Properties

Label 5808.2.a.ci.1.1
Level $5808$
Weight $2$
Character 5808.1
Self dual yes
Analytic conductor $46.377$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5808,2,Mod(1,5808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5808.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5808 = 2^{4} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5808.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.3771134940\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 5808.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -0.618034 q^{5} -1.00000 q^{7} +1.00000 q^{9} -0.236068 q^{13} -0.618034 q^{15} +1.14590 q^{17} +5.85410 q^{19} -1.00000 q^{21} -0.236068 q^{23} -4.61803 q^{25} +1.00000 q^{27} +6.00000 q^{29} +6.09017 q^{31} +0.618034 q^{35} -6.23607 q^{37} -0.236068 q^{39} -0.236068 q^{41} -6.70820 q^{43} -0.618034 q^{45} +10.0902 q^{47} -6.00000 q^{49} +1.14590 q^{51} -0.381966 q^{53} +5.85410 q^{57} -7.38197 q^{59} +11.5623 q^{61} -1.00000 q^{63} +0.145898 q^{65} -1.85410 q^{67} -0.236068 q^{69} -10.3262 q^{71} +5.70820 q^{73} -4.61803 q^{75} +11.0000 q^{79} +1.00000 q^{81} +1.47214 q^{83} -0.708204 q^{85} +6.00000 q^{87} -8.23607 q^{89} +0.236068 q^{91} +6.09017 q^{93} -3.61803 q^{95} +7.85410 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + q^{5} - 2 q^{7} + 2 q^{9} + 4 q^{13} + q^{15} + 9 q^{17} + 5 q^{19} - 2 q^{21} + 4 q^{23} - 7 q^{25} + 2 q^{27} + 12 q^{29} + q^{31} - q^{35} - 8 q^{37} + 4 q^{39} + 4 q^{41} + q^{45}+ \cdots + 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −0.618034 −0.276393 −0.138197 0.990405i \(-0.544131\pi\)
−0.138197 + 0.990405i \(0.544131\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −0.236068 −0.0654735 −0.0327367 0.999464i \(-0.510422\pi\)
−0.0327367 + 0.999464i \(0.510422\pi\)
\(14\) 0 0
\(15\) −0.618034 −0.159576
\(16\) 0 0
\(17\) 1.14590 0.277921 0.138961 0.990298i \(-0.455624\pi\)
0.138961 + 0.990298i \(0.455624\pi\)
\(18\) 0 0
\(19\) 5.85410 1.34302 0.671512 0.740994i \(-0.265645\pi\)
0.671512 + 0.740994i \(0.265645\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) −0.236068 −0.0492236 −0.0246118 0.999697i \(-0.507835\pi\)
−0.0246118 + 0.999697i \(0.507835\pi\)
\(24\) 0 0
\(25\) −4.61803 −0.923607
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 6.09017 1.09383 0.546913 0.837189i \(-0.315803\pi\)
0.546913 + 0.837189i \(0.315803\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.618034 0.104467
\(36\) 0 0
\(37\) −6.23607 −1.02520 −0.512602 0.858627i \(-0.671318\pi\)
−0.512602 + 0.858627i \(0.671318\pi\)
\(38\) 0 0
\(39\) −0.236068 −0.0378011
\(40\) 0 0
\(41\) −0.236068 −0.0368676 −0.0184338 0.999830i \(-0.505868\pi\)
−0.0184338 + 0.999830i \(0.505868\pi\)
\(42\) 0 0
\(43\) −6.70820 −1.02299 −0.511496 0.859286i \(-0.670908\pi\)
−0.511496 + 0.859286i \(0.670908\pi\)
\(44\) 0 0
\(45\) −0.618034 −0.0921311
\(46\) 0 0
\(47\) 10.0902 1.47180 0.735901 0.677089i \(-0.236759\pi\)
0.735901 + 0.677089i \(0.236759\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) 1.14590 0.160458
\(52\) 0 0
\(53\) −0.381966 −0.0524671 −0.0262335 0.999656i \(-0.508351\pi\)
−0.0262335 + 0.999656i \(0.508351\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 5.85410 0.775395
\(58\) 0 0
\(59\) −7.38197 −0.961050 −0.480525 0.876981i \(-0.659554\pi\)
−0.480525 + 0.876981i \(0.659554\pi\)
\(60\) 0 0
\(61\) 11.5623 1.48040 0.740201 0.672386i \(-0.234730\pi\)
0.740201 + 0.672386i \(0.234730\pi\)
\(62\) 0 0
\(63\) −1.00000 −0.125988
\(64\) 0 0
\(65\) 0.145898 0.0180964
\(66\) 0 0
\(67\) −1.85410 −0.226515 −0.113257 0.993566i \(-0.536128\pi\)
−0.113257 + 0.993566i \(0.536128\pi\)
\(68\) 0 0
\(69\) −0.236068 −0.0284192
\(70\) 0 0
\(71\) −10.3262 −1.22550 −0.612749 0.790277i \(-0.709937\pi\)
−0.612749 + 0.790277i \(0.709937\pi\)
\(72\) 0 0
\(73\) 5.70820 0.668095 0.334047 0.942556i \(-0.391585\pi\)
0.334047 + 0.942556i \(0.391585\pi\)
\(74\) 0 0
\(75\) −4.61803 −0.533245
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 11.0000 1.23760 0.618798 0.785550i \(-0.287620\pi\)
0.618798 + 0.785550i \(0.287620\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 1.47214 0.161588 0.0807940 0.996731i \(-0.474254\pi\)
0.0807940 + 0.996731i \(0.474254\pi\)
\(84\) 0 0
\(85\) −0.708204 −0.0768155
\(86\) 0 0
\(87\) 6.00000 0.643268
\(88\) 0 0
