# Properties

 Label 585.2.bt.b.376.2 Level $585$ Weight $2$ Character 585.376 Analytic conductor $4.671$ Analytic rank $0$ Dimension $108$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$585 = 3^{2} \cdot 5 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 585.bt (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$4.67124851824$$ Analytic rank: $$0$$ Dimension: $$108$$ Relative dimension: $$54$$ over $$\Q(\zeta_{6})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 376.2 Character $$\chi$$ $$=$$ 585.376 Dual form 585.2.bt.b.571.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-2.36351 - 1.36457i) q^{2} +(1.68089 + 0.417855i) q^{3} +(2.72413 + 4.71833i) q^{4} +(-0.866025 + 0.500000i) q^{5} +(-3.40262 - 3.28131i) q^{6} +(3.99906 + 2.30886i) q^{7} -9.41082i q^{8} +(2.65080 + 1.40474i) q^{9} +O(q^{10})$$ $$q+(-2.36351 - 1.36457i) q^{2} +(1.68089 + 0.417855i) q^{3} +(2.72413 + 4.71833i) q^{4} +(-0.866025 + 0.500000i) q^{5} +(-3.40262 - 3.28131i) q^{6} +(3.99906 + 2.30886i) q^{7} -9.41082i q^{8} +(2.65080 + 1.40474i) q^{9} +2.72915 q^{10} +(3.27016 + 1.88803i) q^{11} +(2.60739 + 9.06929i) q^{12} +(-3.58605 - 0.374474i) q^{13} +(-6.30123 - 10.9140i) q^{14} +(-1.66462 + 0.478573i) q^{15} +(-7.39350 + 12.8059i) q^{16} +0.475463 q^{17} +(-4.34832 - 6.93732i) q^{18} +0.112571i q^{19} +(-4.71833 - 2.72413i) q^{20} +(5.75722 + 5.55197i) q^{21} +(-5.15272 - 8.92477i) q^{22} +(-1.58104 - 2.73845i) q^{23} +(3.93235 - 15.8186i) q^{24} +(0.500000 - 0.866025i) q^{25} +(7.96468 + 5.77851i) q^{26} +(3.86872 + 3.46886i) q^{27} +25.1585i q^{28} +(-3.16117 + 5.47531i) q^{29} +(4.58741 + 1.14039i) q^{30} +(-1.42093 + 0.820373i) q^{31} +(18.6493 - 10.7672i) q^{32} +(4.70787 + 4.54003i) q^{33} +(-1.12376 - 0.648805i) q^{34} -4.61772 q^{35} +(0.593096 + 16.3340i) q^{36} -5.54346i q^{37} +(0.153612 - 0.266064i) q^{38} +(-5.87129 - 2.12790i) q^{39} +(4.70541 + 8.15001i) q^{40} +(-10.4728 + 6.04647i) q^{41} +(-6.03120 - 20.9783i) q^{42} +(1.34138 - 2.32333i) q^{43} +20.5730i q^{44} +(-2.99802 + 0.108860i) q^{45} +8.62981i q^{46} +(5.28707 + 3.05249i) q^{47} +(-17.7787 + 18.4360i) q^{48} +(7.16167 + 12.4044i) q^{49} +(-2.36351 + 1.36457i) q^{50} +(0.799202 + 0.198674i) q^{51} +(-8.00198 - 17.9403i) q^{52} -2.21477 q^{53} +(-4.41026 - 13.4779i) q^{54} -3.77606 q^{55} +(21.7283 - 37.6344i) q^{56} +(-0.0470384 + 0.189220i) q^{57} +(14.9429 - 8.62731i) q^{58} +(7.78385 - 4.49401i) q^{59} +(-6.79271 - 6.55054i) q^{60} +(0.717381 - 1.24254i) q^{61} +4.47784 q^{62} +(7.35736 + 11.7379i) q^{63} -29.1964 q^{64} +(3.29285 - 1.46872i) q^{65} +(-4.93191 - 17.1547i) q^{66} +(10.8645 - 6.27264i) q^{67} +(1.29522 + 2.24339i) q^{68} +(-1.51329 - 5.26368i) q^{69} +(10.9140 + 6.30123i) q^{70} -9.75529i q^{71} +(13.2197 - 24.9461i) q^{72} +1.60702i q^{73} +(-7.56446 + 13.1020i) q^{74} +(1.20232 - 1.24677i) q^{75} +(-0.531149 + 0.306659i) q^{76} +(8.71840 + 15.1007i) q^{77} +(10.9732 + 13.0411i) q^{78} +(2.25865 - 3.91210i) q^{79} -14.7870i q^{80} +(5.05343 + 7.44734i) q^{81} +33.0035 q^{82} +(-1.12664 - 0.650468i) q^{83} +(-10.5126 + 42.2888i) q^{84} +(-0.411763 + 0.237732i) q^{85} +(-6.34072 + 3.66082i) q^{86} +(-7.60147 + 7.88249i) q^{87} +(17.7679 - 30.7749i) q^{88} -7.82871i q^{89} +(7.23442 + 3.83374i) q^{90} +(-13.4762 - 9.77724i) q^{91} +(8.61393 - 14.9198i) q^{92} +(-2.73122 + 0.785217i) q^{93} +(-8.33071 - 14.4292i) q^{94} +(-0.0562856 - 0.0974896i) q^{95} +(35.8465 - 10.3058i) q^{96} +(-4.83079 - 2.78906i) q^{97} -39.0905i q^{98} +(6.01635 + 9.59850i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$108 q - 6 q^{3} + 52 q^{4} - 14 q^{9}+O(q^{10})$$ 108 * q - 6 * q^3 + 52 * q^4 - 14 * q^9 $$108 q - 6 q^{3} + 52 q^{4} - 14 q^{9} - 8 q^{10} - 36 q^{12} - 4 q^{13} - 8 q^{14} - 64 q^{16} + 36 q^{17} + 24 q^{22} - 22 q^{23} + 54 q^{25} + 40 q^{26} + 48 q^{27} - 16 q^{29} + 20 q^{30} - 40 q^{35} - 76 q^{36} - 12 q^{38} + 26 q^{39} - 52 q^{42} - 6 q^{43} - 68 q^{48} + 58 q^{49} + 34 q^{51} + 22 q^{52} - 116 q^{53} + 24 q^{55} + 40 q^{56} + 18 q^{61} + 152 q^{62} - 216 q^{64} + 2 q^{65} - 72 q^{66} - 134 q^{69} + 32 q^{74} + 40 q^{77} - 34 q^{78} + 18 q^{79} + 34 q^{81} + 88 q^{82} + 60 q^{87} + 8 q^{90} + 16 q^{91} + 176 q^{92} - 76 q^{94} - 56 q^{95}+O(q^{100})$$ 108 * q - 6 * q^3 + 52 * q^4 - 14 * q^9 - 8 * q^10 - 36 * q^12 - 4 * q^13 - 8 * q^14 - 64 * q^16 + 36 * q^17 + 24 * q^22 - 22 * q^23 + 54 * q^25 + 40 * q^26 + 48 * q^27 - 16 * q^29 + 20 * q^30 - 40 * q^35 - 76 * q^36 - 12 * q^38 + 26 * q^39 - 52 * q^42 - 6 * q^43 - 68 * q^48 + 58 * q^49 + 34 * q^51 + 22 * q^52 - 116 * q^53 + 24 * q^55 + 40 * q^56 + 18 * q^61 + 152 * q^62 - 216 * q^64 + 2 * q^65 - 72 * q^66 - 134 * q^69 + 32 * q^74 + 40 * q^77 - 34 * q^78 + 18 * q^79 + 34 * q^81 + 88 * q^82 + 60 * q^87 + 8 * q^90 + 16 * q^91 + 176 * q^92 - 76 * q^94 - 56 * q^95

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/585\mathbb{Z}\right)^\times$$.

