −7.32972 + 12.9927i −0.322986 + 0.572529i
\(516\) 0 0
\(517\) −11.1095 2.97677i −0.488593 0.130918i
\(518\) 1.12561 + 1.94962i 0.0494567 + 0.0856615i
\(519\) 0 0
\(520\) −17.3614 11.3669i −0.761347 0.498470i
\(521\) −35.9604 −1.57545 −0.787726 0.616026i \(-0.788742\pi\)
−0.787726 + 0.616026i \(0.788742\pi\)
\(522\) 0 0
\(523\) 8.10636 + 2.17209i 0.354467 + 0.0949790i 0.431658 0.902037i \(-0.357929\pi\)
−0.0771917 + 0.997016i \(0.524595\pi\)
\(524\) −2.45189 + 4.24681i −0.107112 + 0.185523i
\(525\) 0 0
\(526\) −3.70182 13.8154i −0.161407 0.602380i
\(527\) 0.232734 + 0.134369i 0.0101381 + 0.00585322i
\(528\) 0 0
\(529\) 5.66090 + 3.26832i 0.246126 + 0.142101i
\(530\) −0.320848 32.1969i −0.0139368 1.39855i
\(531\) 0 0
\(532\) 1.56818 1.56818i 0.0679891 0.0679891i
\(533\) 33.6765 16.5822i 1.45869 0.718253i
\(534\) 0 0
\(535\) 8.11343 0.0808517i 0.350774 0.00349552i
\(536\) 20.3168 + 35.1897i 0.877552 + 1.51997i
\(537\) 0 0
\(538\) 4.88034i 0.210407i
\(539\) 1.28736 0.344948i 0.0554506 0.0148580i
\(540\) 0 0
\(541\) 4.13066 + 4.13066i 0.177591 + 0.177591i 0.790305 0.612714i \(-0.209922\pi\)
−0.612714 + 0.790305i \(0.709922\pi\)
\(542\) 22.2688 5.96691i 0.956528 0.256301i
\(543\) 0 0
\(544\) −0.135064 0.0361903i −0.00579082 0.00155165i
\(545\) −2.46317 + 4.36624i −0.105511 + 0.187029i
\(546\) 0 0
\(547\) −7.90229 7.90229i −0.337877 0.337877i 0.517691 0.855568i \(-0.326792\pi\)
−0.855568 + 0.517691i \(0.826792\pi\)
\(548\) 5.07242 2.92856i 0.216683 0.125102i
\(549\) 0 0
\(550\) −26.2924 + 27.3619i −1.12111 + 1.16671i
\(551\) 9.89447 9.89447i 0.421519 0.421519i
\(552\) 0 0
\(553\) 7.40909 12.8329i 0.315067 0.545712i
\(554\) 11.4479 11.4479i 0.486375 0.486375i
\(555\) 0 0
\(556\) 4.17898 2.41274i 0.177228 0.102323i
\(557\) 10.2077 5.89341i 0.432513 0.249712i −0.267903 0.963446i \(-0.586331\pi\)
0.700417 + 0.713734i \(0.252997\pi\)
\(558\) 0 0
\(559\) −0.274240 + 0.409894i −0.0115991 + 0.0173367i
\(560\) −25.2429 + 7.03416i −1.06671 + 0.297247i
\(561\) 0 0
\(562\) 7.09170 26.4666i 0.299145 1.11643i
\(563\) −31.0602 + 8.32255i −1.30903 + 0.350754i −0.844858 0.534991i \(-0.820315\pi\)
−0.464172 + 0.885745i \(0.653648\pi\)
\(564\) 0 0
\(565\) −11.0263 + 6.51341i −0.463882 + 0.274021i
\(566\) 8.44250 2.26216i 0.354865 0.0950858i
\(567\) 0 0
\(568\) −5.12080 19.1111i −0.214864 0.801883i
\(569\) 4.64237 + 8.04082i 0.194618 + 0.337089i 0.946775 0.321895i \(-0.104320\pi\)
−0.752157 + 0.658984i \(0.770987\pi\)
\(570\) 0 0
\(571\) 31.1596i 1.30399i 0.758223 + 0.651995i \(0.226068\pi\)
−0.758223 + 0.651995i \(0.773932\pi\)
\(572\) 5.47623 + 0.362249i 0.228973 + 0.0151464i
\(573\) 0 0
\(574\) 10.6144 39.6134i 0.443035 1.65343i
\(575\) 5.64028 + 19.4877i 0.235216 + 0.812694i
\(576\) 0 0
\(577\) 4.57285 0.190370 0.0951852 0.995460i \(-0.469656\pi\)
0.0951852 + 0.995460i \(0.469656\pi\)
\(578\) −22.3405 12.8983i −0.929243 0.536499i
\(579\) 0 0
\(580\) 3.26916 0.910980i 0.135745 0.0378264i
\(581\) 4.81009 8.33132i 0.199556 0.345641i
\(582\) 0 0