\(89\) −8.23607 −0.873021 −0.436511 0.899699i \(-0.643786\pi\)
−0.436511 + 0.899699i \(0.643786\pi\)
\(90\) 0 0
\(91\) 0.236068 0.0247466
\(92\) 0 0
\(93\) 6.09017 0.631521
\(94\) 0 0
\(95\) −3.61803 −0.371202
\(96\) 0 0
\(97\) 7.85410 0.797463 0.398732 0.917068i \(-0.369451\pi\)
0.398732 + 0.917068i \(0.369451\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 10.2361 1.01853 0.509263 0.860611i \(-0.329918\pi\)
0.509263 + 0.860611i \(0.329918\pi\)
\(102\) 0 0
\(103\) 10.9443 1.07837 0.539186 0.842187i \(-0.318732\pi\)
0.539186 + 0.842187i \(0.318732\pi\)
\(104\) 0 0
\(105\) 0.618034 0.0603139
\(106\) 0 0
\(107\) −11.4721 −1.10905 −0.554527 0.832166i \(-0.687101\pi\)
−0.554527 + 0.832166i \(0.687101\pi\)
\(108\) 0 0
\(109\) 12.0000 1.14939 0.574696 0.818367i \(-0.305120\pi\)
0.574696 + 0.818367i \(0.305120\pi\)
\(110\) 0 0
\(111\) −6.23607 −0.591901
\(112\) 0 0
\(113\) 13.4721 1.26735 0.633676 0.773599i \(-0.281545\pi\)
0.633676 + 0.773599i \(0.281545\pi\)
\(114\) 0 0
\(115\) 0.145898 0.0136051
\(116\) 0 0
\(117\) −0.236068 −0.0218245
\(118\) 0 0
\(119\) −1.14590 −0.105044
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −0.236068 −0.0212855
\(124\) 0 0
\(125\) 5.94427 0.531672
\(126\) 0 0
\(127\) 7.70820 0.683992 0.341996 0.939701i \(-0.388897\pi\)
0.341996 + 0.939701i \(0.388897\pi\)
\(128\) 0 0
\(129\) −6.70820 −0.590624
\(130\) 0 0
\(131\) −11.7984 −1.03083 −0.515414 0.856941i \(-0.672362\pi\)
−0.515414 + 0.856941i \(0.672362\pi\)
\(132\) 0 0
\(133\) −5.85410 −0.507615
\(134\) 0 0
\(135\) −0.618034 −0.0531919
\(136\) 0 0
\(137\) 9.76393 0.834189 0.417095 0.908863i \(-0.363048\pi\)
0.417095 + 0.908863i \(0.363048\pi\)
\(138\) 0 0
\(139\) 14.5623 1.23516 0.617579 0.786509i \(-0.288113\pi\)
0.617579 + 0.786509i \(0.288113\pi\)
\(140\) 0 0
\(141\) 10.0902 0.849746
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −3.70820 −0.307950
\(146\) 0 0
\(147\) −6.00000 −0.494872
\(148\) 0 0
\(149\) 4.23607 0.347032 0.173516 0.984831i \(-0.444487\pi\)
0.173516 + 0.984831i \(0.444487\pi\)
\(150\) 0 0
\(151\) 1.05573 0.0859139 0.0429570 0.999077i \(-0.486322\pi\)
0.0429570 + 0.999077i \(0.486322\pi\)
\(152\) 0 0
\(153\) 1.14590 0.0926404
\(154\) 0 0
\(155\) −3.76393 −0.302326
\(156\) 0 0
\(157\) 15.7082 1.25365 0.626826 0.779160i \(-0.284354\pi\)
0.626826 + 0.779160i \(0.284354\pi\)
\(158\) 0 0
\(159\) −0.381966 −0.0302919
\(160\) 0 0
\(161\) 0.236068 0.0186048
\(162\) 0 0
\(163\) 5.14590 0.403058 0.201529 0.979483i \(-0.435409\pi\)
0.201529 + 0.979483i \(0.435409\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.0344 0.931253 0.465627 0.884981i \(-0.345829\pi\)
0.465627 + 0.884981i \(0.345829\pi\)
\(168\) 0 0
\(169\) −12.9443 −0.995713
\(170\) 0 0
\(171\) 5.85410 0.447674
\(172\) 0 0
\(173\) 18.0344 1.37113 0.685567 0.728010i \(-0.259555\pi\)
0.685567 + 0.728010i \(0.259555\pi\)
\(174\) 0 0
\(175\) 4.61803 0.349091
\(176\) 0 0
\(177\) −7.38197 −0.554863
\(178\) 0 0
\(179\) 8.52786 0.637402 0.318701 0.947855i \(-0.396753\pi\)
0.318701 + 0.947855i \(0.396753\pi\)
\(180\) 0 0
\(181\) 2.52786 0.187895 0.0939473 0.995577i \(-0.470051\pi\)
0.0939473 + 0.995577i \(0.470051\pi\)
\(182\) 0 0
\(183\) 11.5623 0.854710
\(184\) 0 0
\(185\) 3.85410 0.283359
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −1.00000 −0.0727393
\(190\) 0 0
\(191\) 0.819660 0.0593085 0.0296543 0.999560i \(-0.490559\pi\)
0.0296543 + 0.999560i \(0.490559\pi\)
\(192\) 0 0
\(193\) 3.14590 0.226447 0.113223 0.993570i \(-0.463882\pi\)
0.113223 + 0.993570i \(0.463882\pi\)
\(194\) 0 0
\(195\) 0.145898 0.0104480
\(196\) 0 0
\(197\) −13.0344 −0.928666 −0.464333 0.885661i \(-0.653706\pi\)
−0.464333 + 0.885661i \(0.653706\pi\)
\(198\) 0 0
\(199\) −6.70820 −0.475532 −0.237766 0.971322i \(-0.576415\pi\)
−0.237766 + 0.971322i \(0.576415\pi\)
\(200\) 0 0
\(201\) −1.85410 −0.130778
\(202\) 0 0
\(203\) −6.00000 −0.421117
\(204\) 0 0
\(205\) 0.145898 0.0101900
\(206\) 0 0
\(207\) −0.236068 −0.0164079
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 3.61803 0.249076 0.124538 0.992215i \(-0.460255\pi\)
0.124538 + 0.992215i \(0.460255\pi\)
\(212\) 0 0
\(213\) −10.3262 −0.707542
\(214\) 0 0
\(215\) 4.14590 0.282748
\(216\) 0 0
\(217\) −6.09017 −0.413428
\(218\) 0 0
\(219\) 5.70820 0.385725
\(220\) 0 0
\(221\) −0.270510 −0.0181965
\(222\) 0 0
\(223\) −7.18034 −0.480831 −0.240416 0.970670i \(-0.577284\pi\)