 $$n$$ $$326$$ $$352$$ $$496$$ $$\chi(n)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −2.36351 1.36457i −1.67126 0.964900i −0.966937 0.255017i $$-0.917919\pi$$
−0.704320 0.709883i $$-0.748748\pi$$
$$3$$ 1.68089 + 0.417855i 0.970463 + 0.241248i
$$4$$ 2.72413 + 4.71833i 1.36206 + 2.35917i
$$5$$ −0.866025 + 0.500000i −0.387298 + 0.223607i
$$6$$ −3.40262 3.28131i −1.38911 1.33959i
$$7$$ 3.99906 + 2.30886i 1.51150 + 0.872667i 0.999910 + 0.0134398i $$0.00427816\pi$$
0.511594 + 0.859227i $$0.329055\pi$$
$$8$$ 9.41082i 3.32723i
$$9$$ 2.65080 + 1.40474i 0.883598 + 0.468246i
$$10$$ 2.72915 0.863033
$$11$$ 3.27016 + 1.88803i 0.985992 + 0.569263i 0.904074 0.427377i $$-0.140562\pi$$
0.0819179 + 0.996639i $$0.473895\pi$$
$$12$$ 2.60739 + 9.06929i 0.752689 + 2.61808i
$$13$$ −3.58605 0.374474i −0.994592 0.103860i
$$14$$ −6.30123 10.9140i −1.68407 2.91690i
$$15$$ −1.66462 + 0.478573i −0.429804 + 0.123567i
$$16$$ −7.39350 + 12.8059i −1.84838 + 3.20148i
$$17$$ 0.475463 0.115317 0.0576584 0.998336i $$-0.481637\pi$$
0.0576584 + 0.998336i $$0.481637\pi$$
$$18$$ −4.34832 6.93732i −1.02491 1.63514i
$$19$$ 0.112571i 0.0258256i 0.999917 + 0.0129128i $$0.00411039\pi$$
−0.999917 + 0.0129128i $$0.995890\pi$$
$$20$$ −4.71833 2.72413i −1.05505 0.609134i
$$21$$ 5.75722 + 5.55197i 1.25633 + 1.21154i
$$22$$ −5.15272 8.92477i −1.09856 1.90277i
$$23$$ −1.58104 2.73845i −0.329670 0.571006i 0.652776 0.757551i $$-0.273604\pi$$
−0.982446 + 0.186545i $$0.940271\pi$$
$$24$$ 3.93235 15.8186i 0.802688 3.22895i
$$25$$ 0.500000 0.866025i 0.100000 0.173205i
$$26$$ 7.96468 + 5.77851i 1.56200 + 1.13326i
$$27$$ 3.86872 + 3.46886i 0.744536 + 0.667582i
$$28$$ 25.1585i 4.75452i
$$29$$ −3.16117 + 5.47531i −0.587014 + 1.01674i 0.407607 + 0.913158i $$0.366363\pi$$
−0.994621 + 0.103581i $$0.966970\pi$$
$$30$$ 4.58741 + 1.14039i 0.837542 + 0.208205i
$$31$$ −1.42093 + 0.820373i −0.255206 + 0.147343i −0.622146 0.782901i $$-0.713739\pi$$
0.366940 + 0.930245i $$0.380406\pi$$
$$32$$ 18.6493 10.7672i 3.29676 1.90338i
$$33$$ 4.70787 + 4.54003i 0.819535 + 0.790317i
$$34$$ −1.12376 0.648805i −0.192724 0.111269i
$$35$$ −4.61772 −0.780537
$$36$$ 0.593096 + 16.3340i 0.0988493 + 2.72234i
$$37$$ 5.54346i 0.911339i −0.890149 0.455669i $$-0.849400\pi$$
0.890149 0.455669i $$-0.150600\pi$$
$$38$$ 0.153612 0.266064i 0.0249192 0.0431612i
$$39$$ −5.87129 2.12790i −0.940159 0.340736i
$$40$$ 4.70541 + 8.15001i 0.743990 + 1.28863i
$$41$$ −10.4728 + 6.04647i −1.63558 + 0.944301i −0.653246 + 0.757146i $$0.726593\pi$$
−0.982330 + 0.187155i $$0.940073\pi$$
$$42$$ −6.03120 20.9783i −0.930634 3.23703i
$$43$$ 1.34138 2.32333i 0.204558 0.354305i −0.745434 0.666580i $$-0.767758\pi$$
0.949992 + 0.312275i $$0.101091\pi$$
$$44$$ 20.5730i 3.10149i
$$45$$ −2.99802 + 0.108860i −0.446919 + 0.0162278i
$$46$$ 8.62981i 1.27240i
$$47$$ 5.28707 + 3.05249i 0.771198 + 0.445252i 0.833302 0.552818i $$-0.186448\pi$$
−0.0621036 + 0.998070i $$0.519781\pi$$
$$48$$ −17.7787 + 18.4360i −2.56613 + 2.66100i
$$49$$ 7.16167 + 12.4044i 1.02310 + 1.77205i
$$50$$ −2.36351 + 1.36457i −0.334251 + 0.192980i
$$51$$ 0.799202 + 0.198674i 0.111911 + 0.0278200i
$$52$$ −8.00198 17.9403i −1.10967 2.48787i
$$53$$ −2.21477 −0.304222 −0.152111 0.988363i $$-0.548607\pi$$
−0.152111 + 0.988363i $$0.548607\pi$$
$$54$$ −4.41026 13.4779i −0.600161 1.83410i
$$55$$ −3.77606 −0.509164
$$56$$ 21.7283 37.6344i 2.90356 5.02911i
$$57$$ −0.0470384 + 0.189220i −0.00623039 + 0.0250628i
$$58$$ 14.9429 8.62731i 1.96210 1.13282i
$$59$$ 7.78385 4.49401i 1.01337 0.585070i 0.101194 0.994867i $$-0.467734\pi$$
0.912177 + 0.409796i $$0.134400\pi$$
$$60$$ −6.79271 6.55054i −0.876936 0.845672i
$$61$$ 0.717381 1.24254i 0.0918513 0.159091i −0.816439 0.577432i $$-0.804055\pi$$
0.908290 + 0.418341i $$0.137388\pi$$
$$62$$ 4.47784 0.568686
$$63$$ 7.35736 + 11.7379i 0.926940 + 1.47884i
$$64$$ −29.1964 −3.64955
$$65$$ 3.29285 1.46872i 0.408428 0.182173i
$$66$$ −4.93191 17.1547i −0.607076 2.11159i
$$67$$ 10.8645 6.27264i 1.32731 0.766325i 0.342431 0.939543i $$-0.388750\pi$$
0.984884 + 0.173217i $$0.0554164\pi$$
$$68$$ 1.29522 + 2.24339i 0.157069 + 0.272051i
$$69$$ −1.51329 5.26368i −0.182179 0.633673i
$$70$$ 10.9140 + 6.30123i 1.30448 + 0.753140i
$$71$$ 9.75529i 1.15774i −0.815420 0.578870i $$-0.803494\pi$$
0.815420 0.578870i $$-0.196506\pi$$
$$72$$ 13.2197 24.9461i 1.55796 2.93993i
$$73$$ 1.60702i 0.188087i 0.995568 + 0.0940435i $$0.0299793\pi$$
−0.995568 + 0.0940435i $$0.970021\pi$$
$$74$$ −7.56446 + 13.1020i −0.879351 + 1.52308i
$$75$$ 1.20232 1.24677i 0.138832 0.143964i
$$76$$ −0.531149 + 0.306659i −0.0609269 + 0.0351762i
$$77$$ 8.71840 + 15.1007i 0.993553 + 1.72088i
$$78$$ 10.9732 + 13.0411i 1.24247 + 1.47662i
$$79$$ 2.25865 3.91210i 0.254118 0.440146i −0.710537 0.703660i $$-0.751548\pi$$
0.964656 + 0.263514i $$0.0848814\pi$$
$$80$$ 14.7870i 1.65324i
$$81$$ 5.05343 + 7.44734i 0.561492 + 0.827482i
$$82$$ 33.0035 3.64462
$$83$$ −1.12664 0.650468i −0.123665 0.0713981i 0.436891 0.899514i $$-0.356079\pi$$
−0.560557 + 0.828116i $$0.689413\pi$$
$$84$$ −10.5126 + 42.2888i −1.14702 + 4.61408i
$$85$$ −0.411763 + 0.237732i −0.0446620 + 0.0257856i
$$86$$ −6.34072 + 3.66082i −0.683738 + 0.394756i
$$87$$ −7.60147 + 7.88249i −0.814963 + 0.845091i
$$88$$ 17.7679 30.7749i 1.89406 3.28062i
$$89$$ 7.82871i 0.829842i −0.909857 0.414921i $$-0.863809\pi$$
0.909857 0.414921i $$-0.136191\pi$$
$$90$$ 7.23442 + 3.83374i 0.762575 + 0.404111i
$$91$$ −13.4762 9.77724i −1.41269 1.02493i
$$92$$ 8.61393 14.9198i 0.898065 1.55549i
$$93$$ −2.73122 + 0.785217i −0.283215 + 0.0814232i
$$94$$ −8.33071 14.4292i −0.859247 1.48826i
$$95$$ −0.0562856 0.0974896i −0.00577479 0.0100022i
$$96$$ 35.8465 10.3058i 3.65857 1.05183i
$$97$$ −4.83079 2.78906i −0.490492 0.283186i 0.234286 0.972168i $$-0.424725\pi$$
−0.724779 + 0.688982i $$0.758058\pi$$
$$98$$ 39.0905i 3.94874i
$$99$$ 6.01635 + 9.59850i 0.604666 + 0.964686i
$$100$$ 5.44826 0.544826
$$101$$ −4.18649 + 7.25121i −0.416571 + 0.721523i −0.995592 0.0937903i $$-0.970102\pi$$
0.579021 + 0.815313i $$0.303435\pi$$
$$102$$ −1.61782 1.56014i −0.160188 0.154477i
$$103$$ −6.26887 10.8580i −0.617690 1.06987i −0.989906 0.141724i $$-0.954735\pi$$
0.372217 0.928146i $$-0.378598\pi$$