\(583\) −23.7114 41.0693i −0.982025 1.70092i
\(584\) 17.0365 0.704975
\(585\) 0 0
\(586\) 4.85179 0.200425
\(587\) −3.59590 6.22829i −0.148419 0.257069i 0.782224 0.622997i \(-0.214085\pi\)
−0.930643 + 0.365928i \(0.880752\pi\)
\(588\) 0 0
\(589\) −4.60743 + 7.98031i −0.189846 + 0.328823i
\(590\) 7.92870 + 4.47289i 0.326420 + 0.184146i
\(591\) 0 0
\(592\) 2.23524 + 1.29052i 0.0918677 + 0.0530399i
\(593\) −28.0561 −1.15212 −0.576062 0.817406i \(-0.695411\pi\)
−0.576062 + 0.817406i \(0.695411\pi\)
\(594\) 0 0
\(595\) 0.474982 0.00473328i 0.0194724 0.000194045i
\(596\) 0.113496 0.423573i 0.00464898 0.0173502i
\(597\) 0 0
\(598\) 12.3494 18.4581i 0.505005 0.754808i
\(599\) 0.912959i 0.0373025i −0.999826 0.0186513i \(-0.994063\pi\)
0.999826 0.0186513i \(-0.00593722\pi\)
\(600\) 0 0
\(601\) −6.22691 10.7853i −0.254001 0.439943i 0.710623 0.703573i \(-0.248413\pi\)
−0.964624 + 0.263631i \(0.915080\pi\)
\(602\) 0.139453 + 0.520445i 0.00568367 + 0.0212118i
\(603\) 0 0
\(604\) −5.79162 + 1.55186i −0.235658 + 0.0631443i
\(605\) −7.79745 + 30.3052i −0.317011 + 1.23208i
\(606\) 0 0
\(607\) 37.4512 10.0350i 1.52010 0.407309i 0.600324 0.799757i \(-0.295038\pi\)
0.919774 + 0.392448i \(0.128372\pi\)
\(608\) 1.24094 4.63125i 0.0503268 0.187822i
\(609\) 0 0
\(610\) −4.99757 17.9344i −0.202346 0.726143i
\(611\) −5.46530 6.23957i −0.221102 0.252426i
\(612\) 0 0
\(613\) −21.3140 + 12.3057i −0.860865 + 0.497021i −0.864302 0.502973i \(-0.832239\pi\)
0.00343656 + 0.999994i \(0.498906\pi\)
\(614\) 31.9122 18.4245i 1.28787 0.743553i
\(615\) 0 0
\(616\) −23.6110 + 23.6110i −0.951316 + 0.951316i
\(617\) −7.70769 + 13.3501i −0.310300 + 0.537455i −0.978427 0.206592i \(-0.933763\pi\)
0.668127 + 0.744047i \(0.267096\pi\)
\(618\) 0 0
\(619\) 20.7915 20.7915i 0.835683 0.835683i −0.152604 0.988287i \(-0.548766\pi\)
0.988287 + 0.152604i \(0.0487661\pi\)
\(620\) −1.92424 + 1.13668i −0.0772795 + 0.0456501i
\(621\) 0 0
\(622\) −22.2249 + 12.8316i −0.891137 + 0.514498i
\(623\) 32.8303 + 32.8303i 1.31532 + 1.31532i
\(624\) 0 0
\(625\) 11.6273 22.1315i 0.465093 0.885262i
\(626\) 17.4397 + 4.67294i 0.697029 + 0.186768i
\(627\) 0 0
\(628\) −1.89090 + 0.506664i −0.0754549 + 0.0202181i
\(629\) −0.0330825 0.0330825i −0.00131908 0.00131908i
\(630\) 0 0
\(631\) 12.1738 3.26195i 0.484631 0.129856i −0.00822739 0.999966i \(-0.502619\pi\)
0.492858 + 0.870110i \(0.335952\pi\)
\(632\) 14.6984i 0.584670i
\(633\) 0 0
\(634\) 9.06908 + 15.7081i 0.360179 + 0.623849i
\(635\) −0.0181478 1.82112i −0.000720173 0.0722690i
\(636\) 0 0
\(637\) 0.909991 + 0.309512i 0.0360551 + 0.0122633i
\(638\) 26.7512 26.7512i 1.05909 1.05909i
\(639\) 0 0
\(640\) −20.6490 + 21.0646i −0.816222 + 0.832653i
\(641\) 8.45341 + 4.88058i 0.333890 + 0.192771i 0.657567 0.753396i \(-0.271586\pi\)
−0.323677 + 0.946168i \(0.604919\pi\)
\(642\) 0 0
\(643\) 24.0854 + 13.9057i 0.949834 + 0.548387i 0.893029 0.449999i \(-0.148576\pi\)
0.0568044 + 0.998385i \(0.481909\pi\)
\(644\) −0.829680 3.09641i −0.0326940 0.122016i
\(645\) 0 0
\(646\) −0.174424 + 0.302111i −0.00686261 + 0.0118864i
