Properties

Label 585.2.b.g
Level $585$
Weight $2$
Character orbit 585.b
Analytic conductor $4.671$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.5089536.1
Defining polynomial: \(x^{6} - 2 x^{5} + 2 x^{4} + 2 x^{3} + 16 x^{2} - 24 x + 18\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{5} q^{2} + ( -2 + \beta_{3} ) q^{4} + \beta_{4} q^{5} + ( -\beta_{2} - \beta_{4} ) q^{7} + ( \beta_{2} + \beta_{4} + \beta_{5} ) q^{8} +O(q^{10})\) \( q -\beta_{5} q^{2} + ( -2 + \beta_{3} ) q^{4} + \beta_{4} q^{5} + ( -\beta_{2} - \beta_{4} ) q^{7} + ( \beta_{2} + \beta_{4} + \beta_{5} ) q^{8} -\beta_{1} q^{10} + ( -\beta_{2} + 2 \beta_{4} - \beta_{5} ) q^{11} + ( -1 + \beta_{1} + \beta_{2} + \beta_{4} - \beta_{5} ) q^{13} + ( -1 + 2 \beta_{1} + \beta_{3} ) q^{14} + ( 1 - 2 \beta_{1} ) q^{16} + ( -2 + 2 \beta_{3} ) q^{17} + ( -\beta_{2} + 2 \beta_{4} + \beta_{5} ) q^{19} + ( -\beta_{2} - 2 \beta_{4} ) q^{20} + ( -5 - \beta_{1} + 2 \beta_{3} ) q^{22} + ( -3 - \beta_{1} ) q^{23} - q^{25} + ( -3 - 2 \beta_{1} + \beta_{2} + 4 \beta_{4} + \beta_{5} ) q^{26} + ( \beta_{2} + 7 \beta_{4} + 2 \beta_{5} ) q^{28} + ( 1 - \beta_{3} ) q^{29} + ( \beta_{2} + 4 \beta_{4} - \beta_{5} ) q^{31} + ( -6 \beta_{4} + \beta_{5} ) q^{32} + ( 2 \beta_{2} + 2 \beta_{4} + 4 \beta_{5} ) q^{34} + ( 1 - \beta_{3} ) q^{35} + ( -\beta_{2} - 7 \beta_{4} ) q^{37} + ( 3 - \beta_{1} ) q^{38} + ( -1 + \beta_{1} + \beta_{3} ) q^{40} + ( 2 \beta_{2} + 2 \beta_{4} - 2 \beta_{5} ) q^{41} + ( 3 - \beta_{1} + 2 \beta_{3} ) q^{43} + ( -\beta_{2} + 2 \beta_{4} + 5 \beta_{5} ) q^{44} + ( -\beta_{2} - 4 \beta_{4} + 3 \beta_{5} ) q^{46} + ( -\beta_{2} - \beta_{4} ) q^{47} + ( 1 + 2 \beta_{1} ) q^{49} + \beta_{5} q^{50} + ( 3 - 3 \beta_{1} - 2 \beta_{3} - 6 \beta_{4} + \beta_{5} ) q^{52} + ( -2 + 2 \beta_{1} + 2 \beta_{3} ) q^{53} + ( -2 - \beta_{1} - \beta_{3} ) q^{55} + ( 7 - 4 \beta_{1} - \beta_{3} ) q^{56} + ( -\beta_{2} - \beta_{4} - 2 \beta_{5} ) q^{58} + ( -\beta_{2} - 4 \beta_{4} - \beta_{5} ) q^{59} + ( -1 + 2 \beta_{1} - \beta_{3} ) q^{61} + ( -3 - 5 \beta_{1} ) q^{62} + ( 6 + 2 \beta_{1} - \beta_{3} ) q^{64} + ( -1 - \beta_{1} + \beta_{3} - \beta_{4} - \beta_{5} ) q^{65} + ( \beta_{2} + 7 \beta_{4} - 2 \beta_{5} ) q^{67} + ( 14 - 4 \beta_{1} - 2 \beta_{3} ) q^{68} + ( -\beta_{2} - \beta_{4} - 2 \beta_{5} ) q^{70} + ( \beta_{2} - 2 \beta_{4} - \beta_{5} ) q^{71} + ( \beta_{2} - 5 \beta_{4} - 4 \beta_{5} ) q^{73} + ( -1 + 8 \beta_{1} + \beta_{3} ) q^{74} + ( -3 \beta_{2} - \beta_{5} ) q^{76} + ( -4 + 4 \beta_{1} - 2 \beta_{3} ) q^{77} + ( 6 + 4 \beta_{1} - 2 \beta_{3} ) q^{79} + ( \beta_{4} + 2 \beta_{5} ) q^{80} + ( -6 - 4 \beta_{1} ) q^{82} + ( \beta_{2} - 