$$104$$ −3.52411 + 33.7477i −0.345567 + 3.30923i
$$105$$ −7.76189 1.92954i −0.757483 0.188303i
$$106$$ 5.23464 + 3.02222i 0.508433 + 0.293544i
$$107$$ 17.4030 1.68241 0.841206 0.540715i $$-0.181846\pi$$
0.841206 + 0.540715i $$0.181846\pi$$
$$108$$ −5.82831 + 27.7035i −0.560830 + 2.66577i
$$109$$ 14.5696i 1.39551i 0.716335 + 0.697757i $$0.245818\pi$$
−0.716335 + 0.697757i $$0.754182\pi$$
$$110$$ 8.92477 + 5.15272i 0.850943 + 0.491292i
$$111$$ 2.31636 9.31795i 0.219859 0.884421i
$$112$$ −59.1342 + 34.1411i −5.58765 + 3.22603i
$$113$$ −0.225447 0.390485i −0.0212082 0.0367338i 0.855226 0.518254i $$-0.173418\pi$$
−0.876435 + 0.481521i $$0.840085\pi$$
$$114$$ 0.369381 0.383037i 0.0345957 0.0358747i
$$115$$ 2.73845 + 1.58104i 0.255362 + 0.147433i
$$116$$ −34.4457 −3.19821
$$117$$ −8.97985 6.03011i −0.830188 0.557484i
$$118$$ −24.5297 −2.25814
$$119$$ 1.90141 + 1.09778i 0.174302 + 0.100633i
$$120$$ 4.50376 + 15.6655i 0.411136 + 1.43005i
$$121$$ 1.62932 + 2.82206i 0.148120 + 0.256551i
$$122$$ −3.39108 + 1.95784i −0.307014 + 0.177255i
$$123$$ −20.1302 + 5.78736i −1.81508 + 0.521829i
$$124$$ −7.74158 4.46960i −0.695215 0.401382i
$$125$$ 1.00000i 0.0894427i
$$126$$ −1.37190 37.7825i −0.122219 3.36593i
$$127$$ −1.43741 −0.127549 −0.0637747 0.997964i $$-0.520314\pi$$
−0.0637747 + 0.997964i $$0.520314\pi$$
$$128$$ 31.7075 + 18.3063i 2.80258 + 1.61807i
$$129$$ 3.22552 3.34477i 0.283992 0.294491i
$$130$$ −9.78687 1.02200i −0.858366 0.0896349i
$$131$$ 6.21464 + 10.7641i 0.542976 + 0.940461i 0.998731 + 0.0503564i $$0.0160357\pi$$
−0.455756 + 0.890105i $$0.650631\pi$$
$$132$$ −8.59650 + 34.5809i −0.748230 + 3.00988i
$$133$$ −0.259911 + 0.450180i −0.0225372 + 0.0390355i
$$134$$ −34.2380 −2.95771
$$135$$ −5.08484 1.06976i −0.437634 0.0920700i
$$136$$ 4.47450i 0.383685i
$$137$$ −2.55126 1.47297i −0.217969 0.125844i 0.387041 0.922063i $$-0.373497\pi$$
−0.605009 + 0.796218i $$0.706831\pi$$
$$138$$ −3.60601 + 14.5058i −0.306964 + 1.23481i
$$139$$ 0.180328 + 0.312337i 0.0152952 + 0.0264921i 0.873572 0.486695i $$-0.161798\pi$$
−0.858276 + 0.513188i $$0.828465\pi$$
$$140$$ −12.5793 21.7879i −1.06314 1.84142i
$$141$$ 7.61149 + 7.34013i 0.641003 + 0.618151i
$$142$$ −13.3118 + 23.0568i −1.11710 + 1.93488i
$$143$$ −11.0200 7.99517i −0.921535 0.668589i
$$144$$ −37.5876 + 23.5600i −3.13230 + 1.96333i
$$145$$ 6.32234i 0.525042i
$$146$$ 2.19289 3.79820i 0.181485 0.314342i
$$147$$ 6.85477 + 23.8430i 0.565372 + 1.96653i
$$148$$ 26.1559 15.1011i 2.15000 1.24130i
$$149$$ 3.04895 1.76031i 0.249780 0.144210i −0.369884 0.929078i $$-0.620602\pi$$
0.619663 + 0.784868i $$0.287269\pi$$
$$150$$ −4.54300 + 1.30610i −0.370935 + 0.106642i
$$151$$ 8.56013 + 4.94220i 0.696614 + 0.402190i 0.806085 0.591800i $$-0.201582\pi$$
−0.109471 + 0.993990i $$0.534916\pi$$
$$152$$ 1.05939 0.0859277
$$153$$ 1.26036 + 0.667901i 0.101894 + 0.0539966i
$$154$$ 47.5876i 3.83472i
$$155$$ 0.820373 1.42093i 0.0658939 0.114132i
$$156$$ −5.95403 33.4994i −0.476704 2.68210i
$$157$$ −6.57684 11.3914i −0.524889 0.909134i −0.999580 0.0289814i $$-0.990774\pi$$
0.474691 0.880152i $$-0.342560\pi$$
$$158$$ −10.6767 + 6.16420i −0.849394 + 0.490398i
$$159$$ −3.72279 0.925453i −0.295237 0.0733932i
$$160$$ −10.7672 + 18.6493i −0.851219 + 1.47435i
$$161$$ 14.6016i 1.15077i
$$162$$ −1.78139 24.4977i −0.139959 1.92472i
$$163$$ 10.6298i 0.832590i 0.909230 + 0.416295i $$0.136672\pi$$
−0.909230 + 0.416295i $$0.863328\pi$$
$$164$$ −57.0585 32.9428i −4.45552 2.57240i
$$165$$ −6.34715 1.57784i −0.494125 0.122835i
$$166$$ 1.77522 + 3.07478i 0.137784 + 0.238649i
$$167$$ −15.8516 + 9.15192i −1.22663 + 0.708197i −0.966324 0.257329i $$-0.917158\pi$$
−0.260309 + 0.965525i $$0.583824\pi$$
$$168$$ 52.2486 54.1802i 4.03107 4.18009i
$$169$$ 12.7195 + 2.68577i 0.978426 + 0.206597i
$$170$$ 1.29761 0.0995222
$$171$$ −0.158133 + 0.298403i −0.0120927 + 0.0228195i
$$172$$ 14.6163 1.11449
$$173$$ 1.03253 1.78839i 0.0785018 0.135969i −0.824102 0.566442i $$-0.808320\pi$$
0.902604 + 0.430472i $$0.141653\pi$$
$$174$$ 28.7224 8.25759i 2.17744 0.626007i
$$175$$ 3.99906 2.30886i 0.302301 0.174533i
$$176$$ −48.3559 + 27.9183i −3.64497 + 2.10442i
$$177$$ 14.9617 4.30143i 1.12459 0.323315i
$$178$$ −10.6829 + 18.5033i −0.800715 + 1.38688i
$$179$$ 12.1238 0.906172 0.453086 0.891467i $$-0.350323\pi$$
0.453086 + 0.891467i $$0.350323\pi$$
$$180$$ −8.68064 13.8491i −0.647017 1.03225i
$$181$$ −3.34386 −0.248547 −0.124274 0.992248i $$-0.539660\pi$$
−0.124274 + 0.992248i $$0.539660\pi$$
$$182$$ 18.5095 + 41.4980i 1.37202 + 3.07603i
$$183$$ 1.72504 1.78882i 0.127519 0.132233i
$$184$$ −25.7710 + 14.8789i −1.89987 + 1.09689i
$$185$$ 2.77173 + 4.80077i 0.203782 + 0.352960i
$$186$$ 7.52677 + 1.87109i 0.551889 + 0.137195i
$$187$$ 1.55484 + 0.897689i 0.113701 + 0.0656455i
$$188$$ 33.2615i 2.42585i
$$189$$ 7.46216 + 22.8045i 0.542793 + 1.65879i
$$190$$ 0.307224i 0.0222884i
$$191$$ 4.16937 7.22157i 0.301685 0.522534i −0.674833 0.737971i $$-0.735784\pi$$
0.976518 + 0.215437i $$0.0691175\pi$$
$$192$$ −49.0760 12.1999i −3.54175 0.880448i
$$193$$ −8.66903 + 5.00507i −0.624011 + 0.360273i −0.778429 0.627733i $$-0.783983\pi$$
0.154418 + 0.988006i $$0.450650\pi$$
$$194$$ 7.61175 + 13.1839i 0.546492 + 0.946552i
$$195$$ 6.14864 1.09283i 0.440313 0.0782592i
$$196$$ −39.0186 + 67.5823i −2.78705 + 4.82730i
$$197$$ 12.3180i 0.877622i −0.898579 0.438811i $$-0.855400\pi$$
0.898579 0.438811i $$-0.144600\pi$$
$$198$$ −1.12185 30.8959i −0.0797262 2.19568i
$$199$$ −1.32463 −0.0939008 −0.0469504 0.998897i $$-0.514950\pi$$
−0.0469504 + 0.998897i $$0.514950\pi$$
$$200$$ −8.15001 4.70541i −0.576292 0.332723i
$$201$$ 20.8832 6.00384i 1.47299 0.423478i
$$202$$ 19.7896 11.4256i 1.39239 0.803899i
$$203$$ −25.2834 + 14.5974i −1.77455 + 1.02454i
$$204$$ 1.23972 + 4.31212i 0.0867976 + 0.301908i
$$205$$ 6.04647 10.4728i 0.422304 0.731452i
$$206$$ 34.2173i 2.38404i
$$207$$ −0.344224 9.48001i −0.0239252 0.658906i
$$208$$ 31.3090 43.1540i 2.17089 2.99219i
$$209$$ −0.212538 + 0.368127i −0.0147016 + 0.0254638i
$$210$$ 15.7123 + 15.1522i 1.08425 + 1.04560i
$$211$$ −3.88208 6.72396i −0.267253 0.462896i 0.700898 0.713261i $$-0.252783\pi$$
−0.968152 + 0.250365i $$0.919449\pi$$
$$212$$ −6.03333 10.4500i −0.414370 0.717711i