\(647\) 17.7967 + 4.76862i 0.699662 + 0.187474i 0.591079 0.806613i \(-0.298702\pi\)
0.108583 + 0.994087i \(0.465369\pi\)
\(648\) 0 0
\(649\) 13.4076 0.526296
\(650\) −26.7329 + 5.85675i −1.04855 + 0.229721i
\(651\) 0 0
\(652\) 1.99970 + 3.46357i 0.0783141 + 0.135644i
\(653\) 7.12491 + 1.90911i 0.278819 + 0.0747094i 0.395519 0.918458i \(-0.370565\pi\)
−0.116700 + 0.993167i \(0.537231\pi\)
\(654\) 0 0
\(655\) −9.66746 34.6929i −0.377739 1.35556i
\(656\) −12.1694 45.4167i −0.475134 1.77322i
\(657\) 0 0
\(658\) −9.06214 −0.353279
\(659\) −12.0786 6.97358i −0.470515 0.271652i 0.245940 0.969285i \(-0.420903\pi\)
−0.716455 + 0.697633i \(0.754237\pi\)
\(660\) 0 0
\(661\) 0.0586648 0.218940i 0.00228180 0.00851578i −0.964776 0.263074i \(-0.915264\pi\)
0.967057 + 0.254559i \(0.0819302\pi\)
\(662\) −23.0236 + 23.0236i −0.894837 + 0.894837i
\(663\) 0 0
\(664\) 9.54239i 0.370317i
\(665\) 0.162301 + 16.2868i 0.00629375 + 0.631575i
\(666\) 0 0
\(667\) −5.23490 19.5369i −0.202696 0.756472i
\(668\) 1.00022i 0.0386996i
\(669\) 0 0
\(670\) 51.8972 + 13.3530i 2.00496 + 0.515871i
\(671\) −19.3893 19.3893i −0.748515 0.748515i
\(672\) 0 0
\(673\) −8.70112 + 32.4730i −0.335404 + 1.25174i 0.568027 + 0.823010i \(0.307707\pi\)
−0.903431 + 0.428734i \(0.858960\pi\)
\(674\) 29.2938 + 7.84924i 1.12835 + 0.302341i
\(675\) 0 0
\(676\) 3.13722 + 2.41329i 0.120662 + 0.0928190i
\(677\) −25.1691 25.1691i −0.967326 0.967326i 0.0321566 0.999483i \(-0.489762\pi\)
−0.999483 + 0.0321566i \(0.989762\pi\)
\(678\) 0 0
\(679\) 12.0673 6.96707i 0.463101 0.267372i
\(680\) 0.405673 0.239637i 0.0155568 0.00918964i
\(681\) 0 0
\(682\) −12.4569 + 21.5760i −0.477000 + 0.826187i
\(683\) −15.3784 + 26.6361i −0.588437 + 1.01920i 0.406001 + 0.913873i \(0.366923\pi\)
−0.994437 + 0.105329i \(0.966410\pi\)
\(684\) 0 0
\(685\) −10.7188 + 41.6593i −0.409545 + 1.59172i
\(686\) 24.7893 14.3121i 0.946459 0.546438i
\(687\) 0 0
\(688\) 0.436807 + 0.436807i 0.0166531 + 0.0166531i
\(689\) 2.25743 34.1263i 0.0860013 1.30011i
\(690\) 0 0
\(691\) −37.4215 10.0271i −1.42358 0.381447i −0.536828 0.843692i \(-0.680378\pi\)
−0.886753 + 0.462244i \(0.847044\pi\)
\(692\) −0.333966 + 1.24638i −0.0126955 + 0.0473802i
\(693\) 0 0
\(694\) 26.4382 + 26.4382i 1.00358 + 1.00358i
\(695\) −8.83085 + 34.3216i −0.334973 + 1.30189i
\(696\) 0 0
\(697\) 0.852297i 0.0322831i
\(698\) 10.7055 + 39.9534i 0.405208 + 1.51226i
\(699\) 0 0
\(700\) −1.90656 + 3.45970i −0.0720612 + 0.130765i
\(701\) 19.8876i 0.751143i 0.926793 + 0.375571i \(0.122553\pi\)
−0.926793 + 0.375571i \(0.877447\pi\)
\(702\) 0 0
\(703\) 1.13437 1.13437i 0.0427838 0.0427838i
\(704\) −8.33247 + 31.0972i −0.314042 + 1.17202i
\(705\) 0 0
\(706\) 11.5681 + 6.67884i 0.435371 + 0.251361i
\(707\) 6.51526 0.245032
\(708\) 0 0
\(709\) 8.24828 + 30.7830i 0.309771 + 1.15608i 0.928760 + 0.370680i \(0.120875\pi\)
−0.618990 + 0.785399i \(0.712458\pi\)
\(710\) −22.7259 12.8206i −0.852887 0.481147i
\(711\) 0 0
\(712\) 44.4844 + 11.9196i 1.66712 + 0.446705i