−0.240416 + 0.970670i \(0.577284\pi\)
\(224\) 0 0
\(225\) −4.61803 −0.307869
\(226\) 0 0
\(227\) 13.1803 0.874810 0.437405 0.899265i \(-0.355898\pi\)
0.437405 + 0.899265i \(0.355898\pi\)
\(228\) 0 0
\(229\) 0.472136 0.0311996 0.0155998 0.999878i \(-0.495034\pi\)
0.0155998 + 0.999878i \(0.495034\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.14590 0.271607 0.135803 0.990736i \(-0.456638\pi\)
0.135803 + 0.990736i \(0.456638\pi\)
\(234\) 0 0
\(235\) −6.23607 −0.406796
\(236\) 0 0
\(237\) 11.0000 0.714527
\(238\) 0 0
\(239\) 0.381966 0.0247073 0.0123537 0.999924i \(-0.496068\pi\)
0.0123537 + 0.999924i \(0.496068\pi\)
\(240\) 0 0
\(241\) −8.29180 −0.534122 −0.267061 0.963680i \(-0.586052\pi\)
−0.267061 + 0.963680i \(0.586052\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 3.70820 0.236908
\(246\) 0 0
\(247\) −1.38197 −0.0879324
\(248\) 0 0
\(249\) 1.47214 0.0932928
\(250\) 0 0
\(251\) 21.9787 1.38728 0.693642 0.720320i \(-0.256005\pi\)
0.693642 + 0.720320i \(0.256005\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −0.708204 −0.0443495
\(256\) 0 0
\(257\) 29.7426 1.85530 0.927648 0.373457i \(-0.121828\pi\)
0.927648 + 0.373457i \(0.121828\pi\)
\(258\) 0 0
\(259\) 6.23607 0.387490
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 0 0
\(263\) −15.2705 −0.941620 −0.470810 0.882235i \(-0.656038\pi\)
−0.470810 + 0.882235i \(0.656038\pi\)
\(264\) 0 0
\(265\) 0.236068 0.0145015
\(266\) 0 0
\(267\) −8.23607 −0.504039
\(268\) 0 0
\(269\) −25.4164 −1.54967 −0.774833 0.632166i \(-0.782166\pi\)
−0.774833 + 0.632166i \(0.782166\pi\)
\(270\) 0 0
\(271\) 18.6180 1.13097 0.565483 0.824760i \(-0.308690\pi\)
0.565483 + 0.824760i \(0.308690\pi\)
\(272\) 0 0
\(273\) 0.236068 0.0142875
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 29.2148 1.75535 0.877673 0.479260i \(-0.159095\pi\)
0.877673 + 0.479260i \(0.159095\pi\)
\(278\) 0 0
\(279\) 6.09017 0.364609
\(280\) 0 0
\(281\) −24.7639 −1.47729 −0.738646 0.674093i \(-0.764535\pi\)
−0.738646 + 0.674093i \(0.764535\pi\)
\(282\) 0 0
\(283\) −5.70820 −0.339318 −0.169659 0.985503i \(-0.554267\pi\)
−0.169659 + 0.985503i \(0.554267\pi\)
\(284\) 0 0
\(285\) −3.61803 −0.214314
\(286\) 0 0
\(287\) 0.236068 0.0139347
\(288\) 0 0
\(289\) −15.6869 −0.922760
\(290\) 0 0
\(291\) 7.85410 0.460416
\(292\) 0 0
\(293\) 21.6525 1.26495 0.632476 0.774580i \(-0.282039\pi\)
0.632476 + 0.774580i \(0.282039\pi\)
\(294\) 0 0
\(295\) 4.56231 0.265628
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.0557281 0.00322284
\(300\) 0 0
\(301\) 6.70820 0.386654
\(302\) 0 0
\(303\) 10.2361 0.588047
\(304\) 0 0
\(305\) −7.14590 −0.409173
\(306\) 0 0
\(307\) 27.9787 1.59683 0.798415 0.602108i \(-0.205672\pi\)
0.798415 + 0.602108i \(0.205672\pi\)
\(308\) 0 0
\(309\) 10.9443 0.622598
\(310\) 0 0
\(311\) −11.6525 −0.660751 −0.330376 0.943850i \(-0.607175\pi\)
−0.330376 + 0.943850i \(0.607175\pi\)
\(312\) 0 0
\(313\) −2.52786 −0.142883 −0.0714417 0.997445i \(-0.522760\pi\)
−0.0714417 + 0.997445i \(0.522760\pi\)
\(314\) 0 0
\(315\) 0.618034 0.0348223
\(316\) 0 0
\(317\) −6.81966 −0.383030 −0.191515 0.981490i \(-0.561340\pi\)
−0.191515 + 0.981490i \(0.561340\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −11.4721 −0.640312
\(322\) 0 0
\(323\) 6.70820 0.373254
\(324\) 0 0
\(325\) 1.09017 0.0604717
\(326\) 0 0
\(327\) 12.0000 0.663602
\(328\) 0 0
\(329\) −10.0902 −0.556289
\(330\) 0 0
\(331\) −16.7082 −0.918366 −0.459183 0.888342i \(-0.651858\pi\)
−0.459183 + 0.888342i \(0.651858\pi\)
\(332\) 0 0
\(333\) −6.23607 −0.341734
\(334\) 0 0
\(335\) 1.14590 0.0626071
\(336\) 0 0
\(337\) 18.1803 0.990346 0.495173 0.868794i \(-0.335105\pi\)
0.495173 + 0.868794i \(0.335105\pi\)
\(338\) 0 0
\(339\) 13.4721 0.731706
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) 0 0
\(345\) 0.145898 0.00785489
\(346\) 0 0
\(347\) −1.52786 −0.0820200 −0.0410100 0.999159i \(-0.513058\pi\)
−0.0410100 + 0.999159i \(0.513058\pi\)
\(348\) 0 0
\(349\) −12.7082 −0.680255 −0.340127 0.940379i \(-0.610470\pi\)
−0.340127 + 0.940379i \(0.610470\pi\)
\(350\) 0 0
\(351\) −0.236068 −0.0126004
\(352\) 0 0
\(353\) −12.0000 −0.638696 −0.319348 0.947638i \(-0.603464\pi\)
−0.319348 + 0.947638i \(0.603464\pi\)
\(354\) 0 0
\(355\) 6.38197 0.338720
\(356\) 0 0
\(357\) −1.14590 −0.0606474
\(358\) 0 0
\(359\) −9.70820 −0.512379 −0.256190 0.966627i \(-0.582467\pi\)
