# Properties

 Label 585.2.bt.b.571.1 Level $585$ Weight $2$ Character 585.571 Analytic conductor $4.671$ Analytic rank $0$ Dimension $108$ CM no Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [585,2,Mod(376,585)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(585, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([4, 0, 3]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("585.376");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$585 = 3^{2} \cdot 5 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 585.bt (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$4.67124851824$$ Analytic rank: $$0$$ Dimension: $$108$$ Relative dimension: $$54$$ over $$\Q(\zeta_{6})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 571.1 Character $$\chi$$ $$=$$ 585.571 Dual form 585.2.bt.b.376.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-2.39334 + 1.38179i) q^{2} +(-0.969577 + 1.43524i) q^{3} +(2.81871 - 4.88215i) q^{4} +(0.866025 + 0.500000i) q^{5} +(0.337317 - 4.77477i) q^{6} +(-0.814209 + 0.470084i) q^{7} +10.0523i q^{8} +(-1.11984 - 2.78316i) q^{9} +O(q^{10})$$ $$q+(-2.39334 + 1.38179i) q^{2} +(-0.969577 + 1.43524i) q^{3} +(2.81871 - 4.88215i) q^{4} +(0.866025 + 0.500000i) q^{5} +(0.337317 - 4.77477i) q^{6} +(-0.814209 + 0.470084i) q^{7} +10.0523i q^{8} +(-1.11984 - 2.78316i) q^{9} -2.76359 q^{10} +(1.21522 - 0.701610i) q^{11} +(4.27411 + 8.77915i) q^{12} +(-0.345136 - 3.58899i) q^{13} +(1.29912 - 2.25014i) q^{14} +(-1.55730 + 0.758168i) q^{15} +(-8.25283 - 14.2943i) q^{16} +4.46696 q^{17} +(6.52590 + 5.11364i) q^{18} +4.15403i q^{19} +(4.88215 - 2.81871i) q^{20} +(0.114754 - 1.62437i) q^{21} +(-1.93896 + 3.35838i) q^{22} +(-3.91930 + 6.78842i) q^{23} +(-14.4275 - 9.74651i) q^{24} +(0.500000 + 0.866025i) q^{25} +(5.78528 + 8.11277i) q^{26} +(5.08027 + 1.09124i) q^{27} +5.30012i q^{28} +(4.28503 + 7.42189i) q^{29} +(2.67951 - 3.96642i) q^{30} +(6.20587 + 3.58296i) q^{31} +(22.0925 + 12.7551i) q^{32} +(-0.171273 + 2.42440i) q^{33} +(-10.6909 + 6.17241i) q^{34} -0.940168 q^{35} +(-16.7443 - 2.37768i) q^{36} -5.11958i q^{37} +(-5.74002 - 9.94200i) q^{38} +(5.48571 + 2.98445i) q^{39} +(-5.02616 + 8.70557i) q^{40} +(-5.13782 - 2.96632i) q^{41} +(1.96990 + 4.04623i) q^{42} +(0.366759 + 0.635244i) q^{43} -7.91053i q^{44} +(0.421768 - 2.97020i) q^{45} -21.6626i q^{46} +(-3.03656 + 1.75316i) q^{47} +(28.5176 + 2.01464i) q^{48} +(-3.05804 + 5.29668i) q^{49} +(-2.39334 - 1.38179i) q^{50} +(-4.33106 + 6.41116i) q^{51} +(-18.4948 - 8.43133i) q^{52} -5.13246 q^{53} +(-13.6667 + 4.40818i) q^{54} +1.40322 q^{55} +(-4.72544 - 8.18470i) q^{56} +(-5.96204 - 4.02766i) q^{57} +(-20.5110 - 11.8421i) q^{58} +(-1.86109 - 1.07450i) q^{59} +(-0.688089 + 9.74002i) q^{60} +(3.62363 + 6.27631i) q^{61} -19.8036 q^{62} +(2.22010 + 1.73965i) q^{63} -37.4883 q^{64} +(1.49560 - 3.28073i) q^{65} +(-2.94011 - 6.03908i) q^{66} +(9.82249 + 5.67102i) q^{67} +(12.5911 - 21.8083i) q^{68} +(-5.94297 - 12.2070i) q^{69} +(2.25014 - 1.29912i) q^{70} -2.61002i q^{71} +(27.9772 - 11.2570i) q^{72} -2.38236i q^{73} +(7.07420 + 12.2529i) q^{74} +(-1.72774 - 0.122057i) q^{75} +(20.2806 + 11.7090i) q^{76} +(-0.659631 + 1.14251i) q^{77} +(-17.2531 + 0.437318i) q^{78} +(-3.36957 - 5.83626i) q^{79} -16.5057i q^{80} +(-6.49192 + 6.23338i) q^{81} +16.3954 q^{82} +(-13.1087 + 7.56831i) q^{83} +(-7.60695 - 5.13887i) q^{84} +(3.86850 + 2.23348i) q^{85} +(-1.75555 - 1.01357i) q^{86} +(-14.8069 - 1.04604i) q^{87} +(7.05281 + 12.2158i) q^{88} -5.36781i q^{89} +(3.09478 + 7.69150i) q^{90} +(1.96814 + 2.75995i) q^{91} +(22.0947 + 38.2692i) q^{92} +(-11.1595 + 5.43297i) q^{93} +(4.84501 - 8.39181i) q^{94} +(-2.07702 + 3.59750i) q^{95} +(-39.7270 + 19.3410i) q^{96} +(-2.13066 + 1.23014i) q^{97} -16.9023i q^{98} +(-3.31355 - 2.59647i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$108 q - 6 q^{3} + 52 q^{4} - 14 q^{9}+O(q^{10})$$ 108 * q - 6 * q^3 + 52 * q^4 - 14 * q^9 $$108 q - 6 q^{3} + 52 q^{4} - 14 q^{9} - 8 q^{10} - 36 q^{12} - 4 q^{13} - 8 q^{14} - 64 q^{16} + 36 q^{17} + 24 q^{22} - 22 q^{23} + 54 q^{25} + 40 q^{26} + 48 q^{27} - 16 q^{29} + 20 q^{30} - 40 q^{35} - 76 q^{36} - 12 q^{38} + 26 q^{39} - 52 q^{42} - 6 q^{43} - 68 q^{48} + 58 q^{49} + 34 q^{51} + 22 q^{52} - 116 q^{53} + 24 q^{55} + 40 q^{56} + 18 q^{61} + 152 q^{62} - 216 q^{64} + 2 q^{65} - 72 q^{66} - 134 q^{69} + 32 q^{74} + 40 q^{77} - 34 q^{78} + 18 q^{79} + 34 q^{81} + 88 q^{82} + 60 q^{87} + 8 q^{90} + 16 q^{91} + 176 q^{92} - 76 q^{94} - 56 q^{95}+O(q^{100})$$ 108 * q - 6 * q^3 + 52 * q^4 - 14 * q^9 - 8 * q^10 - 36 * q^12 - 4 * q^13 - 8 * q^14 - 64 * q^16 + 36 * q^17 + 24 * q^22 - 22 * q^23 + 54 * q^25 + 40 * q^26 + 48 * q^27 - 16 * q^29 + 20 * q^30 - 40 * q^35 - 76 * q^36 - 12 * q^38 + 26 * q^39 - 52 * q^42 - 6 * q^43 - 68 * q^48 + 58 * q^49 + 34 * q^51 + 22 * q^52 - 116 * q^53 + 24 * q^55 + 40 * q^56 + 18 * q^61 + 152 * q^62 - 216 * q^64 + 2 * q^65 - 72 * q^66 - 134 * q^69 + 32 * q^74 + 40 * q^77 - 34 * q^78 + 18 * q^79 + 34 * q^81 + 88 * q^82 + 60 * q^87 + 8 * q^90 + 16 * q^91 + 176 * q^92 - 76 * q^94 - 56 * q^95

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/585\mathbb{Z}\right)^\times$$.

