Properties

Label 5808.2.a.cf.1.2
Level $5808$
Weight $2$
Character 5808.1
Self dual yes
Analytic conductor $46.377$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5808,2,Mod(1,5808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5808.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5808, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5808 = 2^{4} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5808.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,2,0,-1,0,4,0,2,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.3771134940\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 5808.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +2.85410 q^{5} +4.23607 q^{7} +1.00000 q^{9} +1.76393 q^{13} +2.85410 q^{15} -4.61803 q^{17} +6.09017 q^{19} +4.23607 q^{21} -4.23607 q^{23} +3.14590 q^{25} +1.00000 q^{27} +4.47214 q^{29} +8.61803 q^{31} +12.0902 q^{35} -8.23607 q^{37} +1.76393 q^{39} -0.527864 q^{41} +0.527864 q^{43} +2.85410 q^{45} -1.38197 q^{47} +10.9443 q^{49} -4.61803 q^{51} -13.5623 q^{53} +6.09017 q^{57} -8.85410 q^{59} +0.381966 q^{61} +4.23607 q^{63} +5.03444 q^{65} +6.85410 q^{67} -4.23607 q^{69} +3.61803 q^{71} +1.23607 q^{73} +3.14590 q^{75} +9.76393 q^{79} +1.00000 q^{81} +6.52786 q^{83} -13.1803 q^{85} +4.47214 q^{87} +1.00000 q^{89} +7.47214 q^{91} +8.61803 q^{93} +17.3820 q^{95} +6.09017 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - q^{5} + 4 q^{7} + 2 q^{9} + 8 q^{13} - q^{15} - 7 q^{17} + q^{19} + 4 q^{21} - 4 q^{23} + 13 q^{25} + 2 q^{27} + 15 q^{31} + 13 q^{35} - 12 q^{37} + 8 q^{39} - 10 q^{41} + 10 q^{43} - q^{45}+ \cdots + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 2.85410 1.27639 0.638197 0.769873i \(-0.279681\pi\)
0.638197 + 0.769873i \(0.279681\pi\)
\(6\) 0 0
\(7\) 4.23607 1.60108 0.800542 0.599277i \(-0.204545\pi\)
0.800542 + 0.599277i \(0.204545\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 1.76393 0.489227 0.244613 0.969621i \(-0.421339\pi\)
0.244613 + 0.969621i \(0.421339\pi\)
\(14\) 0 0
\(15\) 2.85410 0.736926
\(16\) 0 0
\(17\) −4.61803 −1.12004 −0.560019 0.828480i \(-0.689206\pi\)
−0.560019 + 0.828480i \(0.689206\pi\)
\(18\) 0 0
\(19\) 6.09017 1.39718 0.698590 0.715522i \(-0.253811\pi\)
0.698590 + 0.715522i \(0.253811\pi\)
\(20\) 0 0
\(21\) 4.23607 0.924386
\(22\) 0 0
\(23\) −4.23607 −0.883281 −0.441641 0.897192i \(-0.645603\pi\)
−0.441641 + 0.897192i \(0.645603\pi\)
\(24\) 0 0
\(25\) 3.14590 0.629180
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 4.47214 0.830455 0.415227 0.909718i \(-0.363702\pi\)
0.415227 + 0.909718i \(0.363702\pi\)
\(30\) 0 0
\(31\) 8.61803 1.54784 0.773922 0.633281i \(-0.218292\pi\)
0.773922 + 0.633281i \(0.218292\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 12.0902 2.04361
\(36\) 0 0
\(37\) −8.23607 −1.35400 −0.677001 0.735982i \(-0.736721\pi\)
−0.677001 + 0.735982i \(0.736721\pi\)
\(38\) 0 0
\(39\) 1.76393 0.282455
\(40\) 0 0
\(41\) −0.527864 −0.0824385 −0.0412193 0.999150i \(-0.513124\pi\)
−0.0412193 + 0.999150i \(0.513124\pi\)
\(42\) 0 0
\(43\) 0.527864 0.0804985 0.0402493 0.999190i \(-0.487185\pi\)
0.0402493 + 0.999190i \(0.487185\pi\)
\(44\) 0 0
\(45\) 2.85410 0.425464
\(46\) 0 0
\(47\) −1.38197 −0.201580 −0.100790 0.994908i \(-0.532137\pi\)
−0.100790 + 0.994908i \(0.532137\pi\)
\(48\) 0 0
\(49\) 10.9443 1.56347
\(50\) 0 0
\(51\) −4.61803 −0.646654
\(52\) 0 0
\(53\) −13.5623 −1.86293 −0.931463 0.363836i \(-0.881467\pi\)
−0.931463 + 0.363836i \(0.881467\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 6.09017 0.806663
\(58\) 0 0
\(59\) −8.85410 −1.15271 −0.576353 0.817201i \(-0.695525\pi\)
−0.576353 + 0.817201i \(0.695525\pi\)
\(60\) 0 0
\(61\) 0.381966 0.0489057 0.0244529 0.999701i \(-0.492216\pi\)
0.0244529 + 0.999701i \(0.492216\pi\)
\(62\) 0 0
\(63\) 4.23607 0.533694
\(64\) 0 0
\(65\) 5.03444 0.624446
\(66\) 0 0
\(67\) 6.85410 0.837362 0.418681 0.908133i \(-0.362493\pi\)
0.418681 + 0.908133i \(0.362493\pi\)
\(68\) 0 0
\(69\) −4.23607 −0.509963
\(70\) 0 0
\(71\) 3.61803 0.429382 0.214691 0.976682i \(-0.431126\pi\)
0.214691 + 0.976682i \(0.431126\pi\)
\(72\) 0 0
\(73\) 1.23607 0.144671 0.0723354 0.997380i \(-0.476955\pi\)
0.0723354 + 0.997380i \(0.476955\pi\)
\(74\) 0 0