$$213$$ 4.07629 16.3976i 0.279303 1.12354i
$$214$$ −41.1322 23.7477i −2.81174 1.62336i
$$215$$ 2.68275i 0.182962i
$$216$$ 32.6448 36.4079i 2.22120 2.47724i
$$217$$ −7.57651 −0.514327
$$218$$ 19.8813 34.4354i 1.34653 2.33226i
$$219$$ −0.671499 + 2.70122i −0.0453757 + 0.182532i
$$220$$ −10.2865 17.8167i −0.693514 1.20120i
$$221$$ −1.70504 0.178049i −0.114693 0.0119768i
$$222$$ −18.1898 + 18.8623i −1.22082 + 1.26595i
$$223$$ −12.9585 7.48161i −0.867767 0.501006i −0.00116171 0.999999i $$-0.500370\pi$$
−0.866606 + 0.498994i $$0.833703\pi$$
$$224$$ 99.4395 6.64408
$$225$$ 2.54194 1.59329i 0.169462 0.106219i
$$226$$ 1.23056i 0.0818554i
$$227$$ −3.81516 2.20268i −0.253221 0.146197i 0.368017 0.929819i $$-0.380037\pi$$
−0.621238 + 0.783622i $$0.713370\pi$$
$$228$$ −1.02094 + 0.293517i −0.0676135 + 0.0194387i
$$229$$ 18.5963 10.7366i 1.22888 0.709494i 0.262084 0.965045i $$-0.415590\pi$$
0.966796 + 0.255551i $$0.0822569\pi$$
$$230$$ −4.31490 7.47363i −0.284516 0.492797i
$$231$$ 8.34478 + 29.0257i 0.549046 + 1.90975i
$$232$$ 51.5271 + 29.7492i 3.38292 + 1.95313i
$$233$$ −24.1867 −1.58453 −0.792263 0.610180i $$-0.791097\pi$$
−0.792263 + 0.610180i $$0.791097\pi$$
$$234$$ 12.9955 + 26.5059i 0.849540 + 1.73275i
$$235$$ −6.10498 −0.398245
$$236$$ 42.4084 + 24.4845i 2.76055 + 1.59381i
$$237$$ 5.43124 5.63203i 0.352797 0.365840i
$$238$$ −2.99600 5.18923i −0.194202 0.336367i
$$239$$ 5.83846 3.37084i 0.377658 0.218041i −0.299141 0.954209i $$-0.596700\pi$$
0.676799 + 0.736168i $$0.263367\pi$$
$$240$$ 6.17882 24.8554i 0.398841 1.60441i
$$241$$ −7.59632 4.38574i −0.489322 0.282510i 0.234971 0.972002i $$-0.424500\pi$$
−0.724293 + 0.689492i $$0.757834\pi$$
$$242$$ 8.89329i 0.571683i
$$243$$ 5.38236 + 14.6298i 0.345279 + 0.938500i
$$244$$ 7.81696 0.500430
$$245$$ −12.4044 7.16167i −0.792487 0.457542i
$$246$$ 55.4753 + 13.7907i 3.53697 + 0.879260i
$$247$$ 0.0421550 0.403686i 0.00268226 0.0256860i
$$248$$ 7.72038 + 13.3721i 0.490245 + 0.849128i
$$249$$ −1.62196 1.56414i −0.102788 0.0991233i
$$250$$ 1.36457 2.36351i 0.0863033 0.149482i
$$251$$ −2.22703 −0.140569 −0.0702845 0.997527i $$-0.522391\pi$$
−0.0702845 + 0.997527i $$0.522391\pi$$
$$252$$ −35.3411 + 66.6901i −2.22628 + 4.20108i
$$253$$ 11.9402i 0.750676i
$$254$$ 3.39734 + 1.96145i 0.213168 + 0.123072i
$$255$$ −0.791467 + 0.227544i −0.0495636 + 0.0142494i
$$256$$ −20.7644 35.9649i −1.29777 2.24781i
$$257$$ 9.65981 + 16.7313i 0.602562 + 1.04367i 0.992432 + 0.122798i $$0.0391869\pi$$
−0.389869 + 0.920870i $$0.627480\pi$$
$$258$$ −12.1878 + 3.50394i −0.758777 + 0.218146i
$$259$$ 12.7991 22.1686i 0.795295 1.37749i
$$260$$ 15.9001 + 11.5358i 0.986080 + 0.715418i
$$261$$ −16.0710 + 10.0733i −0.994768 + 0.623522i
$$262$$ 33.9214i 2.09567i
$$263$$ 5.67702 9.83289i 0.350060 0.606322i −0.636200 0.771524i $$-0.719495\pi$$
0.986260 + 0.165203i $$0.0528279\pi$$
$$264$$ 42.7254 44.3049i 2.62956 2.72678i
$$265$$ 1.91805 1.10739i 0.117825 0.0680262i
$$266$$ 1.22861 0.709337i 0.0753308 0.0434922i
$$267$$ 3.27126 13.1592i 0.200198 0.805331i
$$268$$ 59.1928 + 34.1750i 3.61578 + 2.08757i
$$269$$ 9.62823 0.587044 0.293522 0.955952i $$-0.405173\pi$$
0.293522 + 0.955952i $$0.405173\pi$$
$$270$$ 10.5583 + 9.46703i 0.642559 + 0.576145i
$$271$$ 21.0694i 1.27988i −0.768426 0.639938i $$-0.778960\pi$$
0.768426 0.639938i $$-0.221040\pi$$
$$272$$ −3.51534 + 6.08875i −0.213149 + 0.369184i
$$273$$ −18.5666 22.0656i −1.12370 1.33547i
$$274$$ 4.01995 + 6.96276i 0.242854 + 0.420636i
$$275$$ 3.27016 1.88803i 0.197198 0.113853i
$$276$$ 20.7134 21.4791i 1.24680 1.29289i
$$277$$ 10.6042 18.3670i 0.637146 1.10357i −0.348911 0.937156i $$-0.613448\pi$$
0.986056 0.166413i $$-0.0532183\pi$$
$$278$$ 0.984284i 0.0590334i
$$279$$ −4.91900 + 0.178611i −0.294493 + 0.0106932i
$$280$$ 43.4565i 2.59702i
$$281$$ −24.1490 13.9425i −1.44061 0.831737i −0.442721 0.896660i $$-0.645987\pi$$
−0.997890 + 0.0649224i $$0.979320\pi$$
$$282$$ −7.97371 27.7350i −0.474827 1.65159i
$$283$$ 2.59505 + 4.49476i 0.154260 + 0.267186i 0.932789 0.360422i $$-0.117367\pi$$
−0.778529 + 0.627608i $$0.784034\pi$$
$$284$$ 46.0287 26.5747i 2.73130 1.57692i
$$285$$ −0.0538736 0.187389i −0.00319120 0.0110999i
$$286$$ 15.1358 + 33.9342i 0.895000 + 2.00657i
$$287$$ −55.8418 −3.29624
$$288$$ 64.5604 2.34422i 3.80426 0.138135i
$$289$$ −16.7739 −0.986702
$$290$$ −8.62731 + 14.9429i −0.506613 + 0.877479i
$$291$$ −6.95461 6.70667i −0.407687 0.393152i
$$292$$ −7.58243 + 4.37772i −0.443728 + 0.256187i
$$293$$ 9.03451 5.21608i 0.527802 0.304726i −0.212319 0.977200i $$-0.568102\pi$$
0.740121 + 0.672474i $$0.234768\pi$$
$$294$$ 16.3342 65.7070i 0.952628 3.83211i
$$295$$ −4.49401 + 7.78385i −0.261651 + 0.453193i
$$296$$ −52.1685 −3.03223
$$297$$ 6.10205 + 18.6480i 0.354077 + 1.08207i
$$298$$ −9.60831 −0.556594
$$299$$ 4.64423 + 10.4123i 0.268583 + 0.602157i
$$300$$ 9.15793 + 2.27658i 0.528734 + 0.131438i
$$301$$ 10.7285 6.19410i 0.618380 0.357022i
$$302$$ −13.4880 23.3619i −0.776147 1.34433i
$$303$$ −10.0670 + 10.4392i −0.578333 + 0.599714i
$$304$$ −1.44158 0.832296i −0.0826803 0.0477355i
$$305$$ 1.43476i 0.0821543i
$$306$$ −2.06747 3.29844i −0.118189 0.188559i
$$307$$ 7.43423i 0.424294i −0.977238 0.212147i $$-0.931954\pi$$
0.977238 0.212147i $$-0.0680455\pi$$
$$308$$ −47.5001 + 82.2725i −2.70657 + 4.68791i
$$309$$ −6.00022 20.8706i −0.341341 1.18729i
$$310$$ −3.87792 + 2.23892i −0.220251 + 0.127162i
$$311$$ −13.2721 22.9880i −0.752594 1.30353i −0.946562 0.322523i $$-0.895469\pi$$
0.193968 0.981008i $$-0.437864\pi$$
$$312$$ −20.0253 + 55.2536i −1.13371 + 3.12812i
$$313$$ 6.89074 11.9351i 0.389488 0.674613i −0.602893 0.797822i $$-0.705985\pi$$
0.992381 + 0.123209i $$0.0393187\pi$$
$$314$$ 35.8983i 2.02586i
$$315$$ −12.2406 6.48668i −0.689681 0.365483i
$$316$$ 24.6115 1.38450
$$317$$ −1.99198 1.15007i −0.111881 0.0645945i 0.443015 0.896514i $$-0.353909\pi$$
−0.554896 + 0.831920i $$0.687242\pi$$
$$318$$ 7.53602 + 7.26735i 0.422599 + 0.407533i
$$319$$ −20.6751 + 11.9368i −1.15758 + 0.668331i
$$320$$ 25.2848 14.5982i 1.41346 0.816064i
$$321$$ 29.2526 + 7.27192i 1.63272 + 0.405879i
$$322$$ −19.9250 + 34.5111i −1.11038 + 1.92323i
$$323$$ 0.0535235i 0.00297813i