\(713\) 6.65983 + 11.5352i 0.249413 + 0.431996i
\(714\) 0 0
\(715\) −30.0541 + 26.8586i −1.12396 + 1.00445i
\(716\) 4.25084 0.158861
\(717\) 0 0
\(718\) −23.0710 6.18186i −0.861002 0.230705i
\(719\) 15.4818 26.8152i 0.577372 1.00004i −0.418407 0.908260i \(-0.637411\pi\)
0.995779 0.0917785i \(-0.0292552\pi\)
\(720\) 0 0
\(721\) 4.48053 + 16.7216i 0.166864 + 0.622744i
\(722\) 14.6195 + 8.44057i 0.544081 + 0.314126i
\(723\) 0 0
\(724\) 2.28019 + 1.31647i 0.0847427 + 0.0489262i
\(725\) −12.0295 + 21.8291i −0.446765 + 0.810714i
\(726\) 0 0
\(727\) −16.2588 + 16.2588i −0.603007 + 0.603007i −0.941109 0.338103i \(-0.890215\pi\)
0.338103 + 0.941109i \(0.390215\pi\)
\(728\) −23.6215 + 4.68379i −0.875470 + 0.173593i
\(729\) 0 0
\(730\) 15.7280 16.0446i 0.582118 0.593836i
\(731\) −0.00559879 0.00969739i −0.000207079 0.000358671i
\(732\) 0 0
\(733\) 31.2515i 1.15430i −0.816638 0.577150i \(-0.804165\pi\)
0.816638 0.577150i \(-0.195835\pi\)
\(734\) −16.0980 + 4.31344i −0.594187 + 0.159212i
\(735\) 0 0
\(736\) −4.90054 4.90054i −0.180636 0.180636i
\(737\) 76.2357 20.4273i 2.80818 0.752449i
\(738\) 0 0
\(739\) 26.3668 + 7.06496i 0.969918 + 0.259889i 0.708793 0.705416i \(-0.249240\pi\)
0.261125 + 0.965305i \(0.415907\pi\)
\(740\) 0.374801 0.104441i 0.0137780 0.00383934i
\(741\) 0 0
\(742\) −26.4213 26.4213i −0.969956 0.969956i
\(743\) 28.5494 16.4830i 1.04738 0.604703i 0.125463 0.992098i \(-0.459958\pi\)
0.921914 + 0.387395i \(0.126625\pi\)
\(744\) 0 0
\(745\) 1.63800 + 2.77291i 0.0600115 + 0.101591i
\(746\) 11.3566 11.3566i 0.415794 0.415794i
\(747\) 0 0
\(748\) −0.0623052 + 0.107916i −0.00227810 + 0.00394579i
\(749\) 6.65800 6.65800i 0.243278 0.243278i
\(750\) 0 0
\(751\) 26.8241 15.4869i 0.978826 0.565125i 0.0769103 0.997038i \(-0.475494\pi\)
0.901915 + 0.431913i \(0.142161\pi\)
\(752\) −8.99777 + 5.19487i −0.328115 + 0.189437i
\(753\) 0 0
\(754\) 26.7630 5.30672i 0.974653 0.193259i
\(755\) 21.6367 38.3535i 0.787440 1.39583i
\(756\) 0 0
\(757\) 13.2249 49.3561i 0.480668 1.79388i −0.118154 0.992995i \(-0.537698\pi\)
0.598822 0.800882i \(-0.295636\pi\)
\(758\) −14.3729 + 3.85120i −0.522046 + 0.139882i
\(759\) 0 0
\(760\) 8.21697 + 13.9102i 0.298061 + 0.504577i
\(761\) −1.11809 + 0.299592i −0.0405308 + 0.0108602i −0.279027 0.960283i \(-0.590012\pi\)
0.238497 + 0.971143i \(0.423345\pi\)
\(762\) 0 0
\(763\) 1.50569 + 5.61932i 0.0545097 + 0.203433i
\(764\) 2.57470 + 4.45951i 0.0931494 + 0.161339i
\(765\) 0 0
\(766\) 39.5553i 1.42919i
\(767\) 8.03664 + 5.37693i 0.290186 + 0.194150i
\(768\) 0 0
\(769\) −7.82422 + 29.2004i −0.282148 + 1.05299i 0.668750 + 0.743488i \(0.266830\pi\)
−0.950898 + 0.309505i \(0.899837\pi\)
\(770\) 0.438805 + 44.0339i 0.0158134 + 1.58687i
\(771\) 0 0
\(772\) 2.60488 0.0937517
\(773\) −6.22916 3.59641i −0.224047 0.129354i 0.383776 0.923426i \(-0.374624\pi\)
−0.607823 + 0.794073i \(0.707957\pi\)
\(774\) 0 0
\(775\) 3.93136 15.9358i 0.141219 0.572432i
\(776\) 6.91074 11.9698i 0.248081 0.429689i
\(777\) 0 0
\(778\) 24.6597 + 42.7119i 0.884094 + 1.53130i