 $$n$$ $$326$$ $$352$$ $$496$$ $$\chi(n)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −2.39334 + 1.38179i −1.69235 + 0.977076i −0.739727 + 0.672907i $$0.765045\pi$$
−0.952618 + 0.304169i $$0.901621\pi$$
$$3$$ −0.969577 + 1.43524i −0.559786 + 0.828637i
$$4$$ 2.81871 4.88215i 1.40935 2.44107i
$$5$$ 0.866025 + 0.500000i 0.387298 + 0.223607i
$$6$$ 0.337317 4.77477i 0.137709 1.94929i
$$7$$ −0.814209 + 0.470084i −0.307742 + 0.177675i −0.645916 0.763409i $$-0.723524\pi$$
0.338174 + 0.941084i $$0.390191\pi$$
$$8$$ 10.0523i 3.55403i
$$9$$ −1.11984 2.78316i −0.373280 0.927719i
$$10$$ −2.76359 −0.873923
$$11$$ 1.21522 0.701610i 0.366404 0.211543i −0.305482 0.952198i $$-0.598818\pi$$
0.671886 + 0.740654i $$0.265484\pi$$
$$12$$ 4.27411 + 8.77915i 1.23383 + 2.53432i
$$13$$ −0.345136 3.58899i −0.0957234 0.995408i
$$14$$ 1.29912 2.25014i 0.347204 0.601375i
$$15$$ −1.55730 + 0.758168i −0.402093 + 0.195758i
$$16$$ −8.25283 14.2943i −2.06321 3.57358i
$$17$$ 4.46696 1.08340 0.541698 0.840573i $$-0.317782\pi$$
0.541698 + 0.840573i $$0.317782\pi$$
$$18$$ 6.52590 + 5.11364i 1.53817 + 1.20530i
$$19$$ 4.15403i 0.953001i 0.879174 + 0.476500i $$0.158095\pi$$
−0.879174 + 0.476500i $$0.841905\pi$$
$$20$$ 4.88215 2.81871i 1.09168 0.630283i
$$21$$ 0.114754 1.62437i 0.0250415 0.354467i
$$22$$ −1.93896 + 3.35838i −0.413388 + 0.716008i
$$23$$ −3.91930 + 6.78842i −0.817230 + 1.41548i 0.0904860 + 0.995898i $$0.471158\pi$$
−0.907716 + 0.419586i $$0.862175\pi$$
$$24$$ −14.4275 9.74651i −2.94501 1.98950i
$$25$$ 0.500000 + 0.866025i 0.100000 + 0.173205i
$$26$$ 5.78528 + 8.11277i 1.13459 + 1.59104i
$$27$$ 5.08027 + 1.09124i 0.977699 + 0.210010i
$$28$$ 5.30012i 1.00163i
$$29$$ 4.28503 + 7.42189i 0.795710 + 1.37821i 0.922387 + 0.386266i $$0.126235\pi$$
−0.126677 + 0.991944i $$0.540431\pi$$
$$30$$ 2.67951 3.96642i 0.489210 0.724166i
$$31$$ 6.20587 + 3.58296i 1.11461 + 0.643519i 0.940019 0.341123i $$-0.110807\pi$$
0.174588 + 0.984642i $$0.444141\pi$$
$$32$$ 22.0925 + 12.7551i 3.90543 + 2.25480i
$$33$$ −0.171273 + 2.42440i −0.0298149 + 0.422035i
$$34$$ −10.6909 + 6.17241i −1.83348 + 1.05856i
$$35$$ −0.940168 −0.158917
$$36$$ −16.7443 2.37768i −2.79071 0.396281i
$$37$$ 5.11958i 0.841653i −0.907141 0.420827i $$-0.861740\pi$$
0.907141 0.420827i $$-0.138260\pi$$
$$38$$ −5.74002 9.94200i −0.931154 1.61281i
$$39$$ 5.48571 + 2.98445i 0.878417 + 0.477895i
$$40$$ −5.02616 + 8.70557i −0.794706 + 1.37647i
$$41$$ −5.13782 2.96632i −0.802392 0.463261i 0.0419147 0.999121i $$-0.486654\pi$$
−0.844307 + 0.535860i $$0.819988\pi$$
$$42$$ 1.96990 + 4.04623i 0.303962 + 0.624347i
$$43$$ 0.366759 + 0.635244i 0.0559302 + 0.0968739i 0.892635 0.450780i $$-0.148854\pi$$
−0.836705 + 0.547654i $$0.815521\pi$$
$$44$$ 7.91053i 1.19256i
$$45$$ 0.421768 2.97020i 0.0628735 0.442772i
$$46$$ 21.6626i 3.19398i
$$47$$ −3.03656 + 1.75316i −0.442928 + 0.255725i −0.704839 0.709367i $$-0.748981\pi$$
0.261911 + 0.965092i $$0.415647\pi$$
$$48$$ 28.5176 + 2.01464i 4.11615 + 0.290788i
$$49$$ −3.05804 + 5.29668i −0.436863 + 0.756669i
$$50$$ −2.39334 1.38179i −0.338469 0.195415i
$$51$$ −4.33106 + 6.41116i −0.606470 + 0.897743i
$$52$$ −18.4948 8.43133i −2.56477 1.16921i
$$53$$ −5.13246 −0.704998 −0.352499 0.935812i $$-0.614668\pi$$
−0.352499 + 0.935812i $$0.614668\pi$$
$$54$$ −13.6667 + 4.40818i −1.85980 + 0.599877i
$$55$$ 1.40322 0.189210
$$56$$ −4.72544 8.18470i −0.631463 1.09373i
$$57$$ −5.96204 4.02766i −0.789692 0.533476i
$$58$$ −20.5110 11.8421i −2.69323 1.55494i
$$59$$ −1.86109 1.07450i −0.242293 0.139888i 0.373937 0.927454i $$-0.378008\pi$$
−0.616230 + 0.787566i $$0.711341\pi$$
$$60$$ −0.688089 + 9.74002i −0.0888319 + 1.25743i
$$61$$ 3.62363 + 6.27631i 0.463959 + 0.803600i 0.999154 0.0411286i $$-0.0130953\pi$$
−0.535195 + 0.844728i $$0.679762\pi$$
$$62$$ −19.8036 −2.51507
$$63$$ 2.22010 + 1.73965i 0.279706 + 0.219176i
$$64$$ −37.4883 −4.68604
$$65$$ 1.49560 3.28073i 0.185506 0.406924i
$$66$$ −2.94011 6.03908i −0.361903 0.743360i
$$67$$ 9.82249 + 5.67102i 1.20001 + 0.692825i 0.960557 0.278083i $$-0.0896991\pi$$
0.239452 + 0.970908i $$0.423032\pi$$
$$68$$ 12.5911 21.8083i 1.52689 2.64465i
$$69$$ −5.94297 12.2070i −0.715449 1.46955i
$$70$$ 2.25014 1.29912i 0.268943 0.155274i
$$71$$ 2.61002i 0.309753i −0.987934 0.154876i $$-0.950502\pi$$
0.987934 0.154876i $$-0.0494979\pi$$
$$72$$ 27.9772 11.2570i 3.29714 1.32665i
$$73$$ 2.38236i 0.278835i −0.990234 0.139417i $$-0.955477\pi$$
0.990234 0.139417i $$-0.0445229\pi$$
$$74$$ 7.07420 + 12.2529i 0.822359 + 1.42437i
$$75$$ −1.72774 0.122057i −0.199503 0.0140940i
$$76$$ 20.2806 + 11.7090i 2.32635 + 1.34312i
$$77$$ −0.659631 + 1.14251i −0.0751719 + 0.130202i
$$78$$ −17.2531 + 0.437318i −1.95352 + 0.0495165i
$$79$$ −3.36957 5.83626i −0.379106 0.656631i 0.611826 0.790992i $$-0.290435\pi$$
−0.990932 + 0.134361i $$0.957102\pi$$
$$80$$ 16.5057i 1.84539i
$$81$$ −6.49192 + 6.23338i −0.721324 + 0.692598i
$$82$$ 16.3954 1.81057
$$83$$ −13.1087 + 7.56831i −1.43887 + 0.830730i −0.997771 0.0667310i $$-0.978743\pi$$
−0.441095 + 0.897461i $$0.645410\pi$$
$$84$$ −7.60695 5.13887i −0.829987 0.560697i
$$85$$ 3.86850 + 2.23348i 0.419598 + 0.242255i
$$86$$ −1.75555 1.01357i −0.189306 0.109296i
$$87$$ −14.8069 1.04604i −1.58746 0.112147i
$$88$$ 7.05281 + 12.2158i 0.751832 + 1.30221i
$$89$$ 5.36781i 0.568987i −0.958678 0.284493i $$-0.908175\pi$$
0.958678 0.284493i $$-0.0918254\pi$$
$$90$$ 3.09478 + 7.69150i 0.326218 + 0.810755i
$$91$$ 1.96814 + 2.75995i 0.206317 + 0.289321i
$$92$$ 22.0947 + 38.2692i 2.30353 + 3.98984i
$$93$$ −11.1595 + 5.43297i −1.15718 + 0.563372i
$$94$$ 4.84501 8.39181i 0.499725 0.865549i
$$95$$ −2.07702 + 3.59750i −0.213097 + 0.369096i
$$96$$ −39.7270 + 19.3410i −4.05462 + 1.97398i
$$97$$ −2.13066 + 1.23014i −0.216336 + 0.124902i −0.604253 0.796793i $$-0.706528\pi$$
0.387917 + 0.921694i $$0.373195\pi$$
$$98$$ 16.9023i 1.70739i
$$99$$ −3.31355 2.59647i −0.333024 0.260955i
$$100$$ 5.63742 0.563742
$$101$$ 7.72313 + 13.3769i 0.768480 + 1.33105i 0.938387 + 0.345586i $$0.112320\pi$$
−0.169907 + 0.985460i $$0.554347\pi$$
$$102$$ 1.50678 21.3287i 0.149193 2.11186i
$$103$$ −3.13526 + 5.43043i −0.308926 + 0.535076i −0.978128 0.208005i $$-0.933303\pi$$