$$324$$ −21.3728 + 44.1313i −1.18738 + 2.45174i
$$325$$ −2.11733 + 2.91838i −0.117448 + 0.161882i
$$326$$ 14.5051 25.1237i 0.803366 1.39147i
$$327$$ −6.08797 + 24.4899i −0.336665 + 1.35429i
$$328$$ 56.9022 + 98.5576i 3.14190 + 5.44193i
$$329$$ 14.0955 + 24.4142i 0.777113 + 1.34600i
$$330$$ 12.8485 + 12.3904i 0.707286 + 0.682070i
$$331$$ 22.8603 + 13.1984i 1.25652 + 0.725451i 0.972396 0.233337i $$-0.0749644\pi$$
0.284122 + 0.958788i $$0.408298\pi$$
$$332$$ 7.08783i 0.388995i
$$333$$ 7.78710 14.6946i 0.426730 0.805257i
$$334$$ 49.9539 2.73336
$$335$$ −6.27264 + 10.8645i −0.342711 + 0.593593i
$$336$$ −113.664 + 32.6781i −6.20089 + 1.78273i
$$337$$ −9.07033 15.7103i −0.494092 0.855793i 0.505885 0.862601i $$-0.331166\pi$$
−0.999977 + 0.00680836i $$0.997833\pi$$
$$338$$ −26.3979 23.7046i −1.43585 1.28936i
$$339$$ −0.215786 0.750567i −0.0117199 0.0407652i
$$340$$ −2.24339 1.29522i −0.121665 0.0702433i
$$341$$ −6.19556 −0.335508
$$342$$ 0.780943 0.489496i 0.0422286 0.0264689i
$$343$$ 33.8171i 1.82595i
$$344$$ −21.8645 12.6234i −1.17885 0.680611i
$$345$$ 3.94239 + 3.80184i 0.212251 + 0.204684i
$$346$$ −4.88079 + 2.81793i −0.262393 + 0.151493i
$$347$$ 2.39311 + 4.14498i 0.128469 + 0.222514i 0.923084 0.384600i $$-0.125660\pi$$
−0.794615 + 0.607114i $$0.792327\pi$$
$$348$$ −57.8996 14.3933i −3.10374 0.771562i
$$349$$ −16.4569 9.50141i −0.880919 0.508599i −0.00995766 0.999950i $$-0.503170\pi$$
−0.870961 + 0.491352i $$0.836503\pi$$
$$350$$ −12.6025 −0.673629
$$351$$ −12.5744 13.8882i −0.671174 0.741299i
$$352$$ 81.3149 4.33410
$$353$$ 2.38986 + 1.37979i 0.127200 + 0.0734387i 0.562250 0.826968i $$-0.309936\pi$$
−0.435050 + 0.900406i $$0.643269\pi$$
$$354$$ −41.2317 10.2498i −2.19144 0.544772i
$$355$$ 4.87765 + 8.44833i 0.258879 + 0.448391i
$$356$$ 36.9385 21.3264i 1.95773 1.13030i
$$357$$ 2.73735 + 2.63976i 0.144876 + 0.139711i
$$358$$ −28.6546 16.5438i −1.51445 0.874365i
$$359$$ 10.4831i 0.553279i −0.960974 0.276640i $$-0.910779\pi$$
0.960974 0.276640i $$-0.0892208\pi$$
$$360$$ 1.02446 + 28.2139i 0.0539937 + 1.48700i
$$361$$ 18.9873 0.999333
$$362$$ 7.90326 + 4.56295i 0.415386 + 0.239823i
$$363$$ 1.55949 + 5.42439i 0.0818522 + 0.284707i
$$364$$ 9.42122 90.2198i 0.493806 4.72880i
$$365$$ −0.803508 1.39172i −0.0420575 0.0728458i
$$366$$ −6.51813 + 1.87394i −0.340708 + 0.0979525i
$$367$$ −9.68919 + 16.7822i −0.505771 + 0.876022i 0.494206 + 0.869345i $$0.335459\pi$$
−0.999978 + 0.00667714i $$0.997875\pi$$
$$368$$ 46.7578 2.43742
$$369$$ −36.2549 + 1.31643i −1.88736 + 0.0685309i
$$370$$ 15.1289i 0.786515i
$$371$$ −8.85701 5.11360i −0.459833 0.265485i
$$372$$ −11.1451 10.7478i −0.577847 0.557246i
$$373$$ −14.8231 25.6744i −0.767511 1.32937i −0.938909 0.344167i $$-0.888162\pi$$
0.171397 0.985202i $$-0.445172\pi$$
$$374$$ −2.44993 4.24340i −0.126683 0.219421i
$$375$$ −0.417855 + 1.68089i −0.0215779 + 0.0868009i
$$376$$ 28.7264 49.7556i 1.48145 2.56595i
$$377$$ 13.3865 18.4510i 0.689439 0.950273i
$$378$$ 13.4816 64.0815i 0.693417 3.29600i
$$379$$ 22.8221i 1.17229i −0.810205 0.586147i $$-0.800644\pi$$
0.810205 0.586147i $$-0.199356\pi$$
$$380$$ 0.306659 0.531149i 0.0157313 0.0272473i
$$381$$ −2.41613 0.600628i −0.123782 0.0307711i
$$382$$ −19.7087 + 11.3788i −1.00839 + 0.582192i
$$383$$ −2.22332 + 1.28363i −0.113606 + 0.0655907i −0.555726 0.831365i $$-0.687560\pi$$
0.442120 + 0.896956i $$0.354226\pi$$
$$384$$ 45.6475 + 44.0201i 2.32944 + 2.24639i
$$385$$ −15.1007 8.71840i −0.769603 0.444331i
$$386$$ 27.3192 1.39051
$$387$$ 6.81939 4.27440i 0.346649 0.217280i
$$388$$ 30.3910i 1.54287i
$$389$$ −4.18812 + 7.25404i −0.212346 + 0.367795i −0.952448 0.304700i $$-0.901444\pi$$
0.740102 + 0.672495i $$0.234777\pi$$
$$390$$ −16.0236 5.80735i −0.811388 0.294067i
$$391$$ −0.751728 1.30203i −0.0380165 0.0658465i
$$392$$ 116.735 67.3972i 5.89602 3.40407i
$$393$$ 5.94832 + 20.6901i 0.300053 + 1.04368i
$$394$$ −16.8088 + 29.1138i −0.846817 + 1.46673i
$$395$$ 4.51731i 0.227290i
$$396$$ −28.8996 + 54.5347i −1.45226 + 2.74047i
$$397$$ 37.9166i 1.90298i 0.307679 + 0.951490i $$0.400448\pi$$
−0.307679 + 0.951490i $$0.599552\pi$$
$$398$$ 3.13079 + 1.80756i 0.156932 + 0.0906049i
$$399$$ −0.624993 + 0.648098i −0.0312888 + 0.0324455i
$$400$$ 7.39350 + 12.8059i 0.369675 + 0.640296i
$$401$$ 19.2557 11.1173i 0.961585 0.555172i 0.0649247 0.997890i $$-0.479319\pi$$
0.896661 + 0.442719i $$0.145986\pi$$
$$402$$ −57.5503 14.3065i −2.87035 0.713543i
$$403$$ 5.40273 2.40980i 0.269129 0.120041i
$$404$$ −45.6182 −2.26959
$$405$$ −8.10007 3.92287i −0.402496 0.194929i
$$406$$ 79.6770 3.95430
$$407$$ 10.4662 18.1280i 0.518791 0.898572i
$$408$$ 1.86969 7.52114i 0.0925634 0.372352i
$$409$$ 18.0842 10.4409i 0.894204 0.516269i 0.0188889 0.999822i $$-0.493987\pi$$
0.875315 + 0.483553i $$0.160654\pi$$
$$410$$ −28.5818 + 16.5017i −1.41156 + 0.814962i
$$411$$ −3.67290 3.54196i −0.181171 0.174712i
$$412$$ 34.1544 59.1572i 1.68267 2.91446i
$$413$$ 41.5042 2.04229
$$414$$ −12.1226 + 22.8759i −0.595794 + 1.12429i
$$415$$ 1.30094 0.0638604
$$416$$ −70.9093 + 31.6279i −3.47661 + 1.55069i
$$417$$ 0.172600 + 0.600356i 0.00845227 + 0.0293996i
$$418$$ 1.00467 0.580048i 0.0491401 0.0283711i
$$419$$ −5.01978 8.69451i −0.245232 0.424754i 0.716965 0.697109i $$-0.245531\pi$$
−0.962197 + 0.272355i $$0.912197\pi$$
$$420$$ −12.0402 41.8795i −0.587502 2.04351i
$$421$$ −4.67787 2.70077i −0.227986 0.131628i 0.381657 0.924304i $$-0.375354\pi$$
−0.609642 + 0.792677i $$0.708687\pi$$
$$422$$ 21.1896i 1.03149i
$$423$$ 9.72699 + 15.5185i 0.472942 + 0.754534i
$$424$$ 20.8428i 1.01222i
$$425$$ 0.237732 0.411763i 0.0115317 0.0199734i
$$426$$ −32.0101 + 33.1935i −1.55090 + 1.60823i
$$427$$ 5.73771 3.31267i 0.277667 0.160311i
$$428$$ 47.4080 + 82.1131i 2.29155 + 3.96909i
$$429$$ −15.1825 18.0438i −0.733020 0.871160i
$$430$$ 3.66082 6.34072i 0.176540 0.305777i
$$431$$ 29.5975i 1.42566i −0.701335 0.712831i $$-0.747412\pi$$
0.701335 0.712831i $$-0.252588\pi$$
$$432$$ −73.0254 + 23.8956i −3.51343 + 1.14968i
$$433$$ −20.5685 −0.988458 −0.494229 0.869332i $$-0.664550\pi$$
−0.494229 + 0.869332i $$0.664550\pi$$
$$434$$ 17.9072 + 10.3387i 0.859572 + 0.496274i
$$435$$ 2.64182 10.6272i 0.126665 0.509534i
$$436$$ −68.7441 + 39.6894i −3.29225 + 1.90078i