\(779\) −29.2247 −1.04708
\(780\) 0 0
\(781\) −38.4300 −1.37513
\(782\) 0.252122 + 0.436687i 0.00901585 + 0.0156159i
\(783\) 0 0
\(784\) 0.601981 1.04266i 0.0214993 0.0372379i
\(785\) 7.06412 12.5219i 0.252129 0.446927i
\(786\) 0 0
\(787\) −6.21708 3.58943i −0.221615 0.127949i 0.385083 0.922882i \(-0.374173\pi\)
−0.606698 + 0.794933i \(0.707506\pi\)
\(788\) −2.33124 −0.0830470
\(789\) 0 0
\(790\) −13.8426 13.5694i −0.492497 0.482778i
\(791\) −3.84642 + 14.3550i −0.136763 + 0.510407i
\(792\) 0 0
\(793\) −3.84631 19.3979i −0.136586 0.688838i
\(794\) 36.7145i 1.30295i
\(795\) 0 0
\(796\) −2.33336 4.04150i −0.0827037 0.143247i
\(797\) 10.1969 + 38.0553i 0.361192 + 1.34799i 0.872510 + 0.488596i \(0.162491\pi\)
−0.511318 + 0.859391i \(0.670843\pi\)
\(798\) 0 0
\(799\) 0.181915 0.0487439i 0.00643568 0.00172443i
\(800\) 0.170193 + 8.53854i 0.00601723 + 0.301883i
\(801\) 0 0
\(802\) −48.1515 + 12.9022i −1.70029 + 0.455591i
\(803\) 8.56456 31.9634i 0.302237 1.12796i
\(804\) 0 0
\(805\) 20.5051 + 11.5677i 0.722711 + 0.407710i
\(806\) −16.1195 + 7.93716i −0.567784 + 0.279575i
\(807\) 0 0
\(808\) 5.59676 3.23129i 0.196893 0.113676i
\(809\) 24.2062 13.9754i 0.851043 0.491350i −0.00995956 0.999950i \(-0.503170\pi\)
0.861003 + 0.508600i \(0.169837\pi\)
\(810\) 0 0
\(811\) −23.2784 + 23.2784i −0.817415 + 0.817415i −0.985733 0.168317i \(-0.946167\pi\)
0.168317 + 0.985733i \(0.446167\pi\)
\(812\) 1.96915 3.41066i 0.0691035 0.119691i
\(813\) 0 0
\(814\) 3.06696 3.06696i 0.107497 0.107497i
\(815\) −28.4460 7.31907i −0.996420 0.256376i
\(816\) 0 0
\(817\) 0.332517 0.191979i 0.0116333 0.00671648i
\(818\) 14.9850 + 14.9850i 0.523937 + 0.523937i
\(819\) 0 0
\(820\) −6.17331 3.48261i −0.215582 0.121618i
\(821\) −18.8872 5.06082i −0.659169 0.176624i −0.0862981 0.996269i \(-0.527504\pi\)
−0.572871 + 0.819646i \(0.694170\pi\)
\(822\) 0 0
\(823\) −39.4302 + 10.5653i −1.37445 + 0.368283i −0.869102 0.494633i \(-0.835303\pi\)
−0.505348 + 0.862915i \(0.668636\pi\)
\(824\) 12.1421 + 12.1421i 0.422989 + 0.422989i
\(825\) 0 0
\(826\) 10.2042 2.73420i 0.355049 0.0951350i
\(827\) 31.8649i 1.10805i −0.832499 0.554026i \(-0.813091\pi\)
0.832499 0.554026i \(-0.186909\pi\)
\(828\) 0 0
\(829\) −27.6391 47.8724i −0.959946 1.66268i −0.722620 0.691246i \(-0.757062\pi\)
−0.237326 0.971430i \(-0.576271\pi\)
\(830\) −8.98680 8.80946i −0.311937 0.305781i
\(831\) 0 0
\(832\) −17.4656 + 15.2983i −0.605510 + 0.530373i
\(833\) −0.0154318 + 0.0154318i −0.000534681 + 0.000534681i
\(834\) 0 0
\(835\) 5.24580 + 5.14228i 0.181538 + 0.177956i
\(836\) −3.70036 2.13640i −0.127980 0.0738890i
\(837\) 0 0
\(838\) 2.91830 + 1.68488i 0.100811 + 0.0582032i
\(839\) 1.00953 + 3.76762i 0.0348528 + 0.130073i 0.981160 0.193195i \(-0.0618851\pi\)
−0.946307 + 0.323268i \(0.895218\pi\)
\(840\) 0 0
\(841\) −2.07559 + 3.59503i −0.0715721 + 0.123966i
\(842\) −50.7629 13.6019i −1.74940 0.468751i
\(843\) 0 0
\(844\) 6.03930 0.207881
\(845\) −28.7859 + 4.04652i −0.990264 + 0.139205i
\(846\) 0 0