0.669202 + 0.743081i $$0.266636\pi$$
$$104$$ 36.0777 3.46942i 3.53771 0.340204i
$$105$$ 0.911565 1.34937i 0.0889596 0.131685i
$$106$$ 12.2837 7.09200i 1.19310 0.688836i
$$107$$ 1.87714 0.181470 0.0907348 0.995875i $$-0.471078\pi$$
0.0907348 + 0.995875i $$0.471078\pi$$
$$108$$ 19.6474 21.7268i 1.89057 2.09066i
$$109$$ 4.00285i 0.383404i 0.981453 + 0.191702i $$0.0614007\pi$$
−0.981453 + 0.191702i $$0.938599\pi$$
$$110$$ −3.35838 + 1.93896i −0.320209 + 0.184873i
$$111$$ 7.34783 + 4.96383i 0.697425 + 0.471145i
$$112$$ 13.4391 + 7.75904i 1.26987 + 0.733160i
$$113$$ 1.10512 1.91412i 0.103961 0.180065i −0.809352 0.587323i $$-0.800182\pi$$
0.913313 + 0.407258i $$0.133515\pi$$
$$114$$ 19.8346 + 1.40122i 1.85768 + 0.131237i
$$115$$ −6.78842 + 3.91930i −0.633023 + 0.365476i
$$116$$ 48.3130 4.48575
$$117$$ −9.60224 + 4.97967i −0.887727 + 0.460370i
$$118$$ 5.93895 0.546725
$$119$$ −3.63704 + 2.09984i −0.333407 + 0.192492i
$$120$$ −7.62135 15.6545i −0.695731 1.42905i
$$121$$ −4.51549 + 7.82105i −0.410499 + 0.711005i
$$122$$ −17.3451 10.0142i −1.57036 0.906645i
$$123$$ 9.23890 4.49794i 0.833043 0.405565i
$$124$$ 34.9851 20.1986i 3.14175 1.81389i
$$125$$ 1.00000i 0.0894427i
$$126$$ −7.71729 1.09585i −0.687511 0.0976264i
$$127$$ 8.59217 0.762432 0.381216 0.924486i $$-0.375505\pi$$
0.381216 + 0.924486i $$0.375505\pi$$
$$128$$ 45.5372 26.2909i 4.02496 2.32381i
$$129$$ −1.26733 0.0895312i −0.111582 0.00788279i
$$130$$ 0.953813 + 9.91850i 0.0836549 + 0.869910i
$$131$$ −1.96246 + 3.39908i −0.171461 + 0.296979i −0.938931 0.344106i $$-0.888182\pi$$
0.767470 + 0.641085i $$0.221515\pi$$
$$132$$ 11.3535 + 7.66987i 0.988198 + 0.667577i
$$133$$ −1.95274 3.38225i −0.169324 0.293278i
$$134$$ −31.3447 −2.70777
$$135$$ 3.85402 + 3.48518i 0.331702 + 0.299957i
$$136$$ 44.9033i 3.85043i
$$137$$ −9.46701 + 5.46578i −0.808822 + 0.466973i −0.846546 0.532315i $$-0.821322\pi$$
0.0377249 + 0.999288i $$0.487989\pi$$
$$138$$ 31.0911 + 21.0036i 2.64665 + 1.78795i
$$139$$ 1.52565 2.64251i 0.129404 0.224134i −0.794042 0.607863i $$-0.792027\pi$$
0.923446 + 0.383729i $$0.125360\pi$$
$$140$$ −2.65006 + 4.59004i −0.223971 + 0.387929i
$$141$$ 0.427973 6.05803i 0.0360418 0.510178i
$$142$$ 3.60652 + 6.24667i 0.302652 + 0.524209i
$$143$$ −2.93749 4.11928i −0.245645 0.344472i
$$144$$ −30.5415 + 38.9762i −2.54512 + 3.24802i
$$145$$ 8.57006i 0.711705i
$$146$$ 3.29193 + 5.70180i 0.272442 + 0.471884i
$$147$$ −4.63702 9.52458i −0.382455 0.785574i
$$148$$ −24.9945 14.4306i −2.05454 1.18619i
$$149$$ 2.46587 + 1.42367i 0.202012 + 0.116631i 0.597593 0.801799i $$-0.296124\pi$$
−0.395582 + 0.918431i $$0.629457\pi$$
$$150$$ 4.30373 2.09526i 0.351398 0.171077i
$$151$$ 7.48190 4.31968i 0.608868 0.351530i −0.163654 0.986518i $$-0.552328\pi$$
0.772522 + 0.634988i $$0.218995\pi$$
$$152$$ −41.7577 −3.38700
$$153$$ −5.00228 12.4322i −0.404410 1.00509i
$$154$$ 3.64589i 0.293795i
$$155$$ 3.58296 + 6.20587i 0.287790 + 0.498467i
$$156$$ 30.0332 18.3697i 2.40458 1.47076i
$$157$$ 8.19349 14.1915i 0.653912 1.13261i −0.328254 0.944590i $$-0.606460\pi$$
0.982165 0.188019i $$-0.0602066\pi$$
$$158$$ 16.1290 + 9.31210i 1.28316 + 0.740831i
$$159$$ 4.97632 7.36632i 0.394648 0.584187i
$$160$$ 12.7551 + 22.0925i 1.00838 + 1.74656i
$$161$$ 7.36959i 0.580805i
$$162$$ 6.92410 23.8891i 0.544009 1.87690i
$$163$$ 15.3374i 1.20132i 0.799504 + 0.600661i $$0.205096\pi$$
−0.799504 + 0.600661i $$0.794904\pi$$
$$164$$ −28.9640 + 16.7224i −2.26171 + 1.30580i
$$165$$ −1.36053 + 2.01396i −0.105917 + 0.156787i
$$166$$ 20.9157 36.2270i 1.62337 2.81176i
$$167$$ 18.7608 + 10.8316i 1.45175 + 0.838171i 0.998581 0.0532517i $$-0.0169586\pi$$
0.453173 + 0.891422i $$0.350292\pi$$
$$168$$ 16.3287 + 1.15355i 1.25979 + 0.0889983i
$$169$$ −12.7618 + 2.47738i −0.981674 + 0.190568i
$$170$$ −12.3448 −0.946805
$$171$$ 11.5613 4.65185i 0.884117 0.355736i
$$172$$ 4.13514 0.315302
$$173$$ −9.26888 16.0542i −0.704700 1.22058i −0.966800 0.255535i $$-0.917748\pi$$
0.262100 0.965041i $$-0.415585\pi$$
$$174$$ 36.8833 17.9565i 2.79611 1.36128i
$$175$$ −0.814209 0.470084i −0.0615484 0.0355350i
$$176$$ −20.0581 11.5805i −1.51193 0.872915i
$$177$$ 3.34664 1.62930i 0.251549 0.122466i
$$178$$ 7.41721 + 12.8470i 0.555943 + 0.962922i
$$179$$ −13.7008 −1.02405 −0.512023 0.858972i $$-0.671104\pi$$
−0.512023 + 0.858972i $$0.671104\pi$$
$$180$$ −13.3121 10.4313i −0.992228 0.777501i
$$181$$ 9.90097 0.735933 0.367966 0.929839i $$-0.380054\pi$$
0.367966 + 0.929839i $$0.380054\pi$$
$$182$$ −8.52411 3.88592i −0.631849 0.288044i
$$183$$ −12.5214 0.884583i −0.925610 0.0653902i
$$184$$ −68.2394 39.3980i −5.03068 2.90446i
$$185$$ 2.55979 4.43368i 0.188199 0.325971i
$$186$$ 19.2012 28.4230i 1.40790 2.08408i
$$187$$ 5.42835 3.13406i 0.396960 0.229185i
$$188$$ 19.7666i 1.44163i
$$189$$ −4.64938 + 1.49965i −0.338193 + 0.109084i
$$190$$ 11.4800i 0.832850i
$$191$$ 5.23461 + 9.06661i 0.378763 + 0.656037i 0.990883 0.134728i $$-0.0430162\pi$$
−0.612120 + 0.790765i $$0.709683\pi$$
$$192$$ 36.3478 53.8048i 2.62318 3.88303i
$$193$$ 23.9152 + 13.8075i 1.72145 + 0.993882i 0.915950 + 0.401292i $$0.131439\pi$$
0.805504 + 0.592590i $$0.201895\pi$$
$$194$$ 3.39960 5.88827i 0.244077 0.422753i
$$195$$ 3.25854 + 5.32747i 0.233349 + 0.381508i
$$196$$ 17.2395 + 29.8596i 1.23139 + 2.13283i
$$197$$ 3.17899i 0.226494i −0.993567 0.113247i $$-0.963875\pi$$
0.993567 0.113247i $$-0.0361251\pi$$
$$198$$ 11.5182 + 1.63558i 0.818564 + 0.116236i
$$199$$ 8.27536 0.586624 0.293312 0.956017i $$-0.405242\pi$$
0.293312 + 0.956017i $$0.405242\pi$$
$$200$$ −8.70557 + 5.02616i −0.615577 + 0.355403i
$$201$$ −17.6630 + 8.59916i −1.24585 + 0.606538i
$$202$$ −36.9681 21.3435i −2.60107 1.50173i
$$203$$ −6.97782 4.02865i −0.489747 0.282756i
$$204$$ 19.0923 + 39.2161i 1.33673 + 2.74568i
$$205$$ −2.96632 5.13782i −0.207177 0.358841i
$$206$$ 17.3291i 1.20738i
$$207$$ 23.2822 + 3.30607i 1.61823 + 0.229788i
$$208$$ −48.4539 + 34.5528i −3.35967 + 2.39581i
$$209$$ 2.91451 + 5.04808i 0.201601 + 0.349183i
$$210$$ −0.317134 + 4.48909i −0.0218843 + 0.309777i
$$211$$ 1.31199 2.27244i 0.0903214 0.156441i −0.817325 0.576177i $$-0.804544\pi$$
0.907646 + 0.419736i $$0.137877\pi$$