$$437$$ 0.308271 0.177980i 0.0147466 0.00851394i
$$438$$ 5.27311 5.46806i 0.251959 0.261274i
$$439$$ −17.9052 + 31.0128i −0.854571 + 1.48016i 0.0224719 + 0.999747i $$0.492846\pi$$
−0.877043 + 0.480412i $$0.840487\pi$$
$$440$$ 35.5358i 1.69410i
$$441$$ 1.55923 + 42.9417i 0.0742493 + 2.04484i
$$442$$ 3.78691 + 2.74747i 0.180125 + 0.130684i
$$443$$ 16.4749 28.5353i 0.782745 1.35575i −0.147592 0.989048i $$-0.547152\pi$$
0.930337 0.366706i $$-0.119515\pi$$
$$444$$ 50.2752 14.4540i 2.38596 0.685955i
$$445$$ 3.91436 + 6.77986i 0.185558 + 0.321396i
$$446$$ 20.4184 + 35.3658i 0.966841 + 1.67462i
$$447$$ 5.86051 1.68488i 0.277193 0.0796919i
$$448$$ −116.758 67.4104i −5.51631 3.18484i
$$449$$ 6.88768i 0.325050i −0.986704 0.162525i $$-0.948036\pi$$
0.986704 0.162525i $$-0.0519638\pi$$
$$450$$ −8.18206 + 0.297094i −0.385706 + 0.0140052i
$$451$$ −45.6637 −2.15022
$$452$$ 1.22829 2.12746i 0.0577740 0.100068i
$$453$$ 12.3235 + 11.8842i 0.579010 + 0.558368i
$$454$$ 6.01146 + 10.4121i 0.282132 + 0.488666i
$$455$$ 16.5594 + 1.72922i 0.776316 + 0.0810669i
$$456$$ 1.78072 + 0.442670i 0.0833897 + 0.0207299i
$$457$$ −26.2730 15.1687i −1.22900 0.709562i −0.262177 0.965020i $$-0.584441\pi$$
−0.966820 + 0.255458i $$0.917774\pi$$
$$458$$ −58.6035 −2.73836
$$459$$ 1.83944 + 1.64931i 0.0858575 + 0.0769834i
$$460$$ 17.2279i 0.803253i
$$461$$ 17.8514 + 10.3065i 0.831421 + 0.480021i 0.854339 0.519716i $$-0.173962\pi$$
−0.0229182 + 0.999737i $$0.507296\pi$$
$$462$$ 19.8847 79.9896i 0.925120 3.72145i
$$463$$ −33.8281 + 19.5306i −1.57212 + 0.907666i −0.576215 + 0.817298i $$0.695471\pi$$
−0.995908 + 0.0903681i $$0.971196\pi$$
$$464$$ −46.7442 80.9634i −2.17005 3.75863i
$$465$$ 1.97270 2.04563i 0.0914817 0.0948638i
$$466$$ 57.1657 + 33.0046i 2.64815 + 1.52891i
$$467$$ −11.6991 −0.541368 −0.270684 0.962668i $$-0.587250\pi$$
−0.270684 + 0.962668i $$0.587250\pi$$
$$468$$ 3.98979 58.7967i 0.184428 2.71788i
$$469$$ 57.9306 2.67499
$$470$$ 14.4292 + 8.33071i 0.665570 + 0.384267i
$$471$$ −6.29499 21.8959i −0.290058 1.00891i
$$472$$ −42.2923 73.2524i −1.94666 3.37172i
$$473$$ 8.77304 5.06512i 0.403385 0.232894i
$$474$$ −20.5221 + 5.90005i −0.942613 + 0.270998i
$$475$$ 0.0974896 + 0.0562856i 0.00447313 + 0.00258256i
$$476$$ 11.9620i 0.548275i
$$477$$ −5.87091 3.11117i −0.268810 0.142451i
$$478$$ −18.3990 −0.841552
$$479$$ 4.62394 + 2.66964i 0.211273 + 0.121979i 0.601903 0.798569i $$-0.294409\pi$$
−0.390630 + 0.920548i $$0.627743\pi$$
$$480$$ −25.8911 + 26.8483i −1.18176 + 1.22545i
$$481$$ −2.07588 + 19.8791i −0.0946520 + 0.906410i
$$482$$ 11.9693 + 20.7315i 0.545188 + 0.944293i
$$483$$ 6.10136 24.5438i 0.277621 1.11678i
$$484$$ −8.87693 + 15.3753i −0.403497 + 0.698877i
$$485$$ 5.57811 0.253289
$$486$$ 7.24213 41.9223i 0.328510 1.90163i
$$487$$ 24.5506i 1.11249i 0.831017 + 0.556247i $$0.187759\pi$$
−0.831017 + 0.556247i $$0.812241\pi$$
$$488$$ −11.6933 6.75114i −0.529332 0.305610i
$$489$$ −4.44171 + 17.8675i −0.200861 + 0.807998i
$$490$$ 19.5453 + 33.8534i 0.882965 + 1.52934i
$$491$$ 20.2214 + 35.0245i 0.912580 + 1.58063i 0.810407 + 0.585868i $$0.199246\pi$$
0.102173 + 0.994767i $$0.467420\pi$$
$$492$$ −82.1439 79.2154i −3.70333 3.57130i
$$493$$ −1.50302 + 2.60331i −0.0676926 + 0.117247i
$$494$$ −0.650494 + 0.896595i −0.0292671 + 0.0403397i
$$495$$ −10.0096 5.30437i −0.449896 0.238414i
$$496$$ 24.2617i 1.08938i
$$497$$ 22.5236 39.0120i 1.01032 1.74993i
$$498$$ 1.69915 + 5.91016i 0.0761407 + 0.264840i
$$499$$ 6.71322 3.87588i 0.300525 0.173508i −0.342154 0.939644i $$-0.611156\pi$$
0.642679 + 0.766136i $$0.277823\pi$$
$$500$$ −4.71833 + 2.72413i −0.211010 + 0.121827i
$$501$$ −30.4690 + 8.75972i −1.36125 + 0.391356i
$$502$$ 5.26362 + 3.03895i 0.234927 + 0.135635i
$$503$$ 35.2135 1.57009 0.785046 0.619437i $$-0.212639\pi$$
0.785046 + 0.619437i $$0.212639\pi$$
$$504$$ 110.464 69.2387i 4.92044 3.08414i
$$505$$ 8.37298i 0.372593i
$$506$$ −16.2933 + 28.2209i −0.724327 + 1.25457i
$$507$$ 20.2579 + 9.82940i 0.899685 + 0.436539i
$$508$$ −3.91569 6.78217i −0.173731 0.300910i
$$509$$ −25.7902 + 14.8900i −1.14313 + 0.659986i −0.947203 0.320633i $$-0.896104\pi$$
−0.195925 + 0.980619i $$0.562771\pi$$
$$510$$ 2.18114 + 0.542212i 0.0965826 + 0.0240096i
$$511$$ −3.71038 + 6.42656i −0.164137 + 0.284294i
$$512$$ 40.1127i 1.77275i
$$513$$ −0.390494 + 0.435507i −0.0172407 + 0.0192281i
$$514$$ 52.7261i 2.32565i
$$515$$ 10.8580 + 6.26887i 0.478460 + 0.276239i
$$516$$ 24.5685 + 6.10750i 1.08157 + 0.268868i
$$517$$ 11.5264 + 19.9643i 0.506930 + 0.878029i
$$518$$ −60.5015 + 34.9306i −2.65828 + 1.53476i
$$519$$ 2.48286 2.57465i 0.108985 0.113015i
$$520$$ −13.8219 30.9884i −0.606129 1.35893i
$$521$$ 37.3604 1.63679 0.818394 0.574658i $$-0.194865\pi$$
0.818394 + 0.574658i $$0.194865\pi$$
$$522$$ 51.7297 1.87833i 2.26415 0.0822124i
$$523$$ −15.6389 −0.683843 −0.341922 0.939728i $$-0.611078\pi$$
−0.341922 + 0.939728i $$0.611078\pi$$
$$524$$ −33.8590 + 58.6455i −1.47914 + 2.56194i
$$525$$ 7.68676 2.20992i 0.335478 0.0964487i
$$526$$ −26.8354 + 15.4934i −1.17008 + 0.675546i
$$527$$ −0.675599 + 0.390057i −0.0294295 + 0.0169912i
$$528$$ −92.9469 + 26.7219i −4.04500 + 1.16292i
$$529$$ 6.50060 11.2594i 0.282635 0.489538i
$$530$$ −6.04444 −0.262554
$$531$$ 26.9463 0.978433i 1.16937 0.0424604i
$$532$$ −2.83213 −0.122788
$$533$$ 39.8203 17.7612i 1.72481 0.769322i
$$534$$ −25.6884 + 26.6381i −1.11165 + 1.15274i
$$535$$ −15.0714 + 8.70150i −0.651595 + 0.376199i
$$536$$ −59.0307 102.244i −2.54974 4.41628i
$$537$$ 20.3787 + 5.06597i 0.879406 + 0.218613i
$$538$$ −22.7565 13.1384i −0.981100 0.566439i
$$539$$ 54.0858i 2.32964i
$$540$$ −8.80430 26.9061i −0.378877 1.15786i
$$541$$ 0.563222i 0.0242148i 0.999927 + 0.0121074i $$0.00385400\pi$$
−0.999927 + 0.0121074i $$0.996146\pi$$
$$542$$ −28.7508 + 49.7979i −1.23495 + 2.13900i
$$543$$ −5.62067 1.39725i −0.241206 0.0599617i
$$544$$ 8.86704 5.11939i 0.380171 0.219492i
$$545$$ −7.28479 12.6176i −0.312046 0.540480i
$$546$$ 13.7723 + 77.4879i 0.589402 + 3.31618i
$$547$$ −10.7895 + 18.6880i −0.461326 + 0.799040i −0.999027 0.0440956i $$-0.985959\pi$$
0.537702 + 0.843135i $$0.319293\pi$$
$$548$$ 16.0502i 0.685632i
$$549$$ 3.64707 2.28599i 0.155653 0.0975637i
$$550$$ −10.3054 −0.439425