\(75\) 3.14590 0.363257
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 9.76393 1.09853 0.549264 0.835649i \(-0.314908\pi\)
0.549264 + 0.835649i \(0.314908\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 6.52786 0.716526 0.358263 0.933621i \(-0.383369\pi\)
0.358263 + 0.933621i \(0.383369\pi\)
\(84\) 0 0
\(85\) −13.1803 −1.42961
\(86\) 0 0
\(87\) 4.47214 0.479463
\(88\) 0 0
\(89\) 1.00000 0.106000 0.0529999 0.998595i \(-0.483122\pi\)
0.0529999 + 0.998595i \(0.483122\pi\)
\(90\) 0 0
\(91\) 7.47214 0.783293
\(92\) 0 0
\(93\) 8.61803 0.893648
\(94\) 0 0
\(95\) 17.3820 1.78335
\(96\) 0 0
\(97\) 6.09017 0.618363 0.309182 0.951003i \(-0.399945\pi\)
0.309182 + 0.951003i \(0.399945\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −11.9443 −1.18850 −0.594250 0.804281i \(-0.702551\pi\)
−0.594250 + 0.804281i \(0.702551\pi\)
\(102\) 0 0
\(103\) −3.52786 −0.347611 −0.173805 0.984780i \(-0.555606\pi\)
−0.173805 + 0.984780i \(0.555606\pi\)
\(104\) 0 0
\(105\) 12.0902 1.17988
\(106\) 0 0
\(107\) 15.4721 1.49575 0.747874 0.663841i \(-0.231075\pi\)
0.747874 + 0.663841i \(0.231075\pi\)
\(108\) 0 0
\(109\) 8.00000 0.766261 0.383131 0.923694i \(-0.374846\pi\)
0.383131 + 0.923694i \(0.374846\pi\)
\(110\) 0 0
\(111\) −8.23607 −0.781733
\(112\) 0 0
\(113\) 7.76393 0.730369 0.365185 0.930935i \(-0.381006\pi\)
0.365185 + 0.930935i \(0.381006\pi\)
\(114\) 0 0
\(115\) −12.0902 −1.12741
\(116\) 0 0
\(117\) 1.76393 0.163076
\(118\) 0 0
\(119\) −19.5623 −1.79327
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −0.527864 −0.0475959
\(124\) 0 0
\(125\) −5.29180 −0.473313
\(126\) 0 0
\(127\) 2.29180 0.203364 0.101682 0.994817i \(-0.467578\pi\)
0.101682 + 0.994817i \(0.467578\pi\)
\(128\) 0 0
\(129\) 0.527864 0.0464758
\(130\) 0 0
\(131\) 11.5623 1.01020 0.505102 0.863060i \(-0.331455\pi\)
0.505102 + 0.863060i \(0.331455\pi\)
\(132\) 0 0
\(133\) 25.7984 2.23700
\(134\) 0 0
\(135\) 2.85410 0.245642
\(136\) 0 0
\(137\) −21.0000 −1.79415 −0.897076 0.441877i \(-0.854313\pi\)
−0.897076 + 0.441877i \(0.854313\pi\)
\(138\) 0 0
\(139\) −20.7984 −1.76410 −0.882048 0.471160i \(-0.843835\pi\)
−0.882048 + 0.471160i \(0.843835\pi\)
\(140\) 0 0
\(141\) −1.38197 −0.116383
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 12.7639 1.05999
\(146\) 0 0
\(147\) 10.9443 0.902668
\(148\) 0 0
\(149\) −18.8885 −1.54741 −0.773705 0.633546i \(-0.781599\pi\)
−0.773705 + 0.633546i \(0.781599\pi\)
\(150\) 0 0
\(151\) −4.47214 −0.363937 −0.181969 0.983304i \(-0.558247\pi\)
−0.181969 + 0.983304i \(0.558247\pi\)
\(152\) 0 0
\(153\) −4.61803 −0.373346
\(154\) 0 0
\(155\) 24.5967 1.97566
\(156\) 0 0
\(157\) −12.7639 −1.01867 −0.509336 0.860568i \(-0.670109\pi\)
−0.509336 + 0.860568i \(0.670109\pi\)
\(158\) 0 0
\(159\) −13.5623 −1.07556
\(160\) 0 0
\(161\) −17.9443 −1.41421
\(162\) 0 0
\(163\) −1.85410 −0.145224 −0.0726122 0.997360i \(-0.523134\pi\)
−0.0726122 + 0.997360i \(0.523134\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.61803 0.125207 0.0626036 0.998038i \(-0.480060\pi\)
0.0626036 + 0.998038i \(0.480060\pi\)
\(168\) 0 0
\(169\) −9.88854 −0.760657
\(170\) 0 0
\(171\) 6.09017 0.465727
\(172\) 0 0
\(173\) 14.5623 1.10715 0.553576 0.832799i \(-0.313263\pi\)
0.553576 + 0.832799i \(0.313263\pi\)
\(174\) 0 0
\(175\) 13.3262 1.00737
\(176\) 0 0
\(177\) −8.85410 −0.665515
\(178\) 0 0
\(179\) 0.0557281 0.00416531 0.00208266 0.999998i \(-0.499337\pi\)
0.00208266 + 0.999998i \(0.499337\pi\)
\(180\) 0 0
\(181\) −11.9443 −0.887811 −0.443905 0.896074i \(-0.646407\pi\)
−0.443905 + 0.896074i \(0.646407\pi\)
\(182\) 0 0
\(183\) 0.381966 0.0282357
\(184\) 0 0
\(185\) −23.5066 −1.72824
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 4.23607 0.308129
\(190\) 0 0
\(191\) −9.65248 −0.698429 −0.349214 0.937043i \(-0.613551\pi\)
−0.349214 + 0.937043i \(0.613551\pi\)
\(192\) 0 0
\(193\) 0.326238 0.0234831 0.0117416 0.999931i \(-0.496262\pi\)
0.0117416 + 0.999931i \(0.496262\pi\)
\(194\) 0 0
\(195\) 5.03444 0.360524
\(196\) 0 0
\(197\) 17.0902 1.21762 0.608812 0.793314i \(-0.291646\pi\)
0.608812 + 0.793314i \(0.291646\pi\)
\(198\) 0 0
\(199\) −16.4164 −1.16373 −0.581864 0.813286i \(-0.697676\pi\)
−0.581864 + 0.813286i \(0.697676\pi\)
\(200\) 0 0
\(201\) 6.85410 0.483451