$$212$$ −14.4669 + 25.0574i −0.993592 + 1.72095i
$$213$$ 3.74602 + 2.53062i 0.256673 + 0.173395i
$$214$$ −4.49262 + 2.59382i −0.307109 + 0.177310i
$$215$$ 0.733517i 0.0500254i
$$216$$ −10.9695 + 51.0686i −0.746382 + 3.47478i
$$217$$ −6.73716 −0.457349
$$218$$ −5.53112 9.58018i −0.374615 0.648852i
$$219$$ 3.41927 + 2.30988i 0.231053 + 0.156088i
$$220$$ 3.95527 6.85072i 0.266664 0.461876i
$$221$$ −1.54171 16.0319i −0.103706 1.07842i
$$222$$ −24.4448 1.72692i −1.64063 0.115903i
$$223$$ −15.0867 + 8.71029i −1.01028 + 0.583284i −0.911273 0.411802i $$-0.864899\pi$$
−0.0990052 + 0.995087i $$0.531566\pi$$
$$224$$ −23.9838 −1.60249
$$225$$ 1.85036 2.36139i 0.123358 0.157426i
$$226$$ 6.10817i 0.406310i
$$227$$ 19.1103 11.0333i 1.26839 0.732307i 0.293709 0.955895i $$-0.405110\pi$$
0.974684 + 0.223588i $$0.0717769\pi$$
$$228$$ −36.4689 + 17.7548i −2.41521 + 1.17584i
$$229$$ −0.226938 0.131023i −0.0149965 0.00865823i 0.492483 0.870322i $$-0.336089\pi$$
−0.507480 + 0.861664i $$0.669423\pi$$
$$230$$ 10.8313 18.7604i 0.714196 1.23702i
$$231$$ −1.00022 2.05449i −0.0658097 0.135175i
$$232$$ −74.6073 + 43.0745i −4.89821 + 2.82798i
$$233$$ −0.554346 −0.0363164 −0.0181582 0.999835i $$-0.505780\pi$$
−0.0181582 + 0.999835i $$0.505780\pi$$
$$234$$ 16.1005 25.1863i 1.05252 1.64648i
$$235$$ −3.50632 −0.228727
$$236$$ −10.4917 + 6.05741i −0.682954 + 0.394304i
$$237$$ 11.6435 + 0.822562i 0.756327 + 0.0534311i
$$238$$ 5.80310 10.0513i 0.376159 0.651527i
$$239$$ 24.7211 + 14.2727i 1.59907 + 0.923225i 0.991666 + 0.128835i $$0.0411237\pi$$
0.607407 + 0.794391i $$0.292210\pi$$
$$240$$ 23.6896 + 16.0035i 1.52916 + 1.03302i
$$241$$ 7.86079 4.53843i 0.506358 0.292346i −0.224977 0.974364i $$-0.572231\pi$$
0.731335 + 0.682018i $$0.238897\pi$$
$$242$$ 24.9579i 1.60435i
$$243$$ −2.65199 15.3612i −0.170125 0.985422i
$$244$$ 40.8559 2.61553
$$245$$ −5.29668 + 3.05804i −0.338393 + 0.195371i
$$246$$ −15.8966 + 23.5313i −1.01353 + 1.50030i
$$247$$ 14.9088 1.43371i 0.948625 0.0912245i
$$248$$ −36.0171 + 62.3834i −2.28709 + 3.96135i
$$249$$ 1.84754 26.1522i 0.117083 1.65733i
$$250$$ −1.38179 2.39334i −0.0873923 0.151368i
$$251$$ −17.9008 −1.12989 −0.564945 0.825129i $$-0.691103\pi$$
−0.564945 + 0.825129i $$0.691103\pi$$
$$252$$ 14.7511 5.93528i 0.929229 0.373888i
$$253$$ 10.9993i 0.691518i
$$254$$ −20.5640 + 11.8726i −1.29030 + 0.744954i
$$255$$ −6.95639 + 3.38670i −0.435626 + 0.212083i
$$256$$ −35.1690 + 60.9145i −2.19806 + 3.80716i
$$257$$ 3.01865 5.22846i 0.188298 0.326142i −0.756385 0.654127i $$-0.773036\pi$$
0.944683 + 0.327985i $$0.106369\pi$$
$$258$$ 3.15686 1.53691i 0.196538 0.0956839i
$$259$$ 2.40663 + 4.16841i 0.149541 + 0.259012i
$$260$$ −11.8013 16.5492i −0.731888 1.02634i
$$261$$ 15.8577 20.2372i 0.981569 1.25265i
$$262$$ 10.8469i 0.670122i
$$263$$ 12.7170 + 22.0265i 0.784164 + 1.35821i 0.929497 + 0.368830i $$0.120241\pi$$
−0.145332 + 0.989383i $$0.546425\pi$$
$$264$$ −24.3709 1.72170i −1.49993 0.105963i
$$265$$ −4.44484 2.56623i −0.273044 0.157642i
$$266$$ 9.34715 + 5.39658i 0.573111 + 0.330886i
$$267$$ 7.70411 + 5.20451i 0.471484 + 0.318511i
$$268$$ 55.3735 31.9699i 3.38248 1.95287i
$$269$$ −3.71647 −0.226597 −0.113298 0.993561i $$-0.536142\pi$$
−0.113298 + 0.993561i $$0.536142\pi$$
$$270$$ −14.0398 3.01575i −0.854434 0.183533i
$$271$$ 18.5902i 1.12927i −0.825340 0.564636i $$-0.809016\pi$$
0.825340 0.564636i $$-0.190984\pi$$
$$272$$ −36.8650 63.8521i −2.23527 3.87160i
$$273$$ −5.86946 + 0.148775i −0.355236 + 0.00900426i
$$274$$ 15.1052 26.1629i 0.912537 1.58056i
$$275$$ 1.21522 + 0.701610i 0.0732807 + 0.0423087i
$$276$$ −76.3481 5.39365i −4.59561 0.324660i
$$277$$ −14.3726 24.8941i −0.863566 1.49574i −0.868464 0.495752i $$-0.834893\pi$$
0.00489863 0.999988i $$-0.498441\pi$$
$$278$$ 8.43255i 0.505750i
$$279$$ 3.02236 21.2842i 0.180944 1.27425i
$$280$$ 9.45087i 0.564798i
$$281$$ 4.82295 2.78453i 0.287713 0.166111i −0.349197 0.937049i $$-0.613546\pi$$
0.636910 + 0.770938i $$0.280212\pi$$
$$282$$ 7.34667 + 15.0903i 0.437488 + 0.898613i
$$283$$ −6.34111 + 10.9831i −0.376940 + 0.652879i −0.990615 0.136679i $$-0.956357\pi$$
0.613675 + 0.789559i $$0.289690\pi$$
$$284$$ −12.7425 7.35690i −0.756130 0.436552i
$$285$$ −3.14945 6.46908i −0.186558 0.383195i
$$286$$ 12.7224 + 5.79982i 0.752291 + 0.342951i
$$287$$ 5.57768 0.329240
$$288$$ 10.7594 75.7704i 0.634003 4.46481i
$$289$$ 2.95370 0.173747
$$290$$ −11.8421 20.5110i −0.695390 1.20445i
$$291$$ 0.300295 4.25073i 0.0176036 0.249182i
$$292$$ −11.6310 6.71519i −0.680656 0.392977i
$$293$$ −27.6460 15.9614i −1.61510 0.932477i −0.988163 0.153406i $$-0.950976\pi$$
−0.626935 0.779071i $$-0.715691\pi$$
$$294$$ 24.2589 + 16.3881i 1.41481 + 0.955775i
$$295$$ −1.07450 1.86109i −0.0625598 0.108357i
$$296$$ 51.4637 2.99126
$$297$$ 6.93930 2.23826i 0.402659 0.129877i
$$298$$ −7.86887 −0.455831
$$299$$ 25.7163 + 11.7234i 1.48721 + 0.677982i
$$300$$ −5.46591 + 8.09106i −0.315575 + 0.467138i
$$301$$ −0.597236 0.344814i −0.0344241 0.0198748i
$$302$$ −11.9378 + 20.6769i −0.686943 + 1.18982i
$$303$$ −26.6872 1.88533i −1.53314 0.108309i
$$304$$ 59.3791 34.2825i 3.40562 1.96624i
$$305$$ 7.24726i 0.414977i
$$306$$ 29.1509 + 22.8424i 1.66645 + 1.30581i
$$307$$ 1.59309i 0.0909227i −0.998966 0.0454614i $$-0.985524\pi$$
0.998966 0.0454614i $$-0.0144758\pi$$
$$308$$ 3.71861 + 6.44083i 0.211888 + 0.367000i
$$309$$ −4.75410 9.76507i −0.270451 0.555515i
$$310$$ −17.1505 9.90182i −0.974081 0.562386i
$$311$$ −5.65092 + 9.78768i −0.320434 + 0.555009i −0.980578 0.196131i $$-0.937162\pi$$
0.660143 + 0.751140i $$0.270496\pi$$
$$312$$ −30.0007 + 55.1442i −1.69846 + 3.12192i
$$313$$ 6.19960 + 10.7380i 0.350422 + 0.606949i 0.986323 0.164821i $$-0.0527048\pi$$
−0.635901 + 0.771770i $$0.719371\pi$$
$$314$$ 45.2869i 2.55569i
$$315$$ 1.05284 + 2.61663i 0.0593207 + 0.147431i
$$316$$ −37.9913 −2.13718
$$317$$ 4.77057 2.75429i 0.267942 0.154696i −0.360010 0.932948i $$-0.617227\pi$$
0.627952 + 0.778252i $$0.283893\pi$$
$$318$$ −1.73126 + 24.5063i −0.0970844 + 1.37425i
$$319$$ 10.4145 + 6.01284i 0.583102 + 0.336654i
$$320$$ −32.4658 18.7441i −1.81489 1.04783i
$$321$$ −1.82003 + 2.69415i −0.101584 + 0.150373i
$$322$$ 10.1833 + 17.6379i 0.567491 + 0.982923i