\(847\) 18.1568 + 31.4485i 0.623876 + 1.08058i
\(848\) −41.3796 11.0876i −1.42098 0.380751i
\(849\) 0 0
\(850\) 0.148830 0.603284i 0.00510482 0.0206925i
\(851\) −0.600167 2.23986i −0.0205735 0.0767812i
\(852\) 0 0
\(853\) −53.5726 −1.83429 −0.917145 0.398554i \(-0.869512\pi\)
−0.917145 + 0.398554i \(0.869512\pi\)
\(854\) −18.7107 10.8026i −0.640266 0.369658i
\(855\) 0 0
\(856\) 2.41729 9.02145i 0.0826213 0.308347i
\(857\) −18.9164 + 18.9164i −0.646171 + 0.646171i −0.952066 0.305894i \(-0.901045\pi\)
0.305894 + 0.952066i \(0.401045\pi\)
\(858\) 0 0
\(859\) 18.1203i 0.618258i 0.951020 + 0.309129i \(0.100037\pi\)
−0.951020 + 0.309129i \(0.899963\pi\)
\(860\) 0.0931171 0.000927928i 0.00317527 3.16421e-5i
\(861\) 0 0
\(862\) 0.649274 + 2.42312i 0.0221144 + 0.0825320i
\(863\) 21.4967i 0.731757i 0.930663 + 0.365879i \(0.119232\pi\)
−0.930663 + 0.365879i \(0.880768\pi\)
\(864\) 0 0
\(865\) −4.81986 8.15937i −0.163880 0.277427i
\(866\) 15.9037 + 15.9037i 0.540431 + 0.540431i
\(867\) 0 0
\(868\) −0.671252 + 2.50515i −0.0227838 + 0.0850303i
\(869\) −27.5767 7.38915i −0.935475 0.250660i
\(870\) 0 0
\(871\) 53.8883 + 18.3289i 1.82593 + 0.621050i
\(872\) 4.08036 + 4.08036i 0.138179 + 0.138179i
\(873\) 0 0
\(874\) −14.9737 + 8.64508i −0.506493 + 0.292424i
\(875\) −8.34303 27.7862i −0.282046 0.939344i
\(876\) 0 0
\(877\) 10.6745 18.4889i 0.360454 0.624324i −0.627582 0.778551i \(-0.715955\pi\)
0.988036 + 0.154226i \(0.0492885\pi\)
\(878\) −16.6018 + 28.7551i −0.560282 + 0.970437i
\(879\) 0 0
\(880\) 25.6781 + 43.4696i 0.865608 + 1.46536i
\(881\) −11.4703 + 6.62238i −0.386444 + 0.223114i −0.680618 0.732638i \(-0.738289\pi\)
0.294174 + 0.955752i \(0.404955\pi\)
\(882\) 0 0
\(883\) 32.5668 + 32.5668i 1.09596 + 1.09596i 0.994878 + 0.101082i \(0.0322304\pi\)
0.101082 + 0.994878i \(0.467770\pi\)
\(884\) −0.0806241 + 0.0396990i −0.00271168 + 0.00133522i
\(885\) 0 0
\(886\) −12.7526 3.41705i −0.428432 0.114798i
\(887\) −4.13600 + 15.4358i −0.138873 + 0.518282i 0.861079 + 0.508472i \(0.169789\pi\)
−0.999952 + 0.00981024i \(0.996877\pi\)
\(888\) 0 0
\(889\) −1.49444 1.49444i −0.0501219 0.0501219i
\(890\) 52.2933 30.8904i 1.75287 1.03545i
\(891\) 0 0
\(892\) 5.77663i 0.193416i
\(893\) 1.67139 + 6.23773i 0.0559311 + 0.208738i
\(894\) 0 0
\(895\) −21.8543 + 22.2942i −0.730507 + 0.745213i
\(896\) 34.2308i 1.14357i
\(897\) 0 0
\(898\) 5.01810 5.01810i 0.167456 0.167456i
\(899\) −4.23529 + 15.8063i −0.141255 + 0.527170i
\(900\) 0 0
\(901\) 0.672500 + 0.388268i 0.0224042 + 0.0129351i
\(902\) −79.0135 −2.63086
\(903\) 0 0
\(904\) 3.81532 + 14.2390i 0.126896 + 0.473581i
\(905\) −18.6273 + 5.19065i −0.619192 + 0.172543i
\(906\) 0 0
\(907\) 5.07458 + 1.35973i 0.168499 + 0.0451491i 0.342082 0.939670i \(-0.388868\pi\)
−0.173583 + 0.984819i \(0.555535\pi\)
\(908\) 4.10399 + 7.10833i 0.136196 + 0.235898i
\(909\) 0 0
\(910\) −17.3961 + 26.5702i −0.576674 + 0.880794i
\(911\) −9.49722 −0.314657 −0.157328 0.987546i \(-0.550288\pi\)
−0.157328 + 0.987546i \(0.550288\pi\)
\(912\) 0 0
\(913\) −17.9032 4.79714i −0.592508 0.158762i