\(202\) 0 0
\(203\) 18.9443 1.32963
\(204\) 0 0
\(205\) −1.50658 −0.105224
\(206\) 0 0
\(207\) −4.23607 −0.294427
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −23.7426 −1.63451 −0.817256 0.576275i \(-0.804506\pi\)
−0.817256 + 0.576275i \(0.804506\pi\)
\(212\) 0 0
\(213\) 3.61803 0.247904
\(214\) 0 0
\(215\) 1.50658 0.102748
\(216\) 0 0
\(217\) 36.5066 2.47823
\(218\) 0 0
\(219\) 1.23607 0.0835257
\(220\) 0 0
\(221\) −8.14590 −0.547952
\(222\) 0 0
\(223\) −1.47214 −0.0985815 −0.0492908 0.998784i \(-0.515696\pi\)
−0.0492908 + 0.998784i \(0.515696\pi\)
\(224\) 0 0
\(225\) 3.14590 0.209727
\(226\) 0 0
\(227\) −0.708204 −0.0470051 −0.0235026 0.999724i \(-0.507482\pi\)
−0.0235026 + 0.999724i \(0.507482\pi\)
\(228\) 0 0
\(229\) −6.94427 −0.458890 −0.229445 0.973322i \(-0.573691\pi\)
−0.229445 + 0.973322i \(0.573691\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −25.7984 −1.69011 −0.845054 0.534681i \(-0.820432\pi\)
−0.845054 + 0.534681i \(0.820432\pi\)
\(234\) 0 0
\(235\) −3.94427 −0.257296
\(236\) 0 0
\(237\) 9.76393 0.634236
\(238\) 0 0
\(239\) −20.5066 −1.32646 −0.663230 0.748416i \(-0.730815\pi\)
−0.663230 + 0.748416i \(0.730815\pi\)
\(240\) 0 0
\(241\) 10.2918 0.662953 0.331476 0.943463i \(-0.392453\pi\)
0.331476 + 0.943463i \(0.392453\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 31.2361 1.99560
\(246\) 0 0
\(247\) 10.7426 0.683538
\(248\) 0 0
\(249\) 6.52786 0.413687
\(250\) 0 0
\(251\) −12.9098 −0.814861 −0.407431 0.913236i \(-0.633575\pi\)
−0.407431 + 0.913236i \(0.633575\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −13.1803 −0.825385
\(256\) 0 0
\(257\) 21.7984 1.35975 0.679873 0.733330i \(-0.262035\pi\)
0.679873 + 0.733330i \(0.262035\pi\)
\(258\) 0 0
\(259\) −34.8885 −2.16787
\(260\) 0 0
\(261\) 4.47214 0.276818
\(262\) 0 0
\(263\) 17.1459 1.05726 0.528631 0.848852i \(-0.322706\pi\)
0.528631 + 0.848852i \(0.322706\pi\)
\(264\) 0 0
\(265\) −38.7082 −2.37783
\(266\) 0 0
\(267\) 1.00000 0.0611990
\(268\) 0 0
\(269\) 19.5279 1.19063 0.595317 0.803491i \(-0.297026\pi\)
0.595317 + 0.803491i \(0.297026\pi\)
\(270\) 0 0
\(271\) −22.5623 −1.37056 −0.685281 0.728279i \(-0.740321\pi\)
−0.685281 + 0.728279i \(0.740321\pi\)
\(272\) 0 0
\(273\) 7.47214 0.452234
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 17.5623 1.05522 0.527608 0.849488i \(-0.323089\pi\)
0.527608 + 0.849488i \(0.323089\pi\)
\(278\) 0 0
\(279\) 8.61803 0.515948
\(280\) 0 0
\(281\) 23.1246 1.37950 0.689749 0.724048i \(-0.257721\pi\)
0.689749 + 0.724048i \(0.257721\pi\)
\(282\) 0 0
\(283\) 18.7639 1.11540 0.557700 0.830043i \(-0.311684\pi\)
0.557700 + 0.830043i \(0.311684\pi\)
\(284\) 0 0
\(285\) 17.3820 1.02962
\(286\) 0 0
\(287\) −2.23607 −0.131991
\(288\) 0 0
\(289\) 4.32624 0.254485
\(290\) 0 0
\(291\) 6.09017 0.357012
\(292\) 0 0
\(293\) 5.00000 0.292103 0.146052 0.989277i \(-0.453343\pi\)
0.146052 + 0.989277i \(0.453343\pi\)
\(294\) 0 0
\(295\) −25.2705 −1.47131
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −7.47214 −0.432125
\(300\) 0 0
\(301\) 2.23607 0.128885
\(302\) 0 0
\(303\) −11.9443 −0.686180
\(304\) 0 0
\(305\) 1.09017 0.0624229
\(306\) 0 0
\(307\) −16.3262 −0.931788 −0.465894 0.884841i \(-0.654267\pi\)
−0.465894 + 0.884841i \(0.654267\pi\)
\(308\) 0 0
\(309\) −3.52786 −0.200693
\(310\) 0 0
\(311\) 6.81966 0.386707 0.193354 0.981129i \(-0.438064\pi\)
0.193354 + 0.981129i \(0.438064\pi\)
\(312\) 0 0
\(313\) −1.00000 −0.0565233 −0.0282617 0.999601i \(-0.508997\pi\)
−0.0282617 + 0.999601i \(0.508997\pi\)
\(314\) 0 0
\(315\) 12.0902 0.681204
\(316\) 0 0
\(317\) 17.4721 0.981333 0.490666 0.871347i \(-0.336753\pi\)
0.490666 + 0.871347i \(0.336753\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 15.4721 0.863570
\(322\) 0 0
\(323\) −28.1246 −1.56490
\(324\) 0 0
\(325\) 5.54915 0.307811
\(326\) 0 0
\(327\) 8.00000 0.442401
\(328\) 0 0
\(329\) −5.85410 −0.322747
\(330\) 0 0
\(331\) 5.94427 0.326727 0.163363 0.986566i \(-0.447766\pi\)
0.163363 + 0.986566i \(0.447766\pi\)
\(332\) 0 0
\(333\) −8.23607 −0.451334
\(334\) 0 0
\(335\) 19.5623 1.06880
\(336\) 0 0
\(337\) −31.5967 −1.72118 −0.860592 0.509295i \(-0.829906\pi\)
−0.860592 + 0.509295i \(0.829906\pi\)
\(338\) 0 0
\(339\) 7.76393 0.421679
