Properties

Label 585.2.a.a
Level $585$
Weight $2$
Character orbit 585.a
Self dual yes
Analytic conductor $4.671$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(4.67124851824\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 195)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 2 q^{2} + 2 q^{4} - q^{5} - 3 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q - 2 q^{2} + 2 q^{4} - q^{5} - 3 q^{7} + 2 q^{10} + 5 q^{11} + q^{13} + 6 q^{14} - 4 q^{16} - 5 q^{17} + 2 q^{19} - 2 q^{20} - 10 q^{22} + q^{23} + q^{25} - 2 q^{26} - 6 q^{28} - 10 q^{29} - 2 q^{31} + 8 q^{32} + 10 q^{34} + 3 q^{35} - 3 q^{37} - 4 q^{38} + 9 q^{41} - 4 q^{43} + 10 q^{44} - 2 q^{46} - 10 q^{47} + 2 q^{49} - 2 q^{50} + 2 q^{52} - 9 q^{53} - 5 q^{55} + 20 q^{58} - 11 q^{61} + 4 q^{62} - 8 q^{64} - q^{65} - 4 q^{67} - 10 q^{68} - 6 q^{70} - 15 q^{71} + 6 q^{73} + 6 q^{74} + 4 q^{76} - 15 q^{77} - 11 q^{79} + 4 q^{80} - 18 q^{82} - 8 q^{83} + 5 q^{85} + 8 q^{86} + 11 q^{89} - 3 q^{91} + 2 q^{92} + 20 q^{94} - 2 q^{95} - 9 q^{97} - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 0 2.00000 −1.00000 0 −3.00000 0 0 2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(5\) \(1\)
\(13\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 585.2.a.a 1
3.b odd 2 1 195.2.a.d 1
4.b odd 2 1 9360.2.a.w 1
5.b even 2 1 2925.2.a.t 1
5.c odd 4 2 2925.2.c.d 2
12.b even 2 1 3120.2.a.n 1
13.b even 2 1 7605.2.a.v 1
15.d odd 2 1 975.2.a.b 1
15.e even 4 2 975.2.c.b 2
21.c even 2 1 9555.2.a.t 1
39.d odd 2 1 2535.2.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
195.2.a.d 1 3.b odd 2 1
585.2.a.a 1 1.a even 1 1 trivial
975.2.a.b 1 15.d odd 2 1
975.2.c.b 2 15.e even 4 2
2535.2.a.b 1 39.d odd 2 1
2925.2.a.t 1 5.b even 2 1
2925.2.c.d 2 5.c odd 4 2
3120.2.a.n 1 12.b even 2 1
7605.2.a.v 1 13.b even 2 1
9360.2.a.w 1 4.b odd 2 1
9555.2.a.t 1 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(585))\):

\( T_{2} + 2 \) Copy content Toggle raw display
\( T_{7} + 3 \) Copy content Toggle raw display
\( T_{11} - 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 2 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T + 3 \) Copy content Toggle raw display
$11$ \( T - 5 \) Copy content Toggle raw display
$13$ \( T - 1 \) Copy content Toggle raw display
$17$ \( T + 5 \) Copy content Toggle raw display
$19$ \( T - 2 \) Copy content Toggle raw display
$23$ \( T - 1 \) Copy content Toggle raw display
$29$ \( T + 10 \) Copy content Toggle raw display
$31$ \( T + 2 \) Copy content Toggle raw display
$37$ \( T + 3 \) Copy content Toggle raw display
$41$ \( T - 9 \) Copy content Toggle raw display
$43$ \( T + 4 \) Copy content Toggle raw display
$47$ \( T + 10 \) Copy content Toggle raw display
$53$ \( T + 9 \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T + 11 \) Copy content Toggle raw display
$67$ \( T + 4 \) Copy content Toggle raw display
$71$ \( T + 15 \) Copy content Toggle raw display
$73$ \( T - 6 \) Copy content Toggle raw display
$79$ \( T + 11 \) Copy content Toggle raw display
$83$ \( T + 8 \) Copy content Toggle raw display
$89$ \( T - 11 \) Copy content Toggle raw display
$97$ \( T + 9 \) Copy content Toggle raw display
show more
show less