\(914\) 22.7981 39.4874i 0.754093 1.30613i
\(915\) 0 0
\(916\) 1.24593 + 4.64987i 0.0411666 + 0.153636i
\(917\) −36.1945 20.8969i −1.19525 0.690076i
\(918\) 0 0
\(919\) −45.6207 26.3391i −1.50489 0.868847i −0.999984 0.00567026i \(-0.998195\pi\)
−0.504903 0.863176i \(-0.668472\pi\)
\(920\) 23.3515 0.232702i 0.769875 0.00767194i
\(921\) 0 0
\(922\) −2.82041 + 2.82041i −0.0928851 + 0.0928851i
\(923\) −23.0352 15.4118i −0.758214 0.507284i
\(924\) 0 0
\(925\) −1.37915 + 2.50265i −0.0453463 + 0.0822867i
\(926\) −19.0876 33.0606i −0.627256 1.08644i
\(927\) 0 0
\(928\) 8.51438i 0.279498i
\(929\) −8.04841 + 2.15657i −0.264060 + 0.0707546i −0.388420 0.921483i \(-0.626979\pi\)
0.124360 + 0.992237i \(0.460312\pi\)
\(930\) 0 0
\(931\) −0.529147 0.529147i −0.0173421 0.0173421i
\(932\) −2.81069 + 0.753121i −0.0920671 + 0.0246693i
\(933\) 0 0
\(934\) 31.0861 + 8.32950i 1.01717 + 0.272549i
\(935\) −0.245660 0.881582i −0.00803395 0.0288308i
\(936\) 0 0
\(937\) 16.3814 + 16.3814i 0.535156 + 0.535156i 0.922102 0.386947i \(-0.126470\pi\)
−0.386947 + 0.922102i \(0.626470\pi\)
\(938\) 53.8551 31.0933i 1.75843 1.01523i
\(939\) 0 0
\(940\) −0.390271 + 1.51681i −0.0127292 + 0.0494729i
\(941\) 24.2325 24.2325i 0.789956 0.789956i −0.191530 0.981487i \(-0.561345\pi\)
0.981487 + 0.191530i \(0.0613451\pi\)
\(942\) 0 0
\(943\) −21.1215 + 36.5835i −0.687810 + 1.19132i
\(944\) 8.56432 8.56432i 0.278745 0.278745i
\(945\) 0 0
\(946\) 0.899011 0.519044i 0.0292294 0.0168756i
\(947\) 28.9613 16.7208i 0.941114 0.543353i 0.0508048 0.998709i \(-0.483821\pi\)
0.890309 + 0.455356i \(0.150488\pi\)
\(948\) 0 0
\(949\) 17.9521 15.7244i 0.582749 0.510436i
\(950\) 20.6862 + 5.10327i 0.671149 + 0.165572i
\(951\) 0 0
\(952\) 0.141515 0.528140i 0.00458652 0.0171171i
\(953\) −14.5138 + 3.88895i −0.470147 + 0.125975i −0.486111 0.873897i \(-0.661585\pi\)
0.0159642 + 0.999873i \(0.494918\pi\)
\(954\) 0 0
\(955\) −36.6256 9.42365i −1.18518 0.304942i
\(956\) −0.826681 + 0.221508i −0.0267368 + 0.00716409i
\(957\) 0 0
\(958\) −0.899575 3.35726i −0.0290640 0.108468i
\(959\) 24.9594 + 43.2310i 0.805982 + 1.39600i
\(960\) 0 0
\(961\) 20.2237i 0.652378i
\(962\) 3.06831 0.608402i 0.0989264 0.0196157i
\(963\) 0 0
\(964\) 0.216305 0.807262i 0.00696672 0.0260002i
\(965\) −13.3921 + 13.6617i −0.431107 + 0.439786i
\(966\) 0 0
\(967\) 7.49252 0.240943 0.120472 0.992717i \(-0.461559\pi\)
0.120472 + 0.992717i \(0.461559\pi\)
\(968\) 31.1943 + 18.0100i 1.00262 + 0.578864i
\(969\) 0 0
\(970\) −4.89290 17.5588i −0.157101 0.563778i
\(971\) 13.9303 24.1280i 0.447045 0.774304i −0.551147 0.834408i \(-0.685810\pi\)
0.998192 + 0.0601036i \(0.0191431\pi\)
\(972\) 0 0
\(973\) 20.5632 + 35.6165i 0.659225 + 1.14181i
\(974\) −8.45010 −0.270759
\(975\) 0 0
\(976\) −24.7704 −0.792880
\(977\) 19.4382 + 33.6679i 0.621883 + 1.07713i 0.989135 + 0.147011i \(0.0469654\pi\)
−0.367252 + 0.930122i \(0.619701\pi\)
\(978\) 0 0
\(979\) 44.7263 77.4683i 1.42946 2.47590i
\(980\) −0.0487183 0.174832i −0.00155625 0.00558479i