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 16.7082 0.902158
\(344\) 0 0
\(345\) −12.0902 −0.650913
\(346\) 0 0
\(347\) −8.00000 −0.429463 −0.214731 0.976673i \(-0.568888\pi\)
−0.214731 + 0.976673i \(0.568888\pi\)
\(348\) 0 0
\(349\) 23.7639 1.27205 0.636027 0.771667i \(-0.280577\pi\)
0.636027 + 0.771667i \(0.280577\pi\)
\(350\) 0 0
\(351\) 1.76393 0.0941517
\(352\) 0 0
\(353\) −1.52786 −0.0813200 −0.0406600 0.999173i \(-0.512946\pi\)
−0.0406600 + 0.999173i \(0.512946\pi\)
\(354\) 0 0
\(355\) 10.3262 0.548060
\(356\) 0 0
\(357\) −19.5623 −1.03535
\(358\) 0 0
\(359\) −18.7639 −0.990322 −0.495161 0.868801i \(-0.664891\pi\)
−0.495161 + 0.868801i \(0.664891\pi\)
\(360\) 0 0
\(361\) 18.0902 0.952114
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.52786 0.184657
\(366\) 0 0
\(367\) 7.61803 0.397658 0.198829 0.980034i \(-0.436286\pi\)
0.198829 + 0.980034i \(0.436286\pi\)
\(368\) 0 0
\(369\) −0.527864 −0.0274795
\(370\) 0 0
\(371\) −57.4508 −2.98270
\(372\) 0 0
\(373\) −3.94427 −0.204227 −0.102113 0.994773i \(-0.532560\pi\)
−0.102113 + 0.994773i \(0.532560\pi\)
\(374\) 0 0
\(375\) −5.29180 −0.273267
\(376\) 0 0
\(377\) 7.88854 0.406281
\(378\) 0 0
\(379\) −0.708204 −0.0363780 −0.0181890 0.999835i \(-0.505790\pi\)
−0.0181890 + 0.999835i \(0.505790\pi\)
\(380\) 0 0
\(381\) 2.29180 0.117412
\(382\) 0 0
\(383\) −5.76393 −0.294523 −0.147262 0.989098i \(-0.547046\pi\)
−0.147262 + 0.989098i \(0.547046\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.527864 0.0268328
\(388\) 0 0
\(389\) 4.90983 0.248938 0.124469 0.992223i \(-0.460277\pi\)
0.124469 + 0.992223i \(0.460277\pi\)
\(390\) 0 0
\(391\) 19.5623 0.989308
\(392\) 0 0
\(393\) 11.5623 0.583241
\(394\) 0 0
\(395\) 27.8673 1.40215
\(396\) 0 0
\(397\) 4.81966 0.241892 0.120946 0.992659i \(-0.461407\pi\)
0.120946 + 0.992659i \(0.461407\pi\)
\(398\) 0 0
\(399\) 25.7984 1.29153
\(400\) 0 0
\(401\) 3.85410 0.192465 0.0962323 0.995359i \(-0.469321\pi\)
0.0962323 + 0.995359i \(0.469321\pi\)
\(402\) 0 0
\(403\) 15.2016 0.757247
\(404\) 0 0
\(405\) 2.85410 0.141821
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 25.8885 1.28011 0.640053 0.768331i \(-0.278912\pi\)
0.640053 + 0.768331i \(0.278912\pi\)
\(410\) 0 0
\(411\) −21.0000 −1.03585
\(412\) 0 0
\(413\) −37.5066 −1.84558
\(414\) 0 0
\(415\) 18.6312 0.914569
\(416\) 0 0
\(417\) −20.7984 −1.01850
\(418\) 0 0
\(419\) −11.1459 −0.544513 −0.272256 0.962225i \(-0.587770\pi\)
−0.272256 + 0.962225i \(0.587770\pi\)
\(420\) 0 0
\(421\) 24.2705 1.18287 0.591436 0.806352i \(-0.298561\pi\)
0.591436 + 0.806352i \(0.298561\pi\)
\(422\) 0 0
\(423\) −1.38197 −0.0671935
\(424\) 0 0
\(425\) −14.5279 −0.704705
\(426\) 0 0
\(427\) 1.61803 0.0783022
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2.32624 −0.112051 −0.0560255 0.998429i \(-0.517843\pi\)
−0.0560255 + 0.998429i \(0.517843\pi\)
\(432\) 0 0
\(433\) 2.94427 0.141493 0.0707463 0.997494i \(-0.477462\pi\)
0.0707463 + 0.997494i \(0.477462\pi\)
\(434\) 0 0
\(435\) 12.7639 0.611984
\(436\) 0 0
\(437\) −25.7984 −1.23410
\(438\) 0 0
\(439\) 25.3607 1.21040 0.605200 0.796074i \(-0.293093\pi\)
0.605200 + 0.796074i \(0.293093\pi\)
\(440\) 0 0
\(441\) 10.9443 0.521156
\(442\) 0 0
\(443\) 22.1803 1.05382 0.526910 0.849921i \(-0.323351\pi\)
0.526910 + 0.849921i \(0.323351\pi\)
\(444\) 0 0
\(445\) 2.85410 0.135297
\(446\) 0 0
\(447\) −18.8885 −0.893397
\(448\) 0 0
\(449\) −16.4721 −0.777368 −0.388684 0.921371i \(-0.627070\pi\)
−0.388684 + 0.921371i \(0.627070\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −4.47214 −0.210119
\(454\) 0 0
\(455\) 21.3262 0.999789
\(456\) 0 0
\(457\) −7.85410 −0.367399 −0.183700 0.982982i \(-0.558807\pi\)
−0.183700 + 0.982982i \(0.558807\pi\)
\(458\) 0 0
\(459\) −4.61803 −0.215551
\(460\) 0 0
\(461\) 0.562306 0.0261892 0.0130946 0.999914i \(-0.495832\pi\)
0.0130946 + 0.999914i \(0.495832\pi\)
\(462\) 0 0
\(463\) 30.2148 1.40420 0.702100 0.712078i \(-0.252246\pi\)
0.702100 + 0.712078i \(0.252246\pi\)
\(464\) 0 0
\(465\) 24.5967 1.14065
\(466\) 0 0
\(467\) 33.8328 1.56560 0.782798 0.622276i \(-0.213792\pi\)
0.782798 + 0.622276i \(0.213792\pi\)
\(468\) 0 0
\(469\) 29.0344 1.34069
\(470\) 0 0
\(471\) −12.7639 −0.588131
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 19.1591 0.879078