5 \beta_{4} - 2 \beta_{5} ) q^{83} + ( -2 \beta_{2} - 2 \beta_{4} ) q^{85} + ( \beta_{2} - 2 \beta_{4} - \beta_{5} ) q^{86} + ( 9 - 3 \beta_{1} ) q^{88} + ( -2 \beta_{2} - 2 \beta_{4} + 4 \beta_{5} ) q^{89} + ( 5 + 2 \beta_{2} + \beta_{3} + 2 \beta_{4} + 2 \beta_{5} ) q^{91} + ( 5 + 3 \beta_{1} - 2 \beta_{3} ) q^{92} + ( -1 + 2 \beta_{1} + \beta_{3} ) q^{94} + ( -2 + \beta_{1} - \beta_{3} ) q^{95} + ( 2 \beta_{2} - 4 \beta_{4} ) q^{97} + ( 2 \beta_{2} + 8 \beta_{4} - \beta_{5} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 10 q^{4} + O(q^{10}) \) \( 6 q - 10 q^{4} + 2 q^{10} - 8 q^{13} - 8 q^{14} + 10 q^{16} - 8 q^{17} - 24 q^{22} - 16 q^{23} - 6 q^{25} - 14 q^{26} + 4 q^{29} + 4 q^{35} + 20 q^{38} - 6 q^{40} + 24 q^{43} + 2 q^{49} + 20 q^{52} - 12 q^{53} - 12 q^{55} + 48 q^{56} - 12 q^{61} - 8 q^{62} + 30 q^{64} - 2 q^{65} + 88 q^{68} - 20 q^{74} - 36 q^{77} + 24 q^{79} - 28 q^{82} + 60 q^{88} + 32 q^{91} + 20 q^{92} - 8 q^{94} - 16 q^{95} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{6} - 2 x^{5} + 2 x^{4} + 2 x^{3} + 16 x^{2} - 24 x + 18\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( -\nu^{5} + 24 \nu^{4} - 6 \nu^{3} - \nu^{2} + 6 \nu + 285 \)\()/131\)
\(\beta_{2}\)\(=\)\((\)\( -5 \nu^{5} - 11 \nu^{4} + 101 \nu^{3} - 136 \nu^{2} + 292 \nu - 147 \)\()/393\)
\(\beta_{3}\)\(=\)\((\)\( 6 \nu^{5} - 13 \nu^{4} + 36 \nu^{3} + 6 \nu^{2} - 36 \nu - 7 \)\()/131\)
\(\beta_{4}\)\(=\)\((\)\( 23 \nu^{5} - 28 \nu^{4} + 7 \nu^{3} + 154 \nu^{2} + 386 \nu - 267 \)\()/393\)
\(\beta_{5}\)\(=\)\((\)\( -23 \nu^{5} + 28 \nu^{4} - 7 \nu^{3} - 23 \nu^{2} - 386 \nu + 267 \)\()/131\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{4} - \beta_{3} + \beta_{2} + 1\)\()/2\)
\(\nu^{2}\)\(=\)\(\beta_{5} + 3 \beta_{4}\)
\(\nu^{3}\)\(=\)\(\beta_{5} + 2 \beta_{4} + 2 \beta_{3} + 2 \beta_{2} + \beta_{1} - 2\)
\(\nu^{4}\)\(=\)\(\beta_{3} + 6 \beta_{1} - 13\)
\(\nu^{5}\)\(=\)\(-7 \beta_{5} - 12 \beta_{4} + 9 \beta_{3} - 9 \beta_{2} + 7 \beta_{1} - 12\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
181.1
1.66044 + 1.66044i
0.675970 0.675970i
−1.33641 1.33641i
−1.33641 + 1.33641i
0.675970 + 0.675970i
1.66044 1.66044i
2.51414i 0 −4.32088 1.00000i 0 3.32088i 5.83502i 0 2.51414
181.2 2.08613i 0 −2.35194 1.00000i 0 1.35194i 0.734191i 0 −2.08613
181.3 0.571993i 0 1.67282 1.00000i 0 2.67282i 2.10083i 0 0.571993
181.4 0.571993i 0 1.67282 1.00000i 0 2.67282i 2.10083i 0 0.571993
181.5 2.08613i 0 −2.35194 1.00000i 0 1.35194i 0.734191i 0 −2.08613
181.6 2.51414i 0 −4.32088 1.00000i 0 3.32088i 5.83502i 0 2.51414
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 181.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 585.2.b.g 6