$$323$$ 18.5559i 1.03248i
$$324$$ 12.1335 + 49.2646i 0.674081 + 2.73692i
$$325$$ 2.93559 2.09339i 0.162837 0.116121i
$$326$$ −21.1932 36.7077i −1.17378 2.03305i
$$327$$ −5.74507 3.88108i −0.317703 0.214624i
$$328$$ 29.8184 51.6470i 1.64645 2.85173i
$$329$$ 1.64827 2.85488i 0.0908718 0.157395i
$$330$$ 0.473329 6.70006i 0.0260559 0.368826i
$$331$$ −2.49540 + 1.44072i −0.137160 + 0.0791891i −0.567010 0.823711i $$-0.691900\pi$$
0.429850 + 0.902900i $$0.358566\pi$$
$$332$$ 85.3314i 4.68317i
$$333$$ −14.2486 + 5.73311i −0.780818 + 0.314172i
$$334$$ −59.8679 −3.27583
$$335$$ 5.67102 + 9.82249i 0.309841 + 0.536660i
$$336$$ −24.1663 + 11.7653i −1.31838 + 0.641850i
$$337$$ −12.4695 + 21.5978i −0.679258 + 1.17651i 0.295946 + 0.955205i $$0.404365\pi$$
−0.975205 + 0.221305i $$0.928968\pi$$
$$338$$ 27.1200 23.5633i 1.47513 1.28168i
$$339$$ 1.67573 + 3.44199i 0.0910130 + 0.186943i
$$340$$ 21.8083 12.5911i 1.18272 0.682846i
$$341$$ 10.0554 0.544528
$$342$$ −21.2423 + 27.1088i −1.14865 + 1.46588i
$$343$$ 12.3313i 0.665829i
$$344$$ −6.38568 + 3.68678i −0.344293 + 0.198778i
$$345$$ 0.956759 13.5431i 0.0515102 0.729135i
$$346$$ 44.3671 + 25.6154i 2.38519 + 1.37709i
$$347$$ 7.98579 13.8318i 0.428700 0.742530i −0.568058 0.822988i $$-0.692305\pi$$
0.996758 + 0.0804587i $$0.0256385\pi$$
$$348$$ −46.8432 + 69.3409i −2.51106 + 3.71706i
$$349$$ −15.5244 + 8.96300i −0.831000 + 0.479778i −0.854195 0.519953i $$-0.825950\pi$$
0.0231946 + 0.999731i $$0.492616\pi$$
$$350$$ 2.59824 0.138882
$$351$$ 2.16308 18.6097i 0.115457 0.993312i
$$352$$ 35.7964 1.90795
$$353$$ 14.0533 8.11371i 0.747984 0.431849i −0.0769808 0.997033i $$-0.524528\pi$$
0.824965 + 0.565184i $$0.191195\pi$$
$$354$$ −5.75827 + 8.52383i −0.306049 + 0.453037i
$$355$$ 1.30501 2.26035i 0.0692629 0.119967i
$$356$$ −26.2064 15.1303i −1.38894 0.801904i
$$357$$ 0.512603 7.25599i 0.0271298 0.384028i
$$358$$ 32.7906 18.9317i 1.73304 1.00057i
$$359$$ 8.77458i 0.463104i −0.972822 0.231552i $$-0.925620\pi$$
0.972822 0.231552i $$-0.0743804\pi$$
$$360$$ 29.8575 + 4.23975i 1.57363 + 0.223455i
$$361$$ 1.74400 0.0917896
$$362$$ −23.6964 + 13.6811i −1.24545 + 0.719062i
$$363$$ −6.84699 14.0639i −0.359374 0.738165i
$$364$$ 19.0221 1.82926i 0.997029 0.0958793i
$$365$$ 1.19118 2.06319i 0.0623493 0.107992i
$$366$$ 31.1903 15.1849i 1.63034 0.793729i
$$367$$ 6.27655 + 10.8713i 0.327633 + 0.567477i 0.982042 0.188664i $$-0.0604156\pi$$
−0.654409 + 0.756141i $$0.727082\pi$$
$$368$$ 129.381 6.74446
$$369$$ −2.50220 + 17.6212i −0.130259 + 0.917321i
$$370$$ 14.1484i 0.735540i
$$371$$ 4.17889 2.41269i 0.216957 0.125260i
$$372$$ −4.93079 + 69.7962i −0.255650 + 3.61876i
$$373$$ 15.6255 27.0642i 0.809059 1.40133i −0.104457 0.994529i $$-0.533311\pi$$
0.913516 0.406802i $$-0.133356\pi$$
$$374$$ −8.66125 + 15.0017i −0.447863 + 0.775721i
$$375$$ −1.43524 0.969577i −0.0741156 0.0500688i
$$376$$ −17.6233 30.5245i −0.908855 1.57418i
$$377$$ 25.1582 17.9405i 1.29571 0.923983i
$$378$$ 9.05532 10.0137i 0.465756 0.515047i
$$379$$ 20.8786i 1.07246i 0.844071 + 0.536232i $$0.180153\pi$$
−0.844071 + 0.536232i $$0.819847\pi$$
$$380$$ 11.7090 + 20.2806i 0.600660 + 1.04037i
$$381$$ −8.33077 + 12.3318i −0.426799 + 0.631780i
$$382$$ −25.0564 14.4663i −1.28200 0.740160i
$$383$$ −4.28958 2.47659i −0.219187 0.126548i 0.386387 0.922337i $$-0.373723\pi$$
−0.605574 + 0.795789i $$0.707056\pi$$
$$384$$ −6.41801 + 90.8480i −0.327518 + 4.63607i
$$385$$ −1.14251 + 0.659631i −0.0582279 + 0.0336179i
$$386$$ −76.3162 −3.88439
$$387$$ 1.35727 1.73212i 0.0689941 0.0880485i
$$388$$ 13.8696i 0.704123i
$$389$$ −2.65062 4.59101i −0.134392 0.232773i 0.790973 0.611851i $$-0.209575\pi$$
−0.925365 + 0.379078i $$0.876241\pi$$
$$390$$ −15.1602 8.24780i −0.767669 0.417644i
$$391$$ −17.5073 + 30.3236i −0.885384 + 1.53353i
$$392$$ −53.2440 30.7404i −2.68923 1.55263i
$$393$$ −2.97575 6.11228i −0.150107 0.308324i
$$394$$ 4.39271 + 7.60839i 0.221301 + 0.383305i
$$395$$ 6.73913i 0.339083i
$$396$$ −22.0163 + 8.85853i −1.10636 + 0.445158i
$$397$$ 8.13319i 0.408193i 0.978951 + 0.204097i $$0.0654257\pi$$
−0.978951 + 0.204097i $$0.934574\pi$$
$$398$$ −19.8057 + 11.4348i −0.992771 + 0.573177i
$$399$$ 6.74769 + 0.476694i 0.337807 + 0.0238645i
$$400$$ 8.25283 14.2943i 0.412641 0.714716i
$$401$$ 10.0017 + 5.77447i 0.499459 + 0.288363i 0.728490 0.685056i $$-0.240222\pi$$
−0.229031 + 0.973419i $$0.573556\pi$$
$$402$$ 30.3911 44.9873i 1.51577 2.24376i
$$403$$ 10.7174 23.5094i 0.533869 1.17109i
$$404$$ 87.0770 4.33224
$$405$$ −8.73885 + 2.15231i −0.434237 + 0.106949i
$$406$$ 22.2670 1.10509
$$407$$ −3.59194 6.22143i −0.178046 0.308385i
$$408$$ −64.4471 43.5372i −3.19061 2.15541i
$$409$$ 18.1368 + 10.4713i 0.896809 + 0.517773i 0.876163 0.482014i $$-0.160095\pi$$
0.0206452 + 0.999787i $$0.493428\pi$$
$$410$$ 14.1988 + 8.19769i 0.701229 + 0.404855i
$$411$$ 1.33428 18.8870i 0.0658151 0.931625i
$$412$$ 17.6748 + 30.6136i 0.870773 + 1.50822i
$$413$$ 2.02042 0.0994184
$$414$$ −60.2905 + 24.2587i −2.96312 + 1.19225i
$$415$$ −15.1366 −0.743027
$$416$$ 38.1530 83.6919i 1.87061 4.10333i
$$417$$ 2.31340 + 4.75179i 0.113288 + 0.232696i
$$418$$ −13.9508 8.05451i −0.682357 0.393959i
$$419$$ −12.0859 + 20.9334i −0.590435 + 1.02266i 0.403738 + 0.914874i $$0.367711\pi$$
−0.994174 + 0.107789i $$0.965623\pi$$
$$420$$ −4.01838 8.25387i −0.196077 0.402748i
$$421$$ −21.6880 + 12.5216i −1.05701 + 0.610265i −0.924604 0.380930i $$-0.875604\pi$$
−0.132407 + 0.991195i $$0.542270\pi$$
$$422$$ 7.25162i 0.353004i
$$423$$ 8.27979 + 6.48797i 0.402577 + 0.315456i
$$424$$ 51.5932i 2.50559i
$$425$$ 2.23348 + 3.86850i 0.108340 + 0.187650i
$$426$$ −12.4623 0.880404i −0.603799 0.0426557i
$$427$$ −5.90079 3.40682i −0.285559 0.164868i
$$428$$ 5.29110 9.16446i 0.255755 0.442981i
$$429$$ 8.76029 0.222049i 0.422951 0.0107206i
$$430$$ −1.01357 1.75555i −0.0488787 0.0846603i
$$431$$ 36.5394i 1.76004i −0.474934 0.880021i $$-0.657528\pi$$
0.474934 0.880021i $$-0.342472\pi$$
$$432$$ −26.3280 81.6249i −1.26671 3.92718i
$$433$$ −5.44159 −0.261506 −0.130753 0.991415i $$-0.541739\pi$$
−0.130753 + 0.991415i $$0.541739\pi$$
$$434$$ 16.1243 9.30937i 0.773992 0.446864i
$$435$$ −12.3001 8.30934i −0.589745 0.398402i