\(476\) 0 0
\(477\) −13.5623 −0.620975
\(478\) 0 0
\(479\) −2.32624 −0.106289 −0.0531443 0.998587i \(-0.516924\pi\)
−0.0531443 + 0.998587i \(0.516924\pi\)
\(480\) 0 0
\(481\) −14.5279 −0.662414
\(482\) 0 0
\(483\) −17.9443 −0.816493
\(484\) 0 0
\(485\) 17.3820 0.789274
\(486\) 0 0
\(487\) 17.8328 0.808082 0.404041 0.914741i \(-0.367605\pi\)
0.404041 + 0.914741i \(0.367605\pi\)
\(488\) 0 0
\(489\) −1.85410 −0.0838454
\(490\) 0 0
\(491\) −11.8541 −0.534968 −0.267484 0.963562i \(-0.586192\pi\)
−0.267484 + 0.963562i \(0.586192\pi\)
\(492\) 0 0
\(493\) −20.6525 −0.930141
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 15.3262 0.687476
\(498\) 0 0
\(499\) 18.2705 0.817900 0.408950 0.912557i \(-0.365895\pi\)
0.408950 + 0.912557i \(0.365895\pi\)
\(500\) 0 0
\(501\) 1.61803 0.0722884
\(502\) 0 0
\(503\) 12.7639 0.569116 0.284558 0.958659i \(-0.408153\pi\)
0.284558 + 0.958659i \(0.408153\pi\)
\(504\) 0 0
\(505\) −34.0902 −1.51699
\(506\) 0 0
\(507\) −9.88854 −0.439166
\(508\) 0 0
\(509\) −29.7426 −1.31832 −0.659160 0.752003i \(-0.729088\pi\)
−0.659160 + 0.752003i \(0.729088\pi\)
\(510\) 0 0
\(511\) 5.23607 0.231630
\(512\) 0 0
\(513\) 6.09017 0.268888
\(514\) 0 0
\(515\) −10.0689 −0.443688
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 14.5623 0.639214
\(520\) 0 0
\(521\) −38.8328 −1.70130 −0.850648 0.525735i \(-0.823790\pi\)
−0.850648 + 0.525735i \(0.823790\pi\)
\(522\) 0 0
\(523\) 2.79837 0.122364 0.0611822 0.998127i \(-0.480513\pi\)
0.0611822 + 0.998127i \(0.480513\pi\)
\(524\) 0 0
\(525\) 13.3262 0.581605
\(526\) 0 0
\(527\) −39.7984 −1.73364
\(528\) 0 0
\(529\) −5.05573 −0.219814
\(530\) 0 0
\(531\) −8.85410 −0.384235
\(532\) 0 0
\(533\) −0.931116 −0.0403311
\(534\) 0 0
\(535\) 44.1591 1.90916
\(536\) 0 0
\(537\) 0.0557281 0.00240484
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −9.32624 −0.400966 −0.200483 0.979697i \(-0.564251\pi\)
−0.200483 + 0.979697i \(0.564251\pi\)
\(542\) 0 0
\(543\) −11.9443 −0.512578
\(544\) 0 0
\(545\) 22.8328 0.978050
\(546\) 0 0
\(547\) −2.32624 −0.0994628 −0.0497314 0.998763i \(-0.515837\pi\)
−0.0497314 + 0.998763i \(0.515837\pi\)
\(548\) 0 0
\(549\) 0.381966 0.0163019
\(550\) 0 0
\(551\) 27.2361 1.16030
\(552\) 0 0
\(553\) 41.3607 1.75884
\(554\) 0 0
\(555\) −23.5066 −0.997799
\(556\) 0 0
\(557\) 6.09017 0.258049 0.129024 0.991641i \(-0.458815\pi\)
0.129024 + 0.991641i \(0.458815\pi\)
\(558\) 0 0
\(559\) 0.931116 0.0393820
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 27.2918 1.15021 0.575106 0.818079i \(-0.304961\pi\)
0.575106 + 0.818079i \(0.304961\pi\)
\(564\) 0 0
\(565\) 22.1591 0.932238
\(566\) 0 0
\(567\) 4.23607 0.177898
\(568\) 0 0
\(569\) −45.1246 −1.89172 −0.945861 0.324572i \(-0.894780\pi\)
−0.945861 + 0.324572i \(0.894780\pi\)
\(570\) 0 0
\(571\) 8.67376 0.362986 0.181493 0.983392i \(-0.441907\pi\)
0.181493 + 0.983392i \(0.441907\pi\)
\(572\) 0 0
\(573\) −9.65248 −0.403238
\(574\) 0 0
\(575\) −13.3262 −0.555743
\(576\) 0 0
\(577\) 24.7639 1.03094 0.515468 0.856909i \(-0.327618\pi\)
0.515468 + 0.856909i \(0.327618\pi\)
\(578\) 0 0
\(579\) 0.326238 0.0135580
\(580\) 0 0
\(581\) 27.6525 1.14722
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 5.03444 0.208149
\(586\) 0 0
\(587\) −30.2361 −1.24798 −0.623988 0.781434i \(-0.714489\pi\)
−0.623988 + 0.781434i \(0.714489\pi\)
\(588\) 0 0
\(589\) 52.4853 2.16262
\(590\) 0 0
\(591\) 17.0902 0.702996
\(592\) 0 0
\(593\) 36.4508 1.49686 0.748428 0.663215i \(-0.230809\pi\)
0.748428 + 0.663215i \(0.230809\pi\)
\(594\) 0 0
\(595\) −55.8328 −2.28892
\(596\) 0 0
\(597\) −16.4164 −0.671879
\(598\) 0 0
\(599\) −9.34752 −0.381929 −0.190965 0.981597i \(-0.561162\pi\)
−0.190965 + 0.981597i \(0.561162\pi\)
\(600\) 0 0
\(601\) −2.05573 −0.0838549 −0.0419274 0.999121i \(-0.513350\pi\)
−0.0419274 + 0.999121i \(0.513350\pi\)
\(602\) 0 0
\(603\) 6.85410 0.279121
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 24.3262 0.987372 0.493686 0.869640i \(-0.335649\pi\)
0.493686 + 0.869640i \(0.335649\pi\)
\(608\) 0 0
\(609\) 18.9443 0.767661
\(610\) 0 0
\(611\) −2.43769 −0.0986185
\(612\) 0 0
\(613\) 23.1246 0.933994 0.466997 0.884259i \(-0.345336\pi\)
0.466997 + 0.884259i \(0.345336\pi\)