$$551$$ −0.616362 0.355857i −0.0262579 0.0151600i
$$552$$ −49.5355 + 14.2413i −2.10837 + 0.606150i
$$553$$ 18.0650 10.4298i 0.768202 0.443521i
$$554$$ −50.1264 + 28.9405i −2.12967 + 1.22956i
$$555$$ 2.65295 + 9.22776i 0.112611 + 0.391697i
$$556$$ −0.982474 + 1.70169i −0.0416662 + 0.0721679i
$$557$$ 4.64485i 0.196809i 0.995147 + 0.0984043i $$0.0313738\pi$$
−0.995147 + 0.0984043i $$0.968626\pi$$
$$558$$ 11.8698 + 6.29019i 0.502490 + 0.266285i
$$559$$ −5.68027 + 7.82928i −0.240250 + 0.331143i
$$560$$ 34.1411 59.1342i 1.44273 2.49888i
$$561$$ 2.23842 + 2.15862i 0.0945061 + 0.0911368i
$$562$$ 38.0511 + 65.9064i 1.60509 + 2.78009i
$$563$$ −6.32849 10.9613i −0.266714 0.461963i 0.701297 0.712869i $$-0.252605\pi$$
−0.968011 + 0.250907i $$0.919271\pi$$
$$564$$ −13.8985 + 55.9090i −0.585232 + 2.35419i
$$565$$ 0.390485 + 0.225447i 0.0164278 + 0.00948462i
$$566$$ 14.1646i 0.595381i
$$567$$ 3.01412 + 41.4500i 0.126581 + 1.74074i
$$568$$ −91.8053 −3.85206
$$569$$ −12.8814 + 22.3113i −0.540017 + 0.935337i 0.458885 + 0.888496i $$0.348249\pi$$
−0.998902 + 0.0468414i $$0.985084\pi$$
$$570$$ −0.128375 + 0.516410i −0.00537703 + 0.0216300i
$$571$$ −4.30979 7.46477i −0.180359 0.312391i 0.761644 0.647996i $$-0.224393\pi$$
−0.942003 + 0.335605i $$0.891059\pi$$
$$572$$ 7.70404 73.7757i 0.322122 3.08472i
$$573$$ 10.0258 10.3965i 0.418835 0.434319i
$$574$$ 131.983 + 76.2004i 5.50886 + 3.18054i
$$575$$ −3.16209 −0.131868
$$576$$ −77.3937 41.0133i −3.22474 1.70889i
$$577$$ 9.19409i 0.382755i 0.981517 + 0.191377i $$0.0612955\pi$$
−0.981517 + 0.191377i $$0.938705\pi$$
$$578$$ 39.6454 + 22.8893i 1.64903 + 0.952069i
$$579$$ −16.6631 + 4.79058i −0.692495 + 0.199090i
$$580$$ 29.8309 17.2229i 1.23866 0.715141i
$$581$$ −3.00368 5.20252i −0.124614 0.215837i
$$582$$ 7.28556 + 25.3414i 0.301996 + 1.05043i
$$583$$ −7.24267 4.18156i −0.299961 0.173182i
$$584$$ 15.1233 0.625808
$$585$$ 10.7918 + 0.732305i 0.446188 + 0.0302771i
$$586$$ −28.4709 −1.17612
$$587$$ 23.2824 + 13.4421i 0.960966 + 0.554814i 0.896470 0.443104i $$-0.146123\pi$$
0.0644959 + 0.997918i $$0.479456\pi$$
$$588$$ −93.8257 + 97.2944i −3.86931 + 4.01235i
$$589$$ −0.0923504 0.159956i −0.00380523 0.00659086i
$$590$$ 21.2433 12.2648i 0.874573 0.504935i
$$591$$ 5.14714 20.7052i 0.211725 0.851700i
$$592$$ 70.9891 + 40.9856i 2.91763 + 1.68450i
$$593$$ 8.64729i 0.355102i −0.984112 0.177551i $$-0.943183\pi$$
0.984112 0.177551i $$-0.0568174\pi$$
$$594$$ 11.0243 52.4015i 0.452333 2.15006i
$$595$$ −2.19556 −0.0900090
$$596$$ 16.6115 + 9.59063i 0.680432 + 0.392848i
$$597$$ −2.22657 0.553504i −0.0911273 0.0226534i
$$598$$ 3.23164 30.9469i 0.132152 1.26551i
$$599$$ −13.1393 22.7580i −0.536859 0.929867i −0.999071 0.0430977i $$-0.986277\pi$$
0.462212 0.886770i $$-0.347056\pi$$
$$600$$ −11.7331 11.3148i −0.479002 0.461925i
$$601$$ 22.3720 38.7494i 0.912571 1.58062i 0.102153 0.994769i $$-0.467427\pi$$
0.810418 0.585851i $$-0.199240\pi$$
$$602$$ −33.8093 −1.37796
$$603$$ 37.6111 1.36568i 1.53164 0.0556147i
$$604$$ 53.8527i 2.19124i
$$605$$ −2.82206 1.62932i −0.114733 0.0662411i
$$606$$ 38.0385 10.9359i 1.54521 0.444242i
$$607$$ 20.7581 + 35.9541i 0.842545 + 1.45933i 0.887736 + 0.460353i $$0.152277\pi$$
−0.0451906 + 0.998978i $$0.514390\pi$$
$$608$$ 1.21207 + 2.09937i 0.0491561 + 0.0851408i
$$609$$ −48.5983 + 13.9718i −1.96930 + 0.566168i
$$610$$ 1.95784 3.39108i 0.0792707 0.137301i
$$611$$ −17.8166 12.9263i −0.720784 0.522941i
$$612$$ 0.281995 + 7.76622i 0.0113990 + 0.313931i
$$613$$ 30.1598i 1.21814i 0.793116 + 0.609070i $$0.208457\pi$$
−0.793116 + 0.609070i $$0.791543\pi$$
$$614$$ −10.1446 + 17.5709i −0.409401 + 0.709104i
$$615$$ 14.5396 15.0771i 0.586292 0.607967i
$$616$$ 142.110 82.0472i 5.72577 3.30578i
$$617$$ 5.17977 2.99054i 0.208530 0.120395i −0.392098 0.919923i $$-0.628251\pi$$
0.600628 + 0.799529i $$0.294917\pi$$
$$618$$ −14.2979 + 57.5157i −0.575145 + 2.31362i
$$619$$ 10.1403 + 5.85448i 0.407571 + 0.235311i 0.689746 0.724052i $$-0.257722\pi$$
−0.282174 + 0.959363i $$0.591056\pi$$
$$620$$ 8.93921 0.359007
$$621$$ 3.38266 16.0787i 0.135742 0.645216i
$$622$$ 72.4433i 2.90471i
$$623$$ 18.0754 31.3075i 0.724176 1.25431i
$$624$$ 70.6591 59.4547i 2.82863 2.38009i
$$625$$ −0.500000 0.866025i −0.0200000 0.0346410i
$$626$$ −32.5727 + 18.8059i −1.30187 + 0.751634i
$$627$$ −0.511077 + 0.529971i −0.0204104 + 0.0211650i
$$628$$ 35.8323 62.0634i 1.42986 2.47660i
$$629$$ 2.63571i 0.105093i
$$630$$ 20.0793 + 32.0346i 0.799980 + 1.27629i
$$631$$ 46.3399i 1.84476i 0.386280 + 0.922382i $$0.373760\pi$$
−0.386280 + 0.922382i $$0.626240\pi$$
$$632$$ −36.8161 21.2558i −1.46446 0.845509i
$$633$$ −3.71572 12.9244i −0.147687 0.513698i
$$634$$ 3.13872 + 5.43643i 0.124655 + 0.215908i
$$635$$ 1.24483 0.718705i 0.0493997 0.0285209i
$$636$$ −5.77478 20.0864i −0.228985 0.796478i
$$637$$ −21.0370 47.1646i −0.833517 1.86873i
$$638$$ 65.1544 2.57949
$$639$$ 13.7036 25.8593i 0.542107 1.02298i
$$640$$ −36.6127 −1.44724
$$641$$ 5.31211 9.20085i 0.209816 0.363412i −0.741841 0.670576i $$-0.766047\pi$$
0.951656 + 0.307165i $$0.0993802\pi$$
$$642$$ −59.2157 57.1046i −2.33706 2.25374i
$$643$$ −28.5448 + 16.4803i −1.12570 + 0.649921i −0.942849 0.333220i $$-0.891865\pi$$
−0.182847 + 0.983141i $$0.558531\pi$$
$$644$$ 68.8953 39.7767i 2.71486 1.56742i
$$645$$ −1.12100 + 4.50942i −0.0441394 + 0.177558i
$$646$$ 0.0730368 0.126503i 0.00287360 0.00497721i
$$647$$ 0.532069 0.0209178 0.0104589 0.999945i $$-0.496671\pi$$
0.0104589 + 0.999945i $$0.496671\pi$$
$$648$$ 70.0855 47.5569i 2.75322 1.86821i
$$649$$ 33.9393 1.33223
$$650$$ 8.98668 4.00836i 0.352487 0.157221i
$$651$$ −12.7353 3.16588i −0.499135 0.124081i
$$652$$ −50.1549 + 28.9569i −1.96422 + 1.13404i
$$653$$ −16.3267 28.2786i −0.638912 1.10663i −0.985672 0.168674i $$-0.946052\pi$$
0.346760 0.937954i $$-0.387282\pi$$
$$654$$ 47.8073 49.5747i 1.86941 1.93852i
$$655$$ −10.7641 6.21464i −0.420587 0.242826i
$$656$$ 178.819i 6.98169i
$$657$$ −2.25743 + 4.25987i −0.0880709 + 0.166193i
$$658$$ 76.9377i 2.99935i
$$659$$ −1.52693 + 2.64472i −0.0594808 + 0.103024i −0.894232 0.447603i $$-0.852278\pi$$
0.834752 + 0.550627i $$0.185611\pi$$
$$660$$ −9.84567 34.2462i −0.383242 1.33303i