−0.256190 + 0.966627i \(0.582467\pi\)
\(360\) 0 0
\(361\) 15.2705 0.803711
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.52786 −0.184657
\(366\) 0 0
\(367\) −22.1459 −1.15601 −0.578003 0.816034i \(-0.696168\pi\)
−0.578003 + 0.816034i \(0.696168\pi\)
\(368\) 0 0
\(369\) −0.236068 −0.0122892
\(370\) 0 0
\(371\) 0.381966 0.0198307
\(372\) 0 0
\(373\) −0.888544 −0.0460071 −0.0230035 0.999735i \(-0.507323\pi\)
−0.0230035 + 0.999735i \(0.507323\pi\)
\(374\) 0 0
\(375\) 5.94427 0.306961
\(376\) 0 0
\(377\) −1.41641 −0.0729487
\(378\) 0 0
\(379\) 24.8885 1.27844 0.639219 0.769024i \(-0.279258\pi\)
0.639219 + 0.769024i \(0.279258\pi\)
\(380\) 0 0
\(381\) 7.70820 0.394903
\(382\) 0 0
\(383\) 12.7082 0.649359 0.324679 0.945824i \(-0.394744\pi\)
0.324679 + 0.945824i \(0.394744\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −6.70820 −0.340997
\(388\) 0 0
\(389\) −36.7426 −1.86293 −0.931463 0.363836i \(-0.881467\pi\)
−0.931463 + 0.363836i \(0.881467\pi\)
\(390\) 0 0
\(391\) −0.270510 −0.0136803
\(392\) 0 0
\(393\) −11.7984 −0.595149
\(394\) 0 0
\(395\) −6.79837 −0.342063
\(396\) 0 0
\(397\) −18.7082 −0.938938 −0.469469 0.882949i \(-0.655555\pi\)
−0.469469 + 0.882949i \(0.655555\pi\)
\(398\) 0 0
\(399\) −5.85410 −0.293072
\(400\) 0 0
\(401\) −31.6869 −1.58237 −0.791185 0.611577i \(-0.790535\pi\)
−0.791185 + 0.611577i \(0.790535\pi\)
\(402\) 0 0
\(403\) −1.43769 −0.0716166
\(404\) 0 0
\(405\) −0.618034 −0.0307104
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 6.47214 0.320027 0.160013 0.987115i \(-0.448846\pi\)
0.160013 + 0.987115i \(0.448846\pi\)
\(410\) 0 0
\(411\) 9.76393 0.481619
\(412\) 0 0
\(413\) 7.38197 0.363243
\(414\) 0 0
\(415\) −0.909830 −0.0446618
\(416\) 0 0
\(417\) 14.5623 0.713119
\(418\) 0 0
\(419\) −31.4508 −1.53647 −0.768237 0.640165i \(-0.778866\pi\)
−0.768237 + 0.640165i \(0.778866\pi\)
\(420\) 0 0
\(421\) 10.5066 0.512059 0.256030 0.966669i \(-0.417586\pi\)
0.256030 + 0.966669i \(0.417586\pi\)
\(422\) 0 0
\(423\) 10.0902 0.490601
\(424\) 0 0
\(425\) −5.29180 −0.256690
\(426\) 0 0
\(427\) −11.5623 −0.559539
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.90983 −0.284666 −0.142333 0.989819i \(-0.545460\pi\)
−0.142333 + 0.989819i \(0.545460\pi\)
\(432\) 0 0
\(433\) 35.3050 1.69665 0.848324 0.529478i \(-0.177612\pi\)
0.848324 + 0.529478i \(0.177612\pi\)
\(434\) 0 0
\(435\) −3.70820 −0.177795
\(436\) 0 0
\(437\) −1.38197 −0.0661084
\(438\) 0 0
\(439\) 23.2918 1.11166 0.555828 0.831297i \(-0.312401\pi\)
0.555828 + 0.831297i \(0.312401\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 0 0
\(443\) 31.5967 1.50121 0.750603 0.660753i \(-0.229763\pi\)
0.750603 + 0.660753i \(0.229763\pi\)
\(444\) 0 0
\(445\) 5.09017 0.241297
\(446\) 0 0
\(447\) 4.23607 0.200359
\(448\) 0 0
\(449\) −9.05573 −0.427366 −0.213683 0.976903i \(-0.568546\pi\)
−0.213683 + 0.976903i \(0.568546\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 1.05573 0.0496024
\(454\) 0 0
\(455\) −0.145898 −0.00683981
\(456\) 0 0
\(457\) −23.9787 −1.12168 −0.560838 0.827925i \(-0.689521\pi\)
−0.560838 + 0.827925i \(0.689521\pi\)
\(458\) 0 0
\(459\) 1.14590 0.0534859
\(460\) 0 0
\(461\) −9.27051 −0.431771 −0.215885 0.976419i \(-0.569264\pi\)
−0.215885 + 0.976419i \(0.569264\pi\)
\(462\) 0 0
\(463\) −1.72949 −0.0803762 −0.0401881 0.999192i \(-0.512796\pi\)
−0.0401881 + 0.999192i \(0.512796\pi\)
\(464\) 0 0
\(465\) −3.76393 −0.174548
\(466\) 0 0
\(467\) −20.8885 −0.966607 −0.483303 0.875453i \(-0.660563\pi\)
−0.483303 + 0.875453i \(0.660563\pi\)
\(468\) 0 0
\(469\) 1.85410 0.0856145
\(470\) 0 0
\(471\) 15.7082 0.723796
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −27.0344 −1.24043
\(476\) 0 0
\(477\) −0.381966 −0.0174890
\(478\) 0 0
\(479\) −28.3820 −1.29681 −0.648403 0.761298i \(-0.724563\pi\)
−0.648403 + 0.761298i \(0.724563\pi\)
\(480\) 0 0
\(481\) 1.47214 0.0671236
\(482\) 0 0
\(483\) 0.236068 0.0107415
\(484\) 0 0
\(485\) −4.85410 −0.220413
\(486\) 0 0
\(487\) 12.7082 0.575864 0.287932 0.957651i \(-0.407032\pi\)
0.287932 + 0.957651i \(0.407032\pi\)
\(488\) 0 0
\(489\) 5.14590 0.232706
\(490\) 0 0
\(491\) −17.9098 −0.808259 −0.404130 0.914702i \(-0.632426\pi\)
−0.404130 + 0.914702i \(0.632426\pi\)
\(492\) 0 0
\(493\) 6.87539 0.309652
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.3262 0.463195