\(614\) 0 0
\(615\) −1.50658 −0.0607511
\(616\) 0 0
\(617\) −7.00000 −0.281809 −0.140905 0.990023i \(-0.545001\pi\)
−0.140905 + 0.990023i \(0.545001\pi\)
\(618\) 0 0
\(619\) −1.47214 −0.0591701 −0.0295851 0.999562i \(-0.509419\pi\)
−0.0295851 + 0.999562i \(0.509419\pi\)
\(620\) 0 0
\(621\) −4.23607 −0.169988
\(622\) 0 0
\(623\) 4.23607 0.169714
\(624\) 0 0
\(625\) −30.8328 −1.23331
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 38.0344 1.51653
\(630\) 0 0
\(631\) −41.2705 −1.64295 −0.821477 0.570242i \(-0.806849\pi\)
−0.821477 + 0.570242i \(0.806849\pi\)
\(632\) 0 0
\(633\) −23.7426 −0.943685
\(634\) 0 0
\(635\) 6.54102 0.259572
\(636\) 0 0
\(637\) 19.3050 0.764890
\(638\) 0 0
\(639\) 3.61803 0.143127
\(640\) 0 0
\(641\) −21.9787 −0.868107 −0.434054 0.900887i \(-0.642917\pi\)
−0.434054 + 0.900887i \(0.642917\pi\)
\(642\) 0 0
\(643\) −29.1591 −1.14992 −0.574960 0.818181i \(-0.694983\pi\)
−0.574960 + 0.818181i \(0.694983\pi\)
\(644\) 0 0
\(645\) 1.50658 0.0593214
\(646\) 0 0
\(647\) 24.6869 0.970543 0.485271 0.874364i \(-0.338721\pi\)
0.485271 + 0.874364i \(0.338721\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 36.5066 1.43081
\(652\) 0 0
\(653\) −27.8541 −1.09002 −0.545008 0.838431i \(-0.683473\pi\)
−0.545008 + 0.838431i \(0.683473\pi\)
\(654\) 0 0
\(655\) 33.0000 1.28942
\(656\) 0 0
\(657\) 1.23607 0.0482236
\(658\) 0 0
\(659\) −3.70820 −0.144451 −0.0722256 0.997388i \(-0.523010\pi\)
−0.0722256 + 0.997388i \(0.523010\pi\)
\(660\) 0 0
\(661\) 2.32624 0.0904802 0.0452401 0.998976i \(-0.485595\pi\)
0.0452401 + 0.998976i \(0.485595\pi\)
\(662\) 0 0
\(663\) −8.14590 −0.316360
\(664\) 0 0
\(665\) 73.6312 2.85530
\(666\) 0 0
\(667\) −18.9443 −0.733525
\(668\) 0 0
\(669\) −1.47214 −0.0569161
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −26.5279 −1.02257 −0.511287 0.859410i \(-0.670831\pi\)
−0.511287 + 0.859410i \(0.670831\pi\)
\(674\) 0 0
\(675\) 3.14590 0.121086
\(676\) 0 0
\(677\) 6.47214 0.248744 0.124372 0.992236i \(-0.460308\pi\)
0.124372 + 0.992236i \(0.460308\pi\)
\(678\) 0 0
\(679\) 25.7984 0.990051
\(680\) 0 0
\(681\) −0.708204 −0.0271384
\(682\) 0 0
\(683\) 6.34752 0.242881 0.121441 0.992599i \(-0.461249\pi\)
0.121441 + 0.992599i \(0.461249\pi\)
\(684\) 0 0
\(685\) −59.9361 −2.29004
\(686\) 0 0
\(687\) −6.94427 −0.264940
\(688\) 0 0
\(689\) −23.9230 −0.911393
\(690\) 0 0
\(691\) 34.5410 1.31400 0.657001 0.753890i \(-0.271825\pi\)
0.657001 + 0.753890i \(0.271825\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −59.3607 −2.25168
\(696\) 0 0
\(697\) 2.43769 0.0923342
\(698\) 0 0
\(699\) −25.7984 −0.975784
\(700\) 0 0
\(701\) −9.50658 −0.359058 −0.179529 0.983753i \(-0.557457\pi\)
−0.179529 + 0.983753i \(0.557457\pi\)
\(702\) 0 0
\(703\) −50.1591 −1.89178
\(704\) 0 0
\(705\) −3.94427 −0.148550
\(706\) 0 0
\(707\) −50.5967 −1.90289
\(708\) 0 0
\(709\) −25.7426 −0.966785 −0.483393 0.875404i \(-0.660596\pi\)
−0.483393 + 0.875404i \(0.660596\pi\)
\(710\) 0 0
\(711\) 9.76393 0.366176
\(712\) 0 0
\(713\) −36.5066 −1.36718
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −20.5066 −0.765832
\(718\) 0 0
\(719\) 39.0689 1.45702 0.728512 0.685033i \(-0.240212\pi\)
0.728512 + 0.685033i \(0.240212\pi\)
\(720\) 0 0
\(721\) −14.9443 −0.556554
\(722\) 0 0
\(723\) 10.2918 0.382756
\(724\) 0 0
\(725\) 14.0689 0.522505
\(726\) 0 0
\(727\) 2.14590 0.0795870 0.0397935 0.999208i \(-0.487330\pi\)
0.0397935 + 0.999208i \(0.487330\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −2.43769 −0.0901614
\(732\) 0 0
\(733\) 22.5410 0.832572 0.416286 0.909234i \(-0.363332\pi\)
0.416286 + 0.909234i \(0.363332\pi\)
\(734\) 0 0
\(735\) 31.2361 1.15216
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −35.1803 −1.29413 −0.647065 0.762435i \(-0.724004\pi\)
−0.647065 + 0.762435i \(0.724004\pi\)
\(740\) 0 0
\(741\) 10.7426 0.394641
\(742\) 0 0
\(743\) 2.52786 0.0927383 0.0463692 0.998924i \(-0.485235\pi\)
0.0463692 + 0.998924i \(0.485235\pi\)
\(744\) 0 0
\(745\) −53.9098 −1.97510
\(746\) 0 0
\(747\) 6.52786 0.238842
\(748\) 0 0
\(749\) 65.5410 2.39482
\(750\) 0 0
\(751\) −36.6312 −1.33669 −0.668346 0.743851i \(-0.732997\pi\)
−0.668346 + 0.743851i \(0.732997\pi\)
\(752\) 0 0
\(753\) −12.9098 −0.470460
\(754\) 0 0