$$661$$ −14.5034 + 8.37353i −0.564116 + 0.325692i −0.754796 0.655960i $$-0.772264\pi$$
0.190680 + 0.981652i $$0.438931\pi$$
$$662$$ −36.0205 62.3893i −1.39998 2.42483i
$$663$$ −2.79158 1.01174i −0.108416 0.0392926i
$$664$$ −6.12143 + 10.6026i −0.237558 + 0.411462i
$$665$$ 0.519823i 0.0201579i
$$666$$ −38.4567 + 24.1047i −1.49017 + 0.934039i
$$667$$ 19.9918 0.774085
$$668$$ −86.3635 49.8620i −3.34151 1.92922i
$$669$$ −18.6557 17.9906i −0.721270 0.695555i
$$670$$ 29.6510 17.1190i 1.14552 0.661364i
$$671$$ 4.69191 2.70888i 0.181129 0.104575i
$$672$$ 167.147 + 41.5513i 6.44784 + 1.60287i
$$673$$ −4.75179 + 8.23034i −0.183168 + 0.317256i −0.942958 0.332913i $$-0.891969\pi$$
0.759790 + 0.650169i $$0.225302\pi$$
$$674$$ 49.5086i 1.90700i
$$675$$ 4.93848 1.61598i 0.190082 0.0621993i
$$676$$ 21.9773 + 67.3314i 0.845282 + 2.58967i
$$677$$ 0.888100 1.53823i 0.0341325 0.0591192i −0.848455 0.529268i $$-0.822467\pi$$
0.882587 + 0.470149i $$0.155800\pi$$
$$678$$ −0.514193 + 2.06843i −0.0197475 + 0.0794376i
$$679$$ −12.8791 22.3072i −0.494254 0.856073i
$$680$$ 2.23725 + 3.87503i 0.0857945 + 0.148601i
$$681$$ −5.49247 5.29666i −0.210472 0.202968i
$$682$$ 14.6433 + 8.45430i 0.560720 + 0.323732i
$$683$$ 45.0955i 1.72553i 0.505605 + 0.862765i $$0.331269\pi$$
−0.505605 + 0.862765i $$0.668731\pi$$
$$684$$ −1.83874 + 0.0667656i −0.0703060 + 0.00255285i
$$685$$ 2.94594 0.112558
$$686$$ 46.1460 79.9273i 1.76186 3.05164i
$$687$$ 35.7447 10.2765i 1.36375 0.392073i
$$688$$ 19.8349 + 34.3551i 0.756200 + 1.30978i
$$689$$ 7.94229 + 0.829374i 0.302577 + 0.0315966i
$$690$$ −4.13000 14.3654i −0.157226 0.546880i
$$691$$ 4.61829 + 2.66637i 0.175688 + 0.101434i 0.585265 0.810842i $$-0.300990\pi$$
−0.409577 + 0.912275i $$0.634324\pi$$
$$692$$ 11.2510 0.427698
$$693$$ 1.89816 + 52.2759i 0.0721053 + 1.98580i
$$694$$ 13.0623i 0.495838i
$$695$$ −0.312337 0.180328i −0.0118476 0.00684023i
$$696$$ 74.1806 + 71.5360i 2.81181 + 2.71156i
$$697$$ −4.97943 + 2.87488i −0.188609 + 0.108894i
$$698$$ 25.9308 + 44.9134i 0.981494 + 1.70000i
$$699$$ −40.6553 10.1065i −1.53772 0.382265i
$$700$$ 21.7879 + 12.5793i 0.823506 + 0.475452i
$$701$$ −18.7366 −0.707673 −0.353837 0.935307i $$-0.615123\pi$$
−0.353837 + 0.935307i $$0.615123\pi$$
$$702$$ 10.7683 + 49.9838i 0.406424 + 1.88652i
$$703$$ 0.624034 0.0235359
$$704$$ −95.4770 55.1237i −3.59843 2.07755i
$$705$$ −10.2618 2.55099i −0.386482 0.0960760i
$$706$$ −3.76565 6.52230i −0.141722 0.245470i
$$707$$ −33.4841 + 19.3320i −1.25930 + 0.727056i
$$708$$ 61.0530 + 58.8764i 2.29451 + 2.21271i
$$709$$ −33.3321 19.2443i −1.25181 0.722736i −0.280345 0.959899i $$-0.590449\pi$$
−0.971470 + 0.237164i $$0.923782\pi$$
$$710$$ 26.6237i 0.999168i
$$711$$ 11.4827 7.19737i 0.430635 0.269922i
$$712$$ −73.6746 −2.76107
$$713$$ 4.49310 + 2.59409i 0.168268 + 0.0971494i
$$714$$ −2.86761 9.97442i −0.107318 0.373283i
$$715$$ 13.5411 + 1.41404i 0.506410 + 0.0528820i
$$716$$ 33.0267 + 57.2039i 1.23426 + 2.13781i
$$717$$ 11.2223 3.22638i 0.419106 0.120491i
$$718$$ −14.3050 + 24.7770i −0.533859 + 0.924671i
$$719$$ −30.4253 −1.13467 −0.567336 0.823486i $$-0.692026\pi$$
−0.567336 + 0.823486i $$0.692026\pi$$
$$720$$ 20.7719 39.1973i 0.774121 1.46080i
$$721$$ 57.8957i 2.15615i
$$722$$ −44.8768 25.9096i −1.67014 0.964257i
$$723$$ −10.9360 10.5461i −0.406714 0.392214i
$$724$$ −9.10911 15.7774i −0.338538 0.586364i
$$725$$ 3.16117 + 5.47531i 0.117403 + 0.203348i
$$726$$ 3.71610 14.9487i 0.137918 0.554797i
$$727$$ 26.2966 45.5470i 0.975286 1.68925i 0.296298 0.955095i $$-0.404248\pi$$
0.678988 0.734150i $$-0.262419\pi$$
$$728$$ −92.0118 + 126.822i −3.41018 + 4.70035i
$$729$$ 2.93405 + 26.8401i 0.108669 + 0.994078i
$$730$$ 4.38579i 0.162325i
$$731$$ 0.637775 1.10466i 0.0235890 0.0408573i
$$732$$ 13.1395 + 3.26635i 0.485649 + 0.120728i
$$733$$ −8.95840 + 5.17214i −0.330886 + 0.191037i −0.656234 0.754557i $$-0.727852\pi$$
0.325348 + 0.945594i $$0.394518\pi$$
$$734$$ 45.8010 26.4432i 1.69055 0.976038i
$$735$$ −17.8579 17.2212i −0.658698 0.635214i
$$736$$ −58.9706 34.0467i −2.17369 1.25498i
$$737$$ 47.3718 1.74496
$$738$$ 87.4854 + 46.3612i 3.22038 + 1.70658i
$$739$$ 12.1858i 0.448261i −0.974559 0.224130i $$-0.928046\pi$$
0.974559 0.224130i $$-0.0719541\pi$$
$$740$$ −15.1011 + 26.1559i −0.555127 + 0.961509i
$$741$$ 0.239540 0.660939i 0.00879973 0.0242802i
$$742$$ 13.9558 + 24.1721i 0.512333 + 0.887386i
$$743$$ −35.8410 + 20.6928i −1.31488 + 0.759146i −0.982900 0.184140i $$-0.941050\pi$$
−0.331980 + 0.943286i $$0.607717\pi$$
$$744$$ 7.38953 + 25.7030i 0.270913 + 0.942319i
$$745$$ −1.76031 + 3.04895i −0.0644928 + 0.111705i
$$746$$ 80.9089i 2.96229i
$$747$$ −2.07276 3.30689i −0.0758385 0.120993i
$$748$$ 9.78168i 0.357654i
$$749$$ 69.5957 + 40.1811i 2.54297 + 1.46819i
$$750$$ 3.28131 3.40262i 0.119816 0.124246i
$$751$$ −10.8042 18.7134i −0.394250 0.682862i 0.598755 0.800932i $$-0.295662\pi$$
−0.993005 + 0.118071i $$0.962329\pi$$
$$752$$ −78.1799 + 45.1372i −2.85093 + 1.64598i
$$753$$ −3.74340 0.930575i −0.136417 0.0339121i
$$754$$ −56.8168 + 25.3422i −2.06915 + 0.922909i
$$755$$ −9.88439 −0.359730
$$756$$ −87.2714 + 97.3314i −3.17403 + 3.53991i
$$757$$ −21.1040 −0.767036 −0.383518 0.923533i $$-0.625288\pi$$
−0.383518 + 0.923533i $$0.625288\pi$$
$$758$$ −31.1425 + 53.9404i −1.13115 + 1.95920i
$$759$$ 4.98928 20.0702i 0.181099 0.728503i
$$760$$ −0.917457 + 0.529694i −0.0332796 + 0.0192140i
$$761$$ 1.79140 1.03427i 0.0649382 0.0374921i −0.467179 0.884163i $$-0.654730\pi$$
0.532118 + 0.846670i $$0.321396\pi$$
$$762$$ 4.89095 + 4.71658i 0.177180 + 0.170864i
$$763$$ −33.6391 + 58.2647i −1.21782 + 2.10932i
$$764$$ 45.4316 1.64366
$$765$$ −1.42545 + 0.0517588i −0.0515373 + 0.00187134i
$$766$$ 7.00646 0.253154
$$767$$ −29.5962 + 13.2009i −1.06866 + 0.476657i
$$768$$ −19.8745 69.1296i −0.717160 2.49450i
$$769$$ −0.922793 + 0.532774i −0.0332767 + 0.0192123i −0.516546 0.856259i $$-0.672783\pi$$
0.483269 + 0.875472i $$0.339449\pi$$
$$770$$ 23.7938 + 41.2121i 0.857469 + 1.48518i
$$771$$ 9.24585 + 32.1599i 0.332981 + 1.15821i
$$772$$ −47.2311 27.2689i −1.69989 0.981430i
$$773$$ 43.1846i 1.55324i −0.629969 0.776620i $$-0.716932\pi$$
0.629969 0.776620i $$-0.283068\pi$$
$$774$$ −21.9504 + 0.797031i −0.788992 + 0.0286487i
$$775$$