3.b odd 2 1 65.2.c.a 6
12.b even 2 1 1040.2.k.d 6
13.b even 2 1 inner 585.2.b.g 6
13.d odd 4 1 7605.2.a.bs 3
13.d odd 4 1 7605.2.a.cc 3
15.d odd 2 1 325.2.c.g 6
15.e even 4 1 325.2.d.e 6
15.e even 4 1 325.2.d.f 6
39.d odd 2 1 65.2.c.a 6
39.f even 4 1 845.2.a.i 3
39.f even 4 1 845.2.a.k 3
39.h odd 6 2 845.2.m.h 12
39.i odd 6 2 845.2.m.h 12
39.k even 12 2 845.2.e.i 6
39.k even 12 2 845.2.e.k 6
156.h even 2 1 1040.2.k.d 6
195.e odd 2 1 325.2.c.g 6
195.n even 4 1 4225.2.a.bc 3
195.n even 4 1 4225.2.a.be 3
195.s even 4 1 325.2.d.e 6
195.s even 4 1 325.2.d.f 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.2.c.a 6 3.b odd 2 1
65.2.c.a 6 39.d odd 2 1
325.2.c.g 6 15.d odd 2 1
325.2.c.g 6 195.e odd 2 1
325.2.d.e 6 15.e even 4 1
325.2.d.e 6 195.s even 4 1
325.2.d.f 6 15.e even 4 1
325.2.d.f 6 195.s even 4 1
585.2.b.g 6 1.a even 1 1 trivial
585.2.b.g 6 13.b even 2 1 inner
845.2.a.i 3 39.f even 4 1
845.2.a.k 3 39.f even 4 1
845.2.e.i 6 39.k even 12 2
845.2.e.k 6 39.k even 12 2
845.2.m.h 12 39.h odd 6 2
845.2.m.h 12 39.i odd 6 2
1040.2.k.d 6 12.b even 2 1
1040.2.k.d 6 156.h even 2 1
4225.2.a.bc 3 195.n even 4 1
4225.2.a.be 3 195.n even 4 1
7605.2.a.bs 3 13.d odd 4 1
7605.2.a.cc 3 13.d odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(585, [\chi])\):

\( T_{2}^{6} + 11 T_{2}^{4} + 31 T_{2}^{2} + 9 \)
\( T_{7}^{6} + 20 T_{7}^{4} + 112 T_{7}^{2} + 144 \)
\( T_{17}^{3} + 4 T_{17}^{2} - 32 T_{17} - 96 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 9 + 31 T^{2} + 11 T^{4} + T^{6} \)
$3$ \( T^{6} \)
$5$ \( ( 1 + T^{2} )^{3} \)
$7$ \( 144 + 112 T^{2} + 20 T^{4} + T^{6} \)
$11$ \( 2916 + 684 T^{2} + 48 T^{4} + T^{6} \)
$13$ \( 2197 + 1352 T + 507 T^{2} + 160 T^{3} + 39 T^{4} + 8 T^{5} + T^{6} \)
$17$ \( ( -96 - 32 T + 4 T^{2} + T^{3} )^{2} \)
$19$ \( 36 + 196 T^{2} + 44 T^{4} + T^{6} \)
$23$ \( ( 6 + 16 T + 8 T^{2} + T^{3} )^{2} \)
$29$ \( ( 12 - 8 T - 2 T^{2} + T^{3} )^{2} \)
$31$ \( 36 + 604 T^{2} + 56 T^{4} + T^{6} \)
$37$ \( 51984 + 6256 T^{2} + 152 T^{4} + T^{6} \)
$41$ \( 5184 + 2224 T^{2} + 92 T^{4} + T^{6} \)
$43$ \( ( -2 + 12 T - 12 T^{2} + T^{3} )^{2} \)
$47$ \( 144 + 112 T^{2} + 20 T^{4} + T^{6} \)
$53$ \( ( 72 - 60 T + 6 T^{2} + T^{3} )^{2} \)
$59$ \( 324 + 468 T^{2} + 84 T^{4} + T^{6} \)
$61$ \( ( -76 - 12 T + 6 T^{2} + T^{3} )^{2} \)
$67$ \( 11664 + 3168 T^{2} + 156 T^{4} + T^{6} \)
$71$ \( 36 + 196 T^{2} + 44 T^{4} + T^{6} \)
$73$ \( 266256 + 23344 T^{2} + 296 T^{4} + T^{6} \)
$79$ \( ( 32 - 48 T - 12 T^{2} + T^{3} )^{2} \)
$83$ \( 1296 + 5760 T^{2} + 156 T^{4} + T^{6} \)
$89$ \( 82944 + 9216 T^{2} + 192 T^{4} + T^{6} \)
$97$ \( 576 + 1456 T^{2} + 140 T^{4} + T^{6} \)
show more
show less