\(755\) −12.7639 −0.464527
\(756\) 0 0
\(757\) 16.4164 0.596664 0.298332 0.954462i \(-0.403570\pi\)
0.298332 + 0.954462i \(0.403570\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −51.2492 −1.85778 −0.928891 0.370352i \(-0.879237\pi\)
−0.928891 + 0.370352i \(0.879237\pi\)
\(762\) 0 0
\(763\) 33.8885 1.22685
\(764\) 0 0
\(765\) −13.1803 −0.476536
\(766\) 0 0
\(767\) −15.6180 −0.563935
\(768\) 0 0
\(769\) 13.4377 0.484576 0.242288 0.970204i \(-0.422102\pi\)
0.242288 + 0.970204i \(0.422102\pi\)
\(770\) 0 0
\(771\) 21.7984 0.785049
\(772\) 0 0
\(773\) −15.3607 −0.552485 −0.276243 0.961088i \(-0.589089\pi\)
−0.276243 + 0.961088i \(0.589089\pi\)
\(774\) 0 0
\(775\) 27.1115 0.973872
\(776\) 0 0
\(777\) −34.8885 −1.25162
\(778\) 0 0
\(779\) −3.21478 −0.115182
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 4.47214 0.159821
\(784\) 0 0
\(785\) −36.4296 −1.30023
\(786\) 0 0
\(787\) 49.2361 1.75508 0.877538 0.479507i \(-0.159184\pi\)
0.877538 + 0.479507i \(0.159184\pi\)
\(788\) 0 0
\(789\) 17.1459 0.610410
\(790\) 0 0
\(791\) 32.8885 1.16938
\(792\) 0 0
\(793\) 0.673762 0.0239260
\(794\) 0 0
\(795\) −38.7082 −1.37284
\(796\) 0 0
\(797\) 27.0132 0.956855 0.478428 0.878127i \(-0.341207\pi\)
0.478428 + 0.878127i \(0.341207\pi\)
\(798\) 0 0
\(799\) 6.38197 0.225778
\(800\) 0 0
\(801\) 1.00000 0.0353333
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −51.2148 −1.80508
\(806\) 0 0
\(807\) 19.5279 0.687413
\(808\) 0 0
\(809\) −1.72949 −0.0608056 −0.0304028 0.999538i \(-0.509679\pi\)
−0.0304028 + 0.999538i \(0.509679\pi\)
\(810\) 0 0
\(811\) −26.7984 −0.941018 −0.470509 0.882395i \(-0.655930\pi\)
−0.470509 + 0.882395i \(0.655930\pi\)
\(812\) 0 0
\(813\) −22.5623 −0.791295
\(814\) 0 0
\(815\) −5.29180 −0.185364
\(816\) 0 0
\(817\) 3.21478 0.112471
\(818\) 0 0
\(819\) 7.47214 0.261098
\(820\) 0 0
\(821\) 17.3607 0.605892 0.302946 0.953008i \(-0.402030\pi\)
0.302946 + 0.953008i \(0.402030\pi\)
\(822\) 0 0
\(823\) −0.819660 −0.0285716 −0.0142858 0.999898i \(-0.504547\pi\)
−0.0142858 + 0.999898i \(0.504547\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −0.875388 −0.0304402 −0.0152201 0.999884i \(-0.504845\pi\)
−0.0152201 + 0.999884i \(0.504845\pi\)
\(828\) 0 0
\(829\) −37.7426 −1.31086 −0.655428 0.755258i \(-0.727512\pi\)
−0.655428 + 0.755258i \(0.727512\pi\)
\(830\) 0 0
\(831\) 17.5623 0.609230
\(832\) 0 0
\(833\) −50.5410 −1.75114
\(834\) 0 0
\(835\) 4.61803 0.159814
\(836\) 0 0
\(837\) 8.61803 0.297883
\(838\) 0 0
\(839\) 15.8328 0.546610 0.273305 0.961927i \(-0.411883\pi\)
0.273305 + 0.961927i \(0.411883\pi\)
\(840\) 0 0
\(841\) −9.00000 −0.310345
\(842\) 0 0
\(843\) 23.1246 0.796454
\(844\) 0 0
\(845\) −28.2229 −0.970898
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 18.7639 0.643976
\(850\) 0 0
\(851\) 34.8885 1.19596
\(852\) 0 0
\(853\) −55.3607 −1.89551 −0.947757 0.318994i \(-0.896655\pi\)
−0.947757 + 0.318994i \(0.896655\pi\)
\(854\) 0 0
\(855\) 17.3820 0.594451
\(856\) 0 0
\(857\) −48.1935 −1.64626 −0.823129 0.567854i \(-0.807774\pi\)
−0.823129 + 0.567854i \(0.807774\pi\)
\(858\) 0 0
\(859\) −31.1803 −1.06386 −0.531930 0.846788i \(-0.678533\pi\)
−0.531930 + 0.846788i \(0.678533\pi\)
\(860\) 0 0
\(861\) −2.23607 −0.0762050
\(862\) 0 0
\(863\) −30.3607 −1.03349 −0.516745 0.856139i \(-0.672856\pi\)
−0.516745 + 0.856139i \(0.672856\pi\)
\(864\) 0 0
\(865\) 41.5623 1.41316
\(866\) 0 0
\(867\) 4.32624 0.146927
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 12.0902 0.409660
\(872\) 0 0
\(873\) 6.09017 0.206121
\(874\) 0 0
\(875\) −22.4164 −0.757813
\(876\) 0 0
\(877\) 34.8885 1.17810 0.589051 0.808096i \(-0.299502\pi\)
0.589051 + 0.808096i \(0.299502\pi\)
\(878\) 0 0
\(879\) 5.00000 0.168646
\(880\) 0 0
\(881\) 20.4377 0.688563 0.344282 0.938866i \(-0.388122\pi\)
0.344282 + 0.938866i \(0.388122\pi\)
\(882\) 0 0
\(883\) 2.94427 0.0990826 0.0495413 0.998772i \(-0.484224\pi\)
0.0495413 + 0.998772i \(0.484224\pi\)
\(884\) 0 0
\(885\) −25.2705 −0.849459
\(886\) 0 0
\(887\) −46.7082 −1.56831 −0.784154 0.620566i \(-0.786903\pi\)
−0.784154 + 0.620566i \(0.786903\pi\)
\(888\) 0 0
\(889\) 9.70820 0.325603
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −8.41641 −0.281644
\(894\) 0 0
\(895\) 0.159054 0.00531658