\(498\) 0 0
\(499\) 18.1459 0.812322 0.406161 0.913802i \(-0.366867\pi\)
0.406161 + 0.913802i \(0.366867\pi\)
\(500\) 0 0
\(501\) 12.0344 0.537659
\(502\) 0 0
\(503\) 8.65248 0.385795 0.192897 0.981219i \(-0.438212\pi\)
0.192897 + 0.981219i \(0.438212\pi\)
\(504\) 0 0
\(505\) −6.32624 −0.281514
\(506\) 0 0
\(507\) −12.9443 −0.574875
\(508\) 0 0
\(509\) 38.7426 1.71724 0.858619 0.512615i \(-0.171323\pi\)
0.858619 + 0.512615i \(0.171323\pi\)
\(510\) 0 0
\(511\) −5.70820 −0.252516
\(512\) 0 0
\(513\) 5.85410 0.258465
\(514\) 0 0
\(515\) −6.76393 −0.298054
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 18.0344 0.791624
\(520\) 0 0
\(521\) 8.94427 0.391856 0.195928 0.980618i \(-0.437228\pi\)
0.195928 + 0.980618i \(0.437228\pi\)
\(522\) 0 0
\(523\) 18.2705 0.798914 0.399457 0.916752i \(-0.369199\pi\)
0.399457 + 0.916752i \(0.369199\pi\)
\(524\) 0 0
\(525\) 4.61803 0.201548
\(526\) 0 0
\(527\) 6.97871 0.303998
\(528\) 0 0
\(529\) −22.9443 −0.997577
\(530\) 0 0
\(531\) −7.38197 −0.320350
\(532\) 0 0
\(533\) 0.0557281 0.00241385
\(534\) 0 0
\(535\) 7.09017 0.306535
\(536\) 0 0
\(537\) 8.52786 0.368004
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 7.49342 0.322167 0.161084 0.986941i \(-0.448501\pi\)
0.161084 + 0.986941i \(0.448501\pi\)
\(542\) 0 0
\(543\) 2.52786 0.108481
\(544\) 0 0
\(545\) −7.41641 −0.317684
\(546\) 0 0
\(547\) −30.7426 −1.31446 −0.657230 0.753690i \(-0.728272\pi\)
−0.657230 + 0.753690i \(0.728272\pi\)
\(548\) 0 0
\(549\) 11.5623 0.493467
\(550\) 0 0
\(551\) 35.1246 1.49636
\(552\) 0 0
\(553\) −11.0000 −0.467768
\(554\) 0 0
\(555\) 3.85410 0.163598
\(556\) 0 0
\(557\) −37.6312 −1.59448 −0.797242 0.603659i \(-0.793709\pi\)
−0.797242 + 0.603659i \(0.793709\pi\)
\(558\) 0 0
\(559\) 1.58359 0.0669788
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 40.5967 1.71095 0.855474 0.517845i \(-0.173266\pi\)
0.855474 + 0.517845i \(0.173266\pi\)
\(564\) 0 0
\(565\) −8.32624 −0.350287
\(566\) 0 0
\(567\) −1.00000 −0.0419961
\(568\) 0 0
\(569\) −34.1803 −1.43291 −0.716457 0.697631i \(-0.754237\pi\)
−0.716457 + 0.697631i \(0.754237\pi\)
\(570\) 0 0
\(571\) −9.09017 −0.380412 −0.190206 0.981744i \(-0.560916\pi\)
−0.190206 + 0.981744i \(0.560916\pi\)
\(572\) 0 0
\(573\) 0.819660 0.0342418
\(574\) 0 0
\(575\) 1.09017 0.0454632
\(576\) 0 0
\(577\) 31.7082 1.32003 0.660015 0.751253i \(-0.270550\pi\)
0.660015 + 0.751253i \(0.270550\pi\)
\(578\) 0 0
\(579\) 3.14590 0.130739
\(580\) 0 0
\(581\) −1.47214 −0.0610745
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0.145898 0.00603214
\(586\) 0 0
\(587\) 2.12461 0.0876921 0.0438461 0.999038i \(-0.486039\pi\)
0.0438461 + 0.999038i \(0.486039\pi\)
\(588\) 0 0
\(589\) 35.6525 1.46903
\(590\) 0 0
\(591\) −13.0344 −0.536165
\(592\) 0 0
\(593\) 14.0344 0.576325 0.288163 0.957581i \(-0.406956\pi\)
0.288163 + 0.957581i \(0.406956\pi\)
\(594\) 0 0
\(595\) 0.708204 0.0290335
\(596\) 0 0
\(597\) −6.70820 −0.274549
\(598\) 0 0
\(599\) −12.6525 −0.516966 −0.258483 0.966016i \(-0.583223\pi\)
−0.258483 + 0.966016i \(0.583223\pi\)
\(600\) 0 0
\(601\) 6.88854 0.280990 0.140495 0.990081i \(-0.455131\pi\)
0.140495 + 0.990081i \(0.455131\pi\)
\(602\) 0 0
\(603\) −1.85410 −0.0755049
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −16.5623 −0.672243 −0.336122 0.941819i \(-0.609115\pi\)
−0.336122 + 0.941819i \(0.609115\pi\)
\(608\) 0 0
\(609\) −6.00000 −0.243132
\(610\) 0 0
\(611\) −2.38197 −0.0963640
\(612\) 0 0
\(613\) 14.2918 0.577240 0.288620 0.957444i \(-0.406804\pi\)
0.288620 + 0.957444i \(0.406804\pi\)
\(614\) 0 0
\(615\) 0.145898 0.00588318
\(616\) 0 0
\(617\) 11.1803 0.450104 0.225052 0.974347i \(-0.427745\pi\)
0.225052 + 0.974347i \(0.427745\pi\)
\(618\) 0 0
\(619\) −24.1246 −0.969650 −0.484825 0.874611i \(-0.661117\pi\)
−0.484825 + 0.874611i \(0.661117\pi\)
\(620\) 0 0
\(621\) −0.236068 −0.00947308
\(622\) 0 0
\(623\) 8.23607 0.329971
\(624\) 0 0
\(625\) 19.4164 0.776656
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −7.14590 −0.284926
\(630\) 0 0
\(631\) −19.2148 −0.764928 −0.382464 0.923970i \(-0.624924\pi\)
−0.382464 + 0.923970i \(0.624924\pi\)
\(632\) 0 0
\(633\) 3.61803 0.143804
\(634\) 0 0
\(635\) −4.76393 −0.189051
\(636\) 0 0
\(637\) 1.41641 0.0561201
\(638\) 0 0
\(639\) −10.3262 −0.408500
\(640\) 0 0
\(641\) −25.0902 −0.991002 −0.495501 0.868607i \(-0.665016\pi\)