$$436$$ 19.5425 + 11.2829i 0.935917 + 0.540352i
$$437$$ −28.1993 16.2809i −1.34896 0.778821i
$$438$$ −11.3752 0.803610i −0.543530 0.0383980i
$$439$$ −10.8326 18.7626i −0.517010 0.895488i −0.999805 0.0197542i $$-0.993712\pi$$
0.482795 0.875734i $$-0.339622\pi$$
$$440$$ 14.1056i 0.672459i
$$441$$ 18.1660 + 2.57957i 0.865049 + 0.122837i
$$442$$ 25.8426 + 36.2394i 1.22921 + 1.72373i
$$443$$ −11.6711 20.2149i −0.554510 0.960440i −0.997941 0.0641315i $$-0.979572\pi$$
0.443431 0.896308i $$-0.353761\pi$$
$$444$$ 44.9455 21.8816i 2.13302 1.03846i
$$445$$ 2.68391 4.64866i 0.127229 0.220368i
$$446$$ 24.0717 41.6933i 1.13983 1.97424i
$$447$$ −4.43416 + 2.15876i −0.209728 + 0.102106i
$$448$$ 30.5233 17.6226i 1.44209 0.832592i
$$449$$ 38.0975i 1.79793i −0.438017 0.898967i $$-0.644319\pi$$
0.438017 0.898967i $$-0.355681\pi$$
$$450$$ −1.16559 + 8.20842i −0.0549466 + 0.386949i
$$451$$ −8.32480 −0.391999
$$452$$ −6.23000 10.7907i −0.293035 0.507551i
$$453$$ −1.05450 + 14.9266i −0.0495446 + 0.701313i
$$454$$ −30.4915 + 52.8129i −1.43104 + 2.47863i
$$455$$ 0.324485 + 3.37426i 0.0152121 + 0.158188i
$$456$$ 40.4873 59.9324i 1.89599 2.80659i
$$457$$ 27.7372 16.0141i 1.29749 0.749107i 0.317521 0.948251i $$-0.397149\pi$$
0.979970 + 0.199144i $$0.0638162\pi$$
$$458$$ 0.724186 0.0338390
$$459$$ 22.6934 + 4.87454i 1.05924 + 0.227524i
$$460$$ 44.1894i 2.06034i
$$461$$ −5.01318 + 2.89436i −0.233487 + 0.134804i −0.612180 0.790719i $$-0.709707\pi$$
0.378693 + 0.925522i $$0.376374\pi$$
$$462$$ 5.23274 + 3.53498i 0.243449 + 0.164462i
$$463$$ −16.4158 9.47766i −0.762906 0.440464i 0.0674320 0.997724i $$-0.478519\pi$$
−0.830338 + 0.557260i $$0.811853\pi$$
$$464$$ 70.7272 122.503i 3.28343 5.68707i
$$465$$ −12.3809 0.874654i −0.574150 0.0405611i
$$466$$ 1.32674 0.765992i 0.0614599 0.0354839i
$$467$$ −17.8196 −0.824594 −0.412297 0.911050i $$-0.635273\pi$$
−0.412297 + 0.911050i $$0.635273\pi$$
$$468$$ −2.75445 + 60.9158i −0.127324 + 2.81583i
$$469$$ −10.6634 −0.492391
$$470$$ 8.39181 4.84501i 0.387085 0.223484i
$$471$$ 12.4241 + 25.5194i 0.572471 + 1.17587i
$$472$$ 10.8012 18.7083i 0.497167 0.861118i
$$473$$ 0.891387 + 0.514643i 0.0409860 + 0.0236633i
$$474$$ −29.0034 + 14.1203i −1.33217 + 0.648565i
$$475$$ −3.59750 + 2.07702i −0.165065 + 0.0953001i
$$476$$ 23.6754i 1.08516i
$$477$$ 5.74753 + 14.2844i 0.263161 + 0.654039i
$$478$$ −78.8878 −3.60825
$$479$$ 22.1315 12.7776i 1.01121 0.583825i 0.0996673 0.995021i $$-0.468222\pi$$
0.911547 + 0.411196i $$0.134889\pi$$
$$480$$ −44.0751 3.11371i −2.01174 0.142121i
$$481$$ −18.3741 + 1.76695i −0.837788 + 0.0805659i
$$482$$ −12.5423 + 21.7240i −0.571288 + 0.989500i
$$483$$ 10.5771 + 7.14539i 0.481277 + 0.325126i
$$484$$ 25.4557 + 44.0906i 1.15708 + 2.00412i
$$485$$ −2.46028 −0.111715
$$486$$ 27.5731 + 33.1001i 1.25074 + 1.50145i
$$487$$ 1.02317i 0.0463641i 0.999731 + 0.0231821i $$0.00737974\pi$$
−0.999731 + 0.0231821i $$0.992620\pi$$
$$488$$ −63.0916 + 36.4259i −2.85602 + 1.64892i
$$489$$ −22.0129 14.8708i −0.995460 0.672482i
$$490$$ 8.45117 14.6379i 0.381785 0.661271i
$$491$$ 17.8296 30.8817i 0.804638 1.39367i −0.111898 0.993720i $$-0.535693\pi$$
0.916535 0.399953i $$-0.130974\pi$$
$$492$$ 4.08218 57.7840i 0.184039 2.60511i
$$493$$ 19.1410 + 33.1533i 0.862069 + 1.49315i
$$494$$ −33.7007 + 24.0322i −1.51627 + 1.08126i
$$495$$ −1.57138 3.90538i −0.0706283 0.175534i
$$496$$ 118.278i 5.31085i
$$497$$ 1.22693 + 2.12511i 0.0550353 + 0.0953240i
$$498$$ 31.7152 + 65.1440i 1.42119 + 2.91917i
$$499$$ −16.9361 9.77806i −0.758164 0.437726i 0.0704724 0.997514i $$-0.477549\pi$$
−0.828636 + 0.559788i $$0.810883\pi$$
$$500$$ 4.88215 + 2.81871i 0.218336 + 0.126057i
$$501$$ −33.7359 + 16.4243i −1.50721 + 0.733782i
$$502$$ 42.8427 24.7353i 1.91216 1.10399i
$$503$$ −0.0328439 −0.00146444 −0.000732219 1.00000i $$-0.500233\pi$$
−0.000732219 1.00000i $$0.500233\pi$$
$$504$$ −17.4876 + 22.3172i −0.778958 + 0.994086i
$$505$$ 15.4463i 0.687349i
$$506$$ −15.1987 26.3250i −0.675665 1.17029i
$$507$$ 8.81787 20.7182i 0.391616 0.920129i
$$508$$ 24.2188 41.9483i 1.07454 1.86115i
$$509$$ 26.4775 + 15.2868i 1.17359 + 0.677574i 0.954524 0.298136i $$-0.0963647\pi$$
0.219069 + 0.975709i $$0.429698\pi$$
$$510$$ 11.9693 17.7178i 0.530008 0.784558i
$$511$$ 1.11991 + 1.93974i 0.0495419 + 0.0858091i
$$512$$ 89.2216i 3.94307i
$$513$$ −4.53306 + 21.1036i −0.200140 + 0.931748i
$$514$$ 16.6846i 0.735927i
$$515$$ −5.43043 + 3.13526i −0.239293 + 0.138156i
$$516$$ −4.00934 + 5.93493i −0.176501 + 0.261271i
$$517$$ −2.46007 + 4.26096i −0.108194 + 0.187397i
$$518$$ −11.5198 6.65093i −0.506149 0.292225i
$$519$$ 32.0285 + 2.26267i 1.40590 + 0.0993203i
$$520$$ 32.9790 + 15.0343i 1.44622 + 0.659296i
$$521$$ 16.9685 0.743404 0.371702 0.928352i $$-0.378774\pi$$
0.371702 + 0.928352i $$0.378774\pi$$
$$522$$ −9.98921 + 70.3467i −0.437216 + 3.07899i
$$523$$ 39.1230 1.71073 0.855365 0.518025i $$-0.173333\pi$$
0.855365 + 0.518025i $$0.173333\pi$$
$$524$$ 11.0632 + 19.1621i 0.483299 + 0.837098i
$$525$$ 1.46412 0.712805i 0.0638995 0.0311093i
$$526$$ −60.8722 35.1446i −2.65415 1.53238i
$$527$$ 27.7213 + 16.0049i 1.20756 + 0.697185i
$$528$$ 36.0687 17.5600i 1.56969 0.764199i
$$529$$ −19.2218 33.2931i −0.835729 1.44752i
$$530$$ 14.1840 0.616114
$$531$$ −0.906380 + 6.38297i −0.0393335 + 0.276997i
$$532$$ −22.0169 −0.954552
$$533$$ −8.87286 + 19.4634i −0.384326 + 0.843053i
$$534$$ −25.6301 1.81065i −1.10912 0.0783546i
$$535$$ 1.62565 + 0.938568i 0.0702829 + 0.0405778i
$$536$$ −57.0069 + 98.7389i −2.46232 + 4.26487i
$$537$$ 13.2840 19.6640i 0.573246 0.848563i
$$538$$ 8.89476 5.13539i 0.383480 0.221402i
$$539$$ 8.58221i 0.369662i
$$540$$ 27.8785 8.99221i 1.19970 0.386963i
$$541$$ 34.2098i 1.47079i −0.677637 0.735397i $$-0.736996\pi$$
0.677637 0.735397i $$-0.263004\pi$$
$$542$$ 25.6878 + 44.4926i 1.10338 + 1.91112i
$$543$$ −9.59975 + 14.2103i −0.411965 + 0.609822i
$$544$$ 98.6861 + 56.9764i 4.23113 + 2.44284i
$$545$$ −2.00143 + 3.46657i −0.0857317 + 0.148492i
$$546$$ 13.8420 8.46645i 0.592384 0.362331i
$$547$$ 0.907849 + 1.57244i 0.0388168 + 0.0672327i 0.884781 0.466007i $$-0.154308\pi$$
−0.845964 + 0.533240i $$0.820974\pi$$
$$548$$ 61.6258i 2.63252i