\(981\) 0 0
\(982\) 8.03257 + 4.63761i 0.256330 + 0.147992i
\(983\) −0.207440 −0.00661630 −0.00330815 0.999995i \(-0.501053\pi\)
−0.00330815 + 0.999995i \(0.501053\pi\)
\(984\) 0 0
\(985\) 11.9853 12.2266i 0.381883 0.389571i
\(986\) −0.160336 + 0.598381i −0.00510613 + 0.0190563i
\(987\) 0 0
\(988\) −1.36125 2.76455i −0.0433072 0.0879519i
\(989\) 0.554993i 0.0176477i
\(990\) 0 0
\(991\) 12.7480 + 22.0803i 0.404955 + 0.701402i 0.994316 0.106467i \(-0.0339539\pi\)
−0.589361 + 0.807869i \(0.700621\pi\)
\(992\) 1.45121 + 5.41599i 0.0460760 + 0.171958i
\(993\) 0 0
\(994\) −29.2480 + 7.83698i −0.927691 + 0.248574i
\(995\) 33.1924 + 8.54032i 1.05227 + 0.270746i
\(996\) 0 0
\(997\) 33.4743 8.96942i 1.06014 0.284064i 0.313706 0.949520i \(-0.398429\pi\)
0.746437 + 0.665456i \(0.231763\pi\)
\(998\) 3.46020 12.9137i 0.109531 0.408774i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.2.cf.a.262.1 20
3.2 odd 2 65.2.o.a.2.5 20
5.3 odd 4 585.2.dp.a.28.1 20
13.7 odd 12 585.2.dp.a.397.1 20
15.2 even 4 325.2.x.b.93.1 20
15.8 even 4 65.2.t.a.28.5 yes 20
15.14 odd 2 325.2.s.b.132.1 20
39.2 even 12 845.2.f.d.437.9 20
39.5 even 4 845.2.t.e.427.5 20
39.8 even 4 845.2.t.f.427.1 20
39.11 even 12 845.2.f.e.437.2 20
39.17 odd 6 845.2.o.f.357.1 20
39.20 even 12 65.2.t.a.7.5 yes 20
39.23 odd 6 845.2.k.d.577.9 20
39.29 odd 6 845.2.k.e.577.2 20
39.32 even 12 845.2.t.g.657.1 20
39.35 odd 6 845.2.o.e.357.5 20
39.38 odd 2 845.2.o.g.587.1 20
65.33 even 12 inner 585.2.cf.a.163.1 20
195.8 odd 4 845.2.o.e.258.5 20
195.23 even 12 845.2.f.d.408.2 20
195.38 even 4 845.2.t.g.418.1 20
195.59 even 12 325.2.x.b.7.1 20
195.68 even 12 845.2.f.e.408.9 20
195.83 odd 4 845.2.o.f.258.1 20
195.98 odd 12 65.2.o.a.33.5 yes 20
195.113 even 12 845.2.t.f.188.1 20
195.128 odd 12 845.2.k.e.268.2 20
195.137 odd 12 325.2.s.b.293.1 20
195.158 odd 12 845.2.k.d.268.9 20
195.173 even 12 845.2.t.e.188.5 20
195.188 odd 12 845.2.o.g.488.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.2.5 20 3.2 odd 2
65.2.o.a.33.5 yes 20 195.98 odd 12
65.2.t.a.7.5 yes 20 39.20 even 12
65.2.t.a.28.5 yes 20 15.8 even 4
325.2.s.b.132.1 20 15.14 odd 2
325.2.s.b.293.1 20 195.137 odd 12
325.2.x.b.7.1 20 195.59 even 12
325.2.x.b.93.1 20 15.2 even 4
585.2.cf.a.163.1 20 65.33 even 12 inner
585.2.cf.a.262.1 20 1.1 even 1 trivial
585.2.dp.a.28.1 20 5.3 odd 4
585.2.dp.a.397.1 20 13.7 odd 12
845.2.f.d.408.2 20 195.23 even 12
845.2.f.d.437.9 20 39.2 even 12
845.2.f.e.408.9 20 195.68 even 12
845.2.f.e.437.2 20 39.11 even 12
845.2.k.d.268.9 20 195.158 odd 12
845.2.k.d.577.9 20 39.23 odd 6
845.2.k.e.268.2 20 195.128 odd 12
845.2.k.e.577.2 20 39.29 odd 6
845.2.o.e.258.5 20 195.8 odd 4
845.2.o.e.357.5 20 39.35 odd 6
845.2.o.f.258.1 20 195.83 odd 4
845.2.o.f.357.1 20 39.17 odd 6
845.2.o.g.488.1 20 195.188 odd 12
845.2.o.g.587.1 20 39.38 odd 2
845.2.t.e.188.5 20 195.173 even 12
845.2.t.e.427.5 20 39.5 even 4
845.2.t.f.188.1 20 195.113 even 12
845.2.t.f.427.1 20 39.8 even 4
845.2.t.g.418.1 20 195.38 even 4
845.2.t.g.657.1 20 39.32 even 12