−0.495501 + 0.868607i \(0.665016\pi\)
\(642\) 0 0
\(643\) −20.8541 −0.822406 −0.411203 0.911544i \(-0.634891\pi\)
−0.411203 + 0.911544i \(0.634891\pi\)
\(644\) 0 0
\(645\) 4.14590 0.163245
\(646\) 0 0
\(647\) −45.0344 −1.77049 −0.885243 0.465128i \(-0.846008\pi\)
−0.885243 + 0.465128i \(0.846008\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −6.09017 −0.238693
\(652\) 0 0
\(653\) −5.61803 −0.219851 −0.109925 0.993940i \(-0.535061\pi\)
−0.109925 + 0.993940i \(0.535061\pi\)
\(654\) 0 0
\(655\) 7.29180 0.284914
\(656\) 0 0
\(657\) 5.70820 0.222698
\(658\) 0 0
\(659\) −41.1246 −1.60199 −0.800994 0.598673i \(-0.795695\pi\)
−0.800994 + 0.598673i \(0.795695\pi\)
\(660\) 0 0
\(661\) 36.5623 1.42211 0.711054 0.703137i \(-0.248218\pi\)
0.711054 + 0.703137i \(0.248218\pi\)
\(662\) 0 0
\(663\) −0.270510 −0.0105057
\(664\) 0 0
\(665\) 3.61803 0.140301
\(666\) 0 0
\(667\) −1.41641 −0.0548435
\(668\) 0 0
\(669\) −7.18034 −0.277608
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −35.8328 −1.38125 −0.690627 0.723211i \(-0.742665\pi\)
−0.690627 + 0.723211i \(0.742665\pi\)
\(674\) 0 0
\(675\) −4.61803 −0.177748
\(676\) 0 0
\(677\) −13.5279 −0.519918 −0.259959 0.965620i \(-0.583709\pi\)
−0.259959 + 0.965620i \(0.583709\pi\)
\(678\) 0 0
\(679\) −7.85410 −0.301413
\(680\) 0 0
\(681\) 13.1803 0.505072
\(682\) 0 0
\(683\) −9.06888 −0.347011 −0.173506 0.984833i \(-0.555509\pi\)
−0.173506 + 0.984833i \(0.555509\pi\)
\(684\) 0 0
\(685\) −6.03444 −0.230564
\(686\) 0 0
\(687\) 0.472136 0.0180131
\(688\) 0 0
\(689\) 0.0901699 0.00343520
\(690\) 0 0
\(691\) −1.34752 −0.0512622 −0.0256311 0.999671i \(-0.508160\pi\)
−0.0256311 + 0.999671i \(0.508160\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.00000 −0.341389
\(696\) 0 0
\(697\) −0.270510 −0.0102463
\(698\) 0 0
\(699\) 4.14590 0.156812
\(700\) 0 0
\(701\) 34.7984 1.31432 0.657158 0.753753i \(-0.271758\pi\)
0.657158 + 0.753753i \(0.271758\pi\)
\(702\) 0 0
\(703\) −36.5066 −1.37687
\(704\) 0 0
\(705\) −6.23607 −0.234864
\(706\) 0 0
\(707\) −10.2361 −0.384967
\(708\) 0 0
\(709\) 11.2148 0.421180 0.210590 0.977574i \(-0.432462\pi\)
0.210590 + 0.977574i \(0.432462\pi\)
\(710\) 0 0
\(711\) 11.0000 0.412532
\(712\) 0 0
\(713\) −1.43769 −0.0538421
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0.381966 0.0142648
\(718\) 0 0
\(719\) 38.4853 1.43526 0.717630 0.696425i \(-0.245227\pi\)
0.717630 + 0.696425i \(0.245227\pi\)
\(720\) 0 0
\(721\) −10.9443 −0.407586
\(722\) 0 0
\(723\) −8.29180 −0.308375
\(724\) 0 0
\(725\) −27.7082 −1.02906
\(726\) 0 0
\(727\) 9.14590 0.339203 0.169601 0.985513i \(-0.445752\pi\)
0.169601 + 0.985513i \(0.445752\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −7.68692 −0.284311
\(732\) 0 0
\(733\) 0.403252 0.0148945 0.00744723 0.999972i \(-0.497629\pi\)
0.00744723 + 0.999972i \(0.497629\pi\)
\(734\) 0 0
\(735\) 3.70820 0.136779
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 3.00000 0.110357 0.0551784 0.998477i \(-0.482427\pi\)
0.0551784 + 0.998477i \(0.482427\pi\)
\(740\) 0 0
\(741\) −1.38197 −0.0507678
\(742\) 0 0
\(743\) −42.8885 −1.57343 −0.786714 0.617318i \(-0.788219\pi\)
−0.786714 + 0.617318i \(0.788219\pi\)
\(744\) 0 0
\(745\) −2.61803 −0.0959173
\(746\) 0 0
\(747\) 1.47214 0.0538626
\(748\) 0 0
\(749\) 11.4721 0.419183
\(750\) 0 0
\(751\) −16.1459 −0.589172 −0.294586 0.955625i \(-0.595182\pi\)
−0.294586 + 0.955625i \(0.595182\pi\)
\(752\) 0 0
\(753\) 21.9787 0.800949
\(754\) 0 0
\(755\) −0.652476 −0.0237460
\(756\) 0 0
\(757\) 5.00000 0.181728 0.0908640 0.995863i \(-0.471037\pi\)
0.0908640 + 0.995863i \(0.471037\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −29.2918 −1.06183 −0.530913 0.847426i \(-0.678151\pi\)
−0.530913 + 0.847426i \(0.678151\pi\)
\(762\) 0 0
\(763\) −12.0000 −0.434429
\(764\) 0 0
\(765\) −0.708204 −0.0256052
\(766\) 0 0
\(767\) 1.74265 0.0629233
\(768\) 0 0
\(769\) 34.5066 1.24434 0.622170 0.782883i \(-0.286251\pi\)
0.622170 + 0.782883i \(0.286251\pi\)
\(770\) 0 0
\(771\) 29.7426 1.07116
\(772\) 0 0
\(773\) 27.1803 0.977609 0.488804 0.872393i \(-0.337433\pi\)
0.488804 + 0.872393i \(0.337433\pi\)
\(774\) 0 0
\(775\) −28.1246 −1.01027
\(776\) 0 0
\(777\) 6.23607 0.223718
\(778\) 0 0
\(779\) −1.38197 −0.0495141
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 6.00000 0.214423
\(784\) 0 0