\(896\) 0 0
\(897\) −7.47214 −0.249487
\(898\) 0 0
\(899\) 38.5410 1.28541
\(900\) 0 0
\(901\) 62.6312 2.08655
\(902\) 0 0
\(903\) 2.23607 0.0744117
\(904\) 0 0
\(905\) −34.0902 −1.13320
\(906\) 0 0
\(907\) −39.8673 −1.32377 −0.661885 0.749605i \(-0.730243\pi\)
−0.661885 + 0.749605i \(0.730243\pi\)
\(908\) 0 0
\(909\) −11.9443 −0.396166
\(910\) 0 0
\(911\) 41.5410 1.37632 0.688158 0.725561i \(-0.258420\pi\)
0.688158 + 0.725561i \(0.258420\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 1.09017 0.0360399
\(916\) 0 0
\(917\) 48.9787 1.61742
\(918\) 0 0
\(919\) 37.8328 1.24799 0.623995 0.781429i \(-0.285509\pi\)
0.623995 + 0.781429i \(0.285509\pi\)
\(920\) 0 0
\(921\) −16.3262 −0.537968
\(922\) 0 0
\(923\) 6.38197 0.210065
\(924\) 0 0
\(925\) −25.9098 −0.851910
\(926\) 0 0
\(927\) −3.52786 −0.115870
\(928\) 0 0
\(929\) 46.4164 1.52287 0.761436 0.648240i \(-0.224494\pi\)
0.761436 + 0.648240i \(0.224494\pi\)
\(930\) 0 0
\(931\) 66.6525 2.18445
\(932\) 0 0
\(933\) 6.81966 0.223266
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −24.2361 −0.791758 −0.395879 0.918303i \(-0.629560\pi\)
−0.395879 + 0.918303i \(0.629560\pi\)
\(938\) 0 0
\(939\) −1.00000 −0.0326338
\(940\) 0 0
\(941\) −17.5623 −0.572515 −0.286257 0.958153i \(-0.592411\pi\)
−0.286257 + 0.958153i \(0.592411\pi\)
\(942\) 0 0
\(943\) 2.23607 0.0728164
\(944\) 0 0
\(945\) 12.0902 0.393293
\(946\) 0 0
\(947\) −21.7984 −0.708352 −0.354176 0.935179i \(-0.615239\pi\)
−0.354176 + 0.935179i \(0.615239\pi\)
\(948\) 0 0
\(949\) 2.18034 0.0707768
\(950\) 0 0
\(951\) 17.4721 0.566573
\(952\) 0 0
\(953\) −39.2361 −1.27098 −0.635490 0.772109i \(-0.719202\pi\)
−0.635490 + 0.772109i \(0.719202\pi\)
\(954\) 0 0
\(955\) −27.5492 −0.891470
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −88.9574 −2.87259
\(960\) 0 0
\(961\) 43.2705 1.39582
\(962\) 0 0
\(963\) 15.4721 0.498583
\(964\) 0 0
\(965\) 0.931116 0.0299737
\(966\) 0 0
\(967\) 48.2705 1.55227 0.776137 0.630564i \(-0.217176\pi\)
0.776137 + 0.630564i \(0.217176\pi\)
\(968\) 0 0
\(969\) −28.1246 −0.903493
\(970\) 0 0
\(971\) 42.3607 1.35942 0.679709 0.733481i \(-0.262106\pi\)
0.679709 + 0.733481i \(0.262106\pi\)
\(972\) 0 0
\(973\) −88.1033 −2.82446
\(974\) 0 0
\(975\) 5.54915 0.177715
\(976\) 0 0
\(977\) 2.88854 0.0924127 0.0462064 0.998932i \(-0.485287\pi\)
0.0462064 + 0.998932i \(0.485287\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 8.00000 0.255420
\(982\) 0 0
\(983\) −16.8328 −0.536883 −0.268442 0.963296i \(-0.586509\pi\)
−0.268442 + 0.963296i \(0.586509\pi\)
\(984\) 0 0
\(985\) 48.7771 1.55417
\(986\) 0 0
\(987\) −5.85410 −0.186338
\(988\) 0 0
\(989\) −2.23607 −0.0711028
\(990\) 0 0
\(991\) −9.72949 −0.309067 −0.154534 0.987988i \(-0.549388\pi\)
−0.154534 + 0.987988i \(0.549388\pi\)
\(992\) 0 0
\(993\) 5.94427 0.188636
\(994\) 0 0
\(995\) −46.8541 −1.48537
\(996\) 0 0
\(997\) 4.27051 0.135248 0.0676242 0.997711i \(-0.478458\pi\)
0.0676242 + 0.997711i \(0.478458\pi\)
\(998\) 0 0
\(999\) −8.23607 −0.260578
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5808.2.a.cf.1.2 2
4.3 odd 2 1452.2.a.i.1.2 2
11.2 odd 10 528.2.y.a.433.1 4
11.6 odd 10 528.2.y.a.289.1 4
11.10 odd 2 5808.2.a.cc.1.2 2
12.11 even 2 4356.2.a.s.1.1 2
44.3 odd 10 1452.2.i.p.493.1 4
44.7 even 10 1452.2.i.o.1237.1 4
44.15 odd 10 1452.2.i.p.1237.1 4
44.19 even 10 1452.2.i.o.493.1 4
44.27 odd 10 1452.2.i.j.1213.1 4
44.31 odd 10 1452.2.i.j.565.1 4
44.35 even 10 132.2.i.b.37.1 yes 4
44.39 even 10 132.2.i.b.25.1 4
44.43 even 2 1452.2.a.j.1.2 2
132.35 odd 10 396.2.j.c.37.1 4
132.83 odd 10 396.2.j.c.289.1 4
132.131 odd 2 4356.2.a.v.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.2.i.b.25.1 4 44.39 even 10
132.2.i.b.37.1 yes 4 44.35 even 10
396.2.j.c.37.1 4 132.35 odd 10
396.2.j.c.289.1 4 132.83 odd 10
528.2.y.a.289.1 4 11.6 odd 10
528.2.y.a.433.1 4 11.2 odd 10
1452.2.a.i.1.2 2 4.3 odd 2
1452.2.a.j.1.2 2 44.43 even 2
1452.2.i.j.565.1 4 44.31 odd 10
1452.2.i.j.1213.1 4 44.27 odd 10
1452.2.i.o.493.1 4 44.19 even 10
1452.2.i.o.1237.1 4 44.7 even 10
1452.2.i.p.493.1 4 44.3 odd 10
1452.2.i.p.1237.1 4 44.15 odd 10
4356.2.a.s.1.1 2 12.11 even 2
4356.2.a.v.1.1 2 132.131 odd 2
5808.2.a.cc.1.2 2 11.10 odd 2
5808.2.a.cf.1.2 2 1.1 even 1 trivial