$$549$$ 13.4101 17.1136i 0.572328 0.730391i
$$550$$ −3.87792 −0.165355
$$551$$ −30.8308 + 17.8002i −1.31344 + 0.758312i
$$552$$ 122.709 59.7406i 5.22285 2.54273i
$$553$$ 5.48706 + 3.16796i 0.233334 + 0.134715i
$$554$$ 68.7970 + 39.7199i 2.92290 + 1.68754i
$$555$$ 3.88150 + 7.97272i 0.164760 + 0.338423i
$$556$$ −8.60074 14.8969i −0.364753 0.631770i
$$557$$ 8.40849i 0.356279i 0.984005 + 0.178140i $$0.0570078\pi$$
−0.984005 + 0.178140i $$0.942992\pi$$
$$558$$ 22.1769 + 55.1166i 0.938824 + 2.33327i
$$559$$ 2.15331 1.53554i 0.0910752 0.0649464i
$$560$$ 7.75904 + 13.4391i 0.327879 + 0.567904i
$$561$$ −0.765071 + 10.8297i −0.0323013 + 0.457231i
$$562$$ −7.69530 + 13.3286i −0.324607 + 0.562235i
$$563$$ 1.50627 2.60894i 0.0634817 0.109954i −0.832538 0.553968i $$-0.813113\pi$$
0.896019 + 0.444015i $$0.146446\pi$$
$$564$$ −28.3699 19.1652i −1.19459 0.807003i
$$565$$ 1.91412 1.10512i 0.0805275 0.0464926i
$$566$$ 35.0485i 1.47320i
$$567$$ 2.35557 8.12702i 0.0989245 0.341303i
$$568$$ 26.2368 1.10087
$$569$$ −1.56915 2.71784i −0.0657820 0.113938i 0.831259 0.555886i $$-0.187621\pi$$
−0.897041 + 0.441948i $$0.854288\pi$$
$$570$$ 16.4766 + 11.1308i 0.690130 + 0.466217i
$$571$$ −0.656430 + 1.13697i −0.0274708 + 0.0475807i −0.879434 0.476021i $$-0.842079\pi$$
0.851963 + 0.523602i $$0.175412\pi$$
$$572$$ −28.3909 + 2.73021i −1.18708 + 0.114156i
$$573$$ −18.0881 1.27785i −0.755643 0.0533828i
$$574$$ −13.3493 + 7.70720i −0.557187 + 0.321692i
$$575$$ −7.83859 −0.326892
$$576$$ 41.9809 + 104.336i 1.74920 + 4.34732i
$$577$$ 0.958966i 0.0399223i −0.999801 0.0199611i $$-0.993646\pi$$
0.999801 0.0199611i $$-0.00635425\pi$$
$$578$$ −7.06921 + 4.08141i −0.294040 + 0.169764i
$$579$$ −43.0047 + 20.9367i −1.78721 + 0.870101i
$$580$$ 41.8403 + 24.1565i 1.73732 + 1.00304i
$$581$$ 7.11548 12.3244i 0.295200 0.511301i
$$582$$ 5.15493 + 10.5884i 0.213679 + 0.438902i
$$583$$ −6.23709 + 3.60098i −0.258314 + 0.149137i
$$584$$ 23.9483 0.990987
$$585$$ −10.8056 0.488601i −0.446757 0.0202012i
$$586$$ 88.2217 3.64441
$$587$$ 1.95240 1.12722i 0.0805840 0.0465252i −0.459167 0.888350i $$-0.651852\pi$$
0.539751 + 0.841825i $$0.318519\pi$$
$$588$$ −59.5708 4.20841i −2.45666 0.173552i
$$589$$ −14.8837 + 25.7794i −0.613274 + 1.06222i
$$590$$ 5.14328 + 2.96948i 0.211746 + 0.122251i
$$591$$ 4.56262 + 3.08227i 0.187681 + 0.126788i
$$592$$ −73.1808 + 42.2510i −3.00771 + 1.73650i
$$593$$ 27.3356i 1.12254i 0.827633 + 0.561270i $$0.189687\pi$$
−0.827633 + 0.561270i $$0.810313\pi$$
$$594$$ −13.5153 + 14.9456i −0.554538 + 0.613225i
$$595$$ −4.19969 −0.172170
$$596$$ 13.9011 8.02582i 0.569412 0.328750i
$$597$$ −8.02360 + 11.8771i −0.328384 + 0.486099i
$$598$$ −77.7471 + 7.47655i −3.17932 + 0.305739i
$$599$$ 6.79637 11.7717i 0.277692 0.480977i −0.693119 0.720824i $$-0.743764\pi$$
0.970811 + 0.239847i $$0.0770972\pi$$
$$600$$ 1.22696 17.3679i 0.0500905 0.709040i
$$601$$ 14.2702 + 24.7167i 0.582094 + 1.00822i 0.995231 + 0.0975469i $$0.0310996\pi$$
−0.413137 + 0.910669i $$0.635567\pi$$
$$602$$ 1.90585 0.0776767
$$603$$ 4.78371 33.6882i 0.194808 1.37189i
$$604$$ 48.7036i 1.98172i
$$605$$ −7.82105 + 4.51549i −0.317971 + 0.183581i
$$606$$ 66.4766 32.3640i 2.70043 1.31470i
$$607$$ 0.672883 1.16547i 0.0273115 0.0473048i −0.852047 0.523466i $$-0.824639\pi$$
0.879358 + 0.476161i $$0.157972\pi$$
$$608$$ −52.9851 + 91.7728i −2.14883 + 3.72188i
$$609$$ 12.5476 6.10878i 0.508455 0.247540i
$$610$$ −10.0142 17.3451i −0.405464 0.702285i
$$611$$ 7.34011 + 10.2931i 0.296949 + 0.416416i
$$612$$ −74.7960 10.6210i −3.02345 0.429329i
$$613$$ 48.1040i 1.94290i −0.237243 0.971450i $$-0.576244\pi$$
0.237243 0.971450i $$-0.423756\pi$$
$$614$$ 2.20133 + 3.81281i 0.0888384 + 0.153873i
$$615$$ 10.2501 + 0.724123i 0.413323 + 0.0291995i
$$616$$ −11.4849 6.63082i −0.462741 0.267163i
$$617$$ 22.4778 + 12.9776i 0.904923 + 0.522457i 0.878794 0.477201i $$-0.158349\pi$$
0.0261287 + 0.999659i $$0.491682\pi$$
$$618$$ 24.8715 + 16.8019i 1.00048 + 0.675872i
$$619$$ −33.5563 + 19.3737i −1.34874 + 0.778697i −0.988071 0.153997i $$-0.950786\pi$$
−0.360671 + 0.932693i $$0.617452\pi$$
$$620$$ 40.3973 1.62239
$$621$$ −27.3189 + 30.2101i −1.09627 + 1.21229i
$$622$$ 31.2336i 1.25235i
$$623$$ 2.52332 + 4.37052i 0.101095 + 0.175101i
$$624$$ −2.61190 103.045i −0.104560 4.12509i
$$625$$ −0.500000 + 0.866025i −0.0200000 + 0.0346410i
$$626$$ −29.6755 17.1331i −1.18607 0.684778i
$$627$$ −10.0711 0.711475i −0.402199 0.0284136i
$$628$$ −46.1901 80.0037i −1.84319 3.19249i
$$629$$ 22.8689i 0.911844i
$$630$$ −6.13544 4.80768i −0.244442 0.191543i
$$631$$ 4.70806i 0.187425i −0.995599 0.0937124i $$-0.970127\pi$$
0.995599 0.0937124i $$-0.0298734\pi$$
$$632$$ 58.6680 33.8720i 2.33369 1.34736i
$$633$$ 1.98942 + 4.08634i 0.0790725 + 0.162417i
$$634$$ −7.61172 + 13.1839i −0.302300 + 0.523599i
$$635$$ 7.44104 + 4.29609i 0.295289 + 0.170485i
$$636$$ −21.9367 45.0586i −0.869846 1.78669i
$$637$$ 20.0652 + 9.14722i 0.795013 + 0.362426i
$$638$$ −33.2340 −1.31575
$$639$$ −7.26411 + 2.92281i −0.287364 + 0.115625i
$$640$$ 52.5819 2.07848
$$641$$ −10.2802 17.8059i −0.406045 0.703291i 0.588397 0.808572i $$-0.299759\pi$$
−0.994443 + 0.105281i $$0.966426\pi$$
$$642$$ 0.633189 8.96291i 0.0249900 0.353738i
$$643$$ 20.7509 + 11.9805i 0.818336 + 0.472467i 0.849842 0.527037i $$-0.176697\pi$$
−0.0315062 + 0.999504i $$0.510030\pi$$
$$644$$ −35.9794 20.7727i −1.41779 0.818560i
$$645$$ −1.05277 0.711201i −0.0414530 0.0280035i
$$646$$ −25.6404 44.4105i −1.00881 1.74731i
$$647$$ −13.3974 −0.526705 −0.263353 0.964700i $$-0.584828\pi$$
−0.263353 + 0.964700i $$0.584828\pi$$
$$648$$ −62.6600 65.2589i −2.46152 2.56361i
$$649$$ −3.01552 −0.118369
$$650$$ −4.13323 + 9.06658i −0.162118 + 0.355621i
$$651$$ 6.53220 9.66946i 0.256017 0.378976i
$$652$$ 74.8797 + 43.2318i 2.93251 + 1.69309i
$$653$$ 15.5616 26.9534i 0.608972 1.05477i −0.382439 0.923981i $$-0.624916\pi$$
0.991410 0.130789i $$-0.0417510\pi$$
$$654$$ 19.1127 + 1.35023i 0.747367 + 0.0527981i
$$655$$ −3.39908 + 1.96246i −0.132813 + 0.0766797i
$$656$$ 97.9221i 3.82322i
$$657$$ −6.63049 + 2.66787i −0.258680 + 0.104083i
$$658$$ 9.11025i 0.355155i
$$659$$ 16.3755 + 28.3632i 0.637899 + 1.10487i 0.985893 + 0.167377i $$0.0535296\pi$$