\(785\) −9.70820 −0.346501
\(786\) 0 0
\(787\) −9.70820 −0.346060 −0.173030 0.984917i \(-0.555356\pi\)
−0.173030 + 0.984917i \(0.555356\pi\)
\(788\) 0 0
\(789\) −15.2705 −0.543645
\(790\) 0 0
\(791\) −13.4721 −0.479014
\(792\) 0 0
\(793\) −2.72949 −0.0969270
\(794\) 0 0
\(795\) 0.236068 0.00837247
\(796\) 0 0
\(797\) 18.5410 0.656757 0.328378 0.944546i \(-0.393498\pi\)
0.328378 + 0.944546i \(0.393498\pi\)
\(798\) 0 0
\(799\) 11.5623 0.409045
\(800\) 0 0
\(801\) −8.23607 −0.291007
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −0.145898 −0.00514223
\(806\) 0 0
\(807\) −25.4164 −0.894700
\(808\) 0 0
\(809\) −27.0902 −0.952440 −0.476220 0.879326i \(-0.657993\pi\)
−0.476220 + 0.879326i \(0.657993\pi\)
\(810\) 0 0
\(811\) 36.5623 1.28388 0.641938 0.766756i \(-0.278131\pi\)
0.641938 + 0.766756i \(0.278131\pi\)
\(812\) 0 0
\(813\) 18.6180 0.652963
\(814\) 0 0
\(815\) −3.18034 −0.111402
\(816\) 0 0
\(817\) −39.2705 −1.37390
\(818\) 0 0
\(819\) 0.236068 0.00824888
\(820\) 0 0
\(821\) −40.5967 −1.41684 −0.708418 0.705793i \(-0.750591\pi\)
−0.708418 + 0.705793i \(0.750591\pi\)
\(822\) 0 0
\(823\) 27.8328 0.970191 0.485095 0.874461i \(-0.338785\pi\)
0.485095 + 0.874461i \(0.338785\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −10.6525 −0.370423 −0.185211 0.982699i \(-0.559297\pi\)
−0.185211 + 0.982699i \(0.559297\pi\)
\(828\) 0 0
\(829\) −31.3951 −1.09040 −0.545199 0.838307i \(-0.683546\pi\)
−0.545199 + 0.838307i \(0.683546\pi\)
\(830\) 0 0
\(831\) 29.2148 1.01345
\(832\) 0 0
\(833\) −6.87539 −0.238218
\(834\) 0 0
\(835\) −7.43769 −0.257392
\(836\) 0 0
\(837\) 6.09017 0.210507
\(838\) 0 0
\(839\) 17.8328 0.615657 0.307829 0.951442i \(-0.400398\pi\)
0.307829 + 0.951442i \(0.400398\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) −24.7639 −0.852915
\(844\) 0 0
\(845\) 8.00000 0.275208
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −5.70820 −0.195905
\(850\) 0 0
\(851\) 1.47214 0.0504642
\(852\) 0 0
\(853\) 55.8328 1.91168 0.955840 0.293889i \(-0.0949496\pi\)
0.955840 + 0.293889i \(0.0949496\pi\)
\(854\) 0 0
\(855\) −3.61803 −0.123734
\(856\) 0 0
\(857\) −27.7639 −0.948398 −0.474199 0.880418i \(-0.657262\pi\)
−0.474199 + 0.880418i \(0.657262\pi\)
\(858\) 0 0
\(859\) 34.4164 1.17427 0.587136 0.809488i \(-0.300255\pi\)
0.587136 + 0.809488i \(0.300255\pi\)
\(860\) 0 0
\(861\) 0.236068 0.00804518
\(862\) 0 0
\(863\) −0.111456 −0.00379401 −0.00189701 0.999998i \(-0.500604\pi\)
−0.00189701 + 0.999998i \(0.500604\pi\)
\(864\) 0 0
\(865\) −11.1459 −0.378972
\(866\) 0 0
\(867\) −15.6869 −0.532756
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0.437694 0.0148307
\(872\) 0 0
\(873\) 7.85410 0.265821
\(874\) 0 0
\(875\) −5.94427 −0.200953
\(876\) 0 0
\(877\) 57.9443 1.95664 0.978320 0.207101i \(-0.0664030\pi\)
0.978320 + 0.207101i \(0.0664030\pi\)
\(878\) 0 0
\(879\) 21.6525 0.730320
\(880\) 0 0
\(881\) 6.20163 0.208938 0.104469 0.994528i \(-0.466686\pi\)
0.104469 + 0.994528i \(0.466686\pi\)
\(882\) 0 0
\(883\) −1.05573 −0.0355281 −0.0177640 0.999842i \(-0.505655\pi\)
−0.0177640 + 0.999842i \(0.505655\pi\)
\(884\) 0 0
\(885\) 4.56231 0.153360
\(886\) 0 0
\(887\) −54.4853 −1.82944 −0.914719 0.404092i \(-0.867588\pi\)
−0.914719 + 0.404092i \(0.867588\pi\)
\(888\) 0 0
\(889\) −7.70820 −0.258525
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 59.0689 1.97666
\(894\) 0 0
\(895\) −5.27051 −0.176174
\(896\) 0 0
\(897\) 0.0557281 0.00186071
\(898\) 0 0
\(899\) 36.5410 1.21871
\(900\) 0 0
\(901\) −0.437694 −0.0145817
\(902\) 0 0
\(903\) 6.70820 0.223235
\(904\) 0 0
\(905\) −1.56231 −0.0519328
\(906\) 0 0
\(907\) 42.3951 1.40771 0.703853 0.710345i \(-0.251461\pi\)
0.703853 + 0.710345i \(0.251461\pi\)
\(908\) 0 0
\(909\) 10.2361 0.339509
\(910\) 0 0
\(911\) −38.5967 −1.27877 −0.639384 0.768888i \(-0.720810\pi\)
−0.639384 + 0.768888i \(0.720810\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −7.14590 −0.236236
\(916\) 0 0
\(917\) 11.7984 0.389617
\(918\) 0 0
\(919\) 25.6525 0.846197 0.423099 0.906084i \(-0.360942\pi\)
0.423099 + 0.906084i \(0.360942\pi\)
\(920\) 0 0
\(921\) 27.9787 0.921930
\(922\) 0 0
\(923\) 2.43769 0.0802377
\(924\) 0 0
\(925\) 28.7984 0.946885
\(926\) 0 0
\(927\) 10.9443 0.359457
\(928\) 0 0
\(929\) −12.7082 −0.416943 −0.208471 0.978028i \(-0.566849\pi\)
−0.208471 + 0.978028i \(0.566849\pi\)
\(930\) 0 0
\(931\) −35.1246 −1.15116
\(932\) 0 0
\(933\) −11.6525 −0.381485
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −41.6525 −1.36073 −0.680364 0.732875i \(-0.738178\pi\)
−0.680364 + 0.732875i \(0.738178\pi\)
\(938\) 0 0
\(939\) −2.52786 −0.0824937
\(940\) 0 0
\(941\) 14.4508 0.471084 0.235542 0.971864i \(-0.424313\pi\)
0.235542 + 0.971864i \(0.424313\pi\)
\(942\) 0 0
\(943\) 0.0557281 0.00181476
\(944\) 0 0
\(945\) 0.618034 0.0201046
\(946\) 0 0
\(947\) 32.3951 1.05270 0.526350 0.850268i \(-0.323560\pi\)
0.526350 + 0.850268i \(0.323560\pi\)
\(948\) 0 0
\(949\) −1.34752 −0.0437425
\(950\) 0 0
\(951\) −6.81966 −0.221143
\(952\) 0 0
\(953\) −11.3475 −0.367582 −0.183791 0.982965i \(-0.558837\pi\)
−0.183791 + 0.982965i \(0.558837\pi\)
\(954\) 0 0
\(955\) −0.506578 −0.0163925
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −9.76393 −0.315294
\(960\) 0 0
\(961\) 6.09017 0.196457
\(962\) 0 0
\(963\) −11.4721 −0.369684
\(964\) 0 0
\(965\) −1.94427 −0.0625883
\(966\) 0 0
\(967\) 43.9230 1.41247 0.706234 0.707978i \(-0.250393\pi\)
0.706234 + 0.707978i \(0.250393\pi\)
\(968\) 0 0
\(969\) 6.70820 0.215499
\(970\) 0 0
\(971\) 42.0000 1.34784 0.673922 0.738802i \(-0.264608\pi\)
0.673922 + 0.738802i \(0.264608\pi\)
\(972\) 0 0
\(973\) −14.5623 −0.466846
\(974\) 0 0
\(975\) 1.09017 0.0349134
\(976\) 0 0
\(977\) −0.596748 −0.0190917 −0.00954583 0.999954i \(-0.503039\pi\)
−0.00954583 + 0.999954i \(0.503039\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 12.0000 0.383131
\(982\) 0 0
\(983\) 8.11146 0.258715 0.129358 0.991598i \(-0.458708\pi\)
0.129358 + 0.991598i \(0.458708\pi\)
\(984\) 0 0
\(985\) 8.05573 0.256677
\(986\) 0 0
\(987\) −10.0902 −0.321174
\(988\) 0 0
\(989\) 1.58359 0.0503553
\(990\) 0 0
\(991\) −3.74265 −0.118889 −0.0594445 0.998232i \(-0.518933\pi\)
−0.0594445 + 0.998232i \(0.518933\pi\)
\(992\) 0 0
\(993\) −16.7082 −0.530219
\(994\) 0 0
\(995\) 4.14590 0.131434
\(996\) 0 0
\(997\) 21.2016 0.671462 0.335731 0.941958i \(-0.391017\pi\)
0.335731 + 0.941958i \(0.391017\pi\)
\(998\) 0 0
\(999\) −6.23607 −0.197300
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5808.2.a.ci.1.1 2
4.3 odd 2 363.2.a.i.1.2 2
11.7 odd 10 528.2.y.b.49.1 4
11.8 odd 10 528.2.y.b.97.1 4
11.10 odd 2 5808.2.a.cj.1.1 2
12.11 even 2 1089.2.a.l.1.1 2
20.19 odd 2 9075.2.a.u.1.1 2
44.3 odd 10 363.2.e.f.130.1 4
44.7 even 10 33.2.e.b.16.1 4
44.15 odd 10 363.2.e.f.148.1 4
44.19 even 10 33.2.e.b.31.1 yes 4
44.27 odd 10 363.2.e.b.124.1 4
44.31 odd 10 363.2.e.b.202.1 4
44.35 even 10 363.2.e.k.202.1 4
44.39 even 10 363.2.e.k.124.1 4
44.43 even 2 363.2.a.d.1.1 2
132.95 odd 10 99.2.f.a.82.1 4
132.107 odd 10 99.2.f.a.64.1 4
132.131 odd 2 1089.2.a.t.1.2 2
220.7 odd 20 825.2.bx.d.49.2 8
220.19 even 10 825.2.n.c.526.1 4
220.63 odd 20 825.2.bx.d.724.2 8
220.107 odd 20 825.2.bx.d.724.1 8
220.139 even 10 825.2.n.c.676.1 4
220.183 odd 20 825.2.bx.d.49.1 8
220.219 even 2 9075.2.a.cb.1.2 2
396.7 even 30 891.2.n.c.676.1 8
396.95 odd 30 891.2.n.b.379.1 8
396.139 even 30 891.2.n.c.379.1 8
396.151 even 30 891.2.n.c.757.1 8
396.227 odd 30 891.2.n.b.676.1 8
396.239 odd 30 891.2.n.b.460.1 8
396.283 even 30 891.2.n.c.460.1 8
396.371 odd 30 891.2.n.b.757.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.2.e.b.16.1 4 44.7 even 10
33.2.e.b.31.1 yes 4 44.19 even 10
99.2.f.a.64.1 4 132.107 odd 10
99.2.f.a.82.1 4 132.95 odd 10
363.2.a.d.1.1 2 44.43 even 2
363.2.a.i.1.2 2 4.3 odd 2
363.2.e.b.124.1 4 44.27 odd 10
363.2.e.b.202.1 4 44.31 odd 10
363.2.e.f.130.1 4 44.3 odd 10
363.2.e.f.148.1 4 44.15 odd 10
363.2.e.k.124.1 4 44.39 even 10
363.2.e.k.202.1 4 44.35 even 10
528.2.y.b.49.1 4 11.7 odd 10
528.2.y.b.97.1 4 11.8 odd 10
825.2.n.c.526.1 4 220.19 even 10
825.2.n.c.676.1 4 220.139 even 10
825.2.bx.d.49.1 8 220.183 odd 20
825.2.bx.d.49.2 8 220.7 odd 20
825.2.bx.d.724.1 8 220.107 odd 20
825.2.bx.d.724.2 8 220.63 odd 20
891.2.n.b.379.1 8 396.95 odd 30
891.2.n.b.460.1 8 396.239 odd 30
891.2.n.b.676.1 8 396.227 odd 30
891.2.n.b.757.1 8 396.371 odd 30
891.2.n.c.379.1 8 396.139 even 30
891.2.n.c.460.1 8 396.283 even 30
891.2.n.c.676.1 8 396.7 even 30
891.2.n.c.757.1 8 396.151 even 30
1089.2.a.l.1.1 2 12.11 even 2
1089.2.a.t.1.2 2 132.131 odd 2
5808.2.a.ci.1.1 2 1.1 even 1 trivial
5808.2.a.cj.1.1 2 11.10 odd 2
9075.2.a.u.1.1 2 20.19 odd 2
9075.2.a.cb.1.2 2 220.219 even 2