−0.347994 + 0.937497i $$0.613137\pi$$
$$660$$ 5.99751 + 12.3191i 0.233453 + 0.479519i
$$661$$ 0.856192 + 0.494323i 0.0333020 + 0.0192269i 0.516559 0.856252i $$-0.327213\pi$$
−0.483257 + 0.875479i $$0.660546\pi$$
$$662$$ 3.98156 6.89626i 0.154748 0.268031i
$$663$$ 24.5044 + 13.3314i 0.951674 + 0.517750i
$$664$$ −76.0791 131.773i −2.95244 5.11378i
$$665$$ 3.90549i 0.151448i
$$666$$ 26.1797 33.4099i 1.01444 1.29461i
$$667$$ −67.1772 −2.60111
$$668$$ 105.762 61.0620i 4.09207 2.36256i
$$669$$ 2.12631 30.0983i 0.0822080 1.16367i
$$670$$ −27.1453 15.6724i −1.04872 0.605476i
$$671$$ 8.80705 + 5.08475i 0.339992 + 0.196295i
$$672$$ 23.2542 34.4226i 0.897050 1.32788i
$$673$$ −16.9228 29.3112i −0.652327 1.12986i −0.982557 0.185963i $$-0.940459\pi$$
0.330229 0.943901i $$-0.392874\pi$$
$$674$$ 68.9212i 2.65475i
$$675$$ 1.59509 + 4.94527i 0.0613951 + 0.190343i
$$676$$ −23.8768 + 69.2878i −0.918337 + 2.66492i
$$677$$ −4.26394 7.38536i −0.163876 0.283842i 0.772379 0.635162i $$-0.219067\pi$$
−0.936256 + 0.351319i $$0.885733\pi$$
$$678$$ −8.76671 5.92234i −0.336683 0.227446i
$$679$$ 1.15654 2.00318i 0.0443838 0.0768750i
$$680$$ −22.4517 + 38.8874i −0.860982 + 1.49126i
$$681$$ −2.69340 + 38.1255i −0.103211 + 1.46097i
$$682$$ −24.0659 + 13.8944i −0.921529 + 0.532045i
$$683$$ 14.2430i 0.544992i 0.962157 + 0.272496i $$0.0878492\pi$$
−0.962157 + 0.272496i $$0.912151\pi$$
$$684$$ 9.87698 69.5563i 0.377656 2.65955i
$$685$$ −10.9316 −0.417674
$$686$$ 17.0393 + 29.5130i 0.650565 + 1.12681i
$$687$$ 0.408084 0.198675i 0.0155694 0.00757991i
$$688$$ 6.05359 10.4851i 0.230791 0.399742i
$$689$$ 1.77139 + 18.4204i 0.0674848 + 0.701760i
$$690$$ 16.4239 + 33.7352i 0.625248 + 1.28428i
$$691$$ −25.0299 + 14.4510i −0.952182 + 0.549742i −0.893758 0.448549i $$-0.851941\pi$$
−0.0584238 + 0.998292i $$0.518607\pi$$
$$692$$ −104.505 −3.97269
$$693$$ 3.91848 + 0.556423i 0.148851 + 0.0211367i
$$694$$ 44.1389i 1.67549i
$$695$$ 2.64251 1.52565i 0.100236 0.0578713i
$$696$$ 10.5151 148.844i 0.398575 5.64190i
$$697$$ −22.9504 13.2504i −0.869309 0.501896i
$$698$$ 24.7700 42.9030i 0.937560 1.62390i
$$699$$ 0.537482 0.795621i 0.0203294 0.0300932i
$$700$$ −4.59004 + 2.65006i −0.173487 + 0.100163i
$$701$$ −11.3665 −0.429307 −0.214654 0.976690i $$-0.568862\pi$$
−0.214654 + 0.976690i $$0.568862\pi$$
$$702$$ 20.5378 + 47.5282i 0.775149 + 1.79384i
$$703$$ 21.2669 0.802096
$$704$$ −45.5567 + 26.3022i −1.71698 + 0.991300i
$$705$$ 3.39965 5.03242i 0.128038 0.189532i
$$706$$ −22.4229 + 38.8377i −0.843898 + 1.46167i
$$707$$ −12.5765 7.26104i −0.472987 0.273079i
$$708$$ 1.47870 20.9313i 0.0555731 0.786647i
$$709$$ −10.7632 + 6.21412i −0.404220 + 0.233376i −0.688303 0.725423i $$-0.741644\pi$$
0.284083 + 0.958800i $$0.408311\pi$$
$$710$$ 7.21303i 0.270700i
$$711$$ −12.4699 + 15.9137i −0.467656 + 0.596811i
$$712$$ 53.9590 2.02220
$$713$$ −48.6453 + 28.0854i −1.82178 + 1.05180i
$$714$$ 8.79945 + 18.0743i 0.329311 + 0.676415i
$$715$$ −0.484301 5.03615i −0.0181118 0.188341i
$$716$$ −38.6186 + 66.8894i −1.44324 + 2.49977i
$$717$$ −44.4538 + 21.6422i −1.66016 + 0.808244i
$$718$$ 12.1247 + 21.0005i 0.452488 + 0.783732i
$$719$$ −24.9731 −0.931339 −0.465670 0.884959i $$-0.654186\pi$$
−0.465670 + 0.884959i $$0.654186\pi$$
$$720$$ −45.9378 + 18.4837i −1.71200 + 0.688846i
$$721$$ 5.89534i 0.219554i
$$722$$ −4.17399 + 2.40985i −0.155340 + 0.0896854i
$$723$$ −1.10790 + 15.6825i −0.0412032 + 0.583238i
$$724$$ 27.9079 48.3380i 1.03719 1.79647i
$$725$$ −4.28503 + 7.42189i −0.159142 + 0.275642i
$$726$$ 35.8206 + 24.1986i 1.32943 + 0.898095i
$$727$$ 12.4131 + 21.5002i 0.460378 + 0.797398i 0.998980 0.0451624i $$-0.0143805\pi$$
−0.538602 + 0.842561i $$0.681047\pi$$
$$728$$ −27.7439 + 19.7844i −1.02826 + 0.733258i
$$729$$ 24.6184 + 11.0876i 0.911792 + 0.410653i
$$730$$ 6.58387i 0.243680i
$$731$$ 1.63829 + 2.83761i 0.0605945 + 0.104953i
$$732$$ −39.6129 + 58.6381i −1.46414 + 2.16732i
$$733$$ 32.5827 + 18.8116i 1.20347 + 0.694823i 0.961325 0.275417i $$-0.0888161\pi$$
0.242144 + 0.970240i $$0.422149\pi$$
$$734$$ −30.0438 17.3458i −1.10894 0.640245i
$$735$$ 0.746514 10.5670i 0.0275356 0.389771i
$$736$$ −173.174 + 99.9819i −6.38327 + 3.68538i
$$737$$ 15.9154 0.586250
$$738$$ −18.3602 45.6309i −0.675848 1.67970i
$$739$$ 33.7094i 1.24002i −0.784594 0.620009i $$-0.787129\pi$$
0.784594 0.620009i $$-0.212871\pi$$
$$740$$ −14.4306 24.9945i −0.530479 0.918817i
$$741$$ −12.3975 + 22.7878i −0.455434 + 0.837132i
$$742$$ −6.66767 + 11.5487i −0.244778 + 0.423968i
$$743$$ −25.8146 14.9041i −0.947046 0.546777i −0.0548841 0.998493i $$-0.517479\pi$$
−0.892162 + 0.451715i $$0.850812\pi$$
$$744$$ −54.6140 112.179i −2.00224 4.11267i
$$745$$ 1.42367 + 2.46587i 0.0521592 + 0.0903423i
$$746$$ 86.3650i 3.16205i
$$747$$ 35.7434 + 28.0082i 1.30778 + 1.02477i
$$748$$ 35.3360i 1.29201i
$$749$$ −1.52838 + 0.882412i −0.0558459 + 0.0322426i
$$750$$ 4.77477 + 0.337317i 0.174350 + 0.0123171i
$$751$$ 12.3434 21.3793i 0.450416 0.780143i −0.547996 0.836481i $$-0.684609\pi$$
0.998412 + 0.0563380i $$0.0179424\pi$$
$$752$$ 50.1205 + 28.9371i 1.82771 + 1.05523i
$$753$$ 17.3562 25.6920i 0.632496 0.936269i
$$754$$ −35.4220 + 77.7011i −1.28999 + 2.82971i
$$755$$ 8.63935 0.314418
$$756$$ −5.78372 + 26.9261i −0.210352 + 0.979291i
$$757$$ 8.67812 0.315412 0.157706 0.987486i $$-0.449590\pi$$
0.157706 + 0.987486i $$0.449590\pi$$
$$758$$ −28.8500 49.9696i −1.04788 1.81498i
$$759$$ −15.7866 10.6646i −0.573018 0.387102i
$$760$$ −36.1632 20.8789i −1.31178 0.757356i
$$761$$ 3.55858 + 2.05455i 0.128999 + 0.0744773i 0.563111 0.826382i $$-0.309604\pi$$
−0.434112 + 0.900859i $$0.642938\pi$$
$$762$$ 2.89828 41.0257i 0.104994 1.48620i
$$763$$ −1.88168 3.25916i −0.0681213 0.117990i
$$764$$ 59.0194 2.13525
$$765$$ 1.88402 13.2678i 0.0681169 0.479697i
$$766$$ 13.6886 0.494588
$$767$$ −3.21405 + 7.05029i −0.116053 + 0.254571i
$$768$$ −53.3280 109.537i −1.92431 3.95259i
$$769$$ 20.4103 + 11.7839i 0.736013 + 0.424937i 0.820618 0.571477i $$-0.193629\pi$$
−0.0846050 + 0.996415i $$0.526963\pi$$
$$770$$ 1.82295 3.15744i 0.0656945 0.113786i
$$771$$ 4.57729 + 9.40189i 0.164847 + 0.338601i
$$772$$ 134.820 77.8384i 4.85228 2.80146i