Properties

Label 5808.2.a.bx.1.2
Level $5808$
Weight $2$
Character 5808.1
Self dual yes
Analytic conductor $46.377$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5808,2,Mod(1,5808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5808.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5808, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5808 = 2^{4} \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5808.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,0,4,0,0,0,2,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.3771134940\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 363)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 5808.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +2.00000 q^{5} +4.47214 q^{7} +1.00000 q^{9} -2.00000 q^{15} +4.47214 q^{17} +4.47214 q^{19} -4.47214 q^{21} +4.00000 q^{23} -1.00000 q^{25} -1.00000 q^{27} +4.47214 q^{29} +8.94427 q^{35} +2.00000 q^{37} -4.47214 q^{41} -4.47214 q^{43} +2.00000 q^{45} -8.00000 q^{47} +13.0000 q^{49} -4.47214 q^{51} +6.00000 q^{53} -4.47214 q^{57} +8.94427 q^{61} +4.47214 q^{63} +12.0000 q^{67} -4.00000 q^{69} +8.00000 q^{71} -8.94427 q^{73} +1.00000 q^{75} -13.4164 q^{79} +1.00000 q^{81} +8.94427 q^{83} +8.94427 q^{85} -4.47214 q^{87} -14.0000 q^{89} +8.94427 q^{95} +2.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 4 q^{5} + 2 q^{9} - 4 q^{15} + 8 q^{23} - 2 q^{25} - 2 q^{27} + 4 q^{37} + 4 q^{45} - 16 q^{47} + 26 q^{49} + 12 q^{53} + 24 q^{67} - 8 q^{69} + 16 q^{71} + 2 q^{75} + 2 q^{81} - 28 q^{89}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 2.00000 0.894427 0.447214 0.894427i \(-0.352416\pi\)
0.447214 + 0.894427i \(0.352416\pi\)
\(6\) 0 0
\(7\) 4.47214 1.69031 0.845154 0.534522i \(-0.179509\pi\)
0.845154 + 0.534522i \(0.179509\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) −2.00000 −0.516398
\(16\) 0 0
\(17\) 4.47214 1.08465 0.542326 0.840168i \(-0.317544\pi\)
0.542326 + 0.840168i \(0.317544\pi\)
\(18\) 0 0
\(19\) 4.47214 1.02598 0.512989 0.858395i \(-0.328538\pi\)
0.512989 + 0.858395i \(0.328538\pi\)
\(20\) 0 0
\(21\) −4.47214 −0.975900
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 4.47214 0.830455 0.415227 0.909718i \(-0.363702\pi\)
0.415227 + 0.909718i \(0.363702\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 8.94427 1.51186
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.47214 −0.698430 −0.349215 0.937043i \(-0.613552\pi\)
−0.349215 + 0.937043i \(0.613552\pi\)
\(42\) 0 0
\(43\) −4.47214 −0.681994 −0.340997 0.940064i \(-0.610765\pi\)
−0.340997 + 0.940064i \(0.610765\pi\)
\(44\) 0 0
\(45\) 2.00000 0.298142
\(46\) 0 0
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) 13.0000 1.85714
\(50\) 0 0
\(51\) −4.47214 −0.626224
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −4.47214 −0.592349
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 8.94427 1.14520 0.572598 0.819836i \(-0.305935\pi\)
0.572598 + 0.819836i \(0.305935\pi\)
\(62\) 0 0
\(63\) 4.47214 0.563436
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 0 0
\(69\) −4.00000 −0.481543
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) −8.94427 −1.04685 −0.523424 0.852072i \(-0.675346\pi\)
−0.523424 + 0.852072i \(0.675346\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −13.4164 −1.50946 −0.754732 0.656033i \(-0.772233\pi\)
−0.754732 + 0.656033i \(0.772233\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 8.94427 0.981761 0.490881 0.871227i \(-0.336675\pi\)
0.490881 + 0.871227i \(0.336675\pi\)
\(84\) 0 0
\(85\) 8.94427 0.970143
\(86\) 0 0
\(87\) −4.47214 −0.479463
\(88\) 0 0
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 8.94427 0.917663
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.47214 0.444994 0.222497 0.974933i \(-0.428579\pi\)
0.222497 + 0.974933i \(0.428579\pi\)
\(102\) 0 0
\(103\) −16.0000 −1.57653 −0.788263 0.615338i \(-0.789020\pi\)
−0.788263 + 0.615338i \(0.789020\pi\)
\(104\) 0 0
\(105\) −8.94427 −0.872872
\(106\) 0 0
\(107\) −8.94427 −0.864675 −0.432338 0.901712i \(-0.642311\pi\)
−0.432338 + 0.901712i \(0.642311\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) −2.00000 −0.189832
\(112\) 0 0
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 8.00000 0.746004
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 20.0000 1.83340
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 4.47214 0.403239
\(124\) 0 0
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) −13.4164 −1.19051 −0.595257 0.803535i \(-0.702950\pi\)
−0.595257 + 0.803535i \(0.702950\pi\)
\(128\) 0 0
\(129\) 4.47214 0.393750
\(130\) 0 0
\(131\) 17.8885 1.56293 0.781465 0.623949i \(-0.214473\pi\)
0.781465 + 0.623949i \(0.214473\pi\)
\(132\) 0 0
\(133\) 20.0000 1.73422
\(134\) 0 0
\(135\) −2.00000 −0.172133
\(136\) 0 0
\(137\) 22.0000 1.87959 0.939793 0.341743i \(-0.111017\pi\)
0.939793 + 0.341743i \(0.111017\pi\)
\(138\) 0 0
\(139\) −13.4164 −1.13796 −0.568982 0.822350i \(-0.692663\pi\)
−0.568982 + 0.822350i \(0.692663\pi\)
\(140\) 0 0
\(141\) 8.00000 0.673722
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 8.94427 0.742781
\(146\) 0 0
\(147\) −13.0000 −1.07222
\(148\) 0 0
\(149\) −22.3607 −1.83186 −0.915929 0.401340i \(-0.868545\pi\)
−0.915929 + 0.401340i \(0.868545\pi\)
\(150\) 0 0
\(151\) −13.4164 −1.09181 −0.545906 0.837846i \(-0.683814\pi\)
−0.545906 + 0.837846i \(0.683814\pi\)
\(152\) 0 0
\(153\) 4.47214 0.361551
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) 17.8885 1.40981
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.94427 −0.692129 −0.346064 0.938211i \(-0.612482\pi\)
−0.346064 + 0.938211i \(0.612482\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 4.47214 0.341993
\(172\) 0 0
\(173\) −13.4164 −1.02003 −0.510015 0.860165i \(-0.670360\pi\)
−0.510015 + 0.860165i \(0.670360\pi\)
\(174\) 0 0
\(175\) −4.47214 −0.338062
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.00000 0.298974 0.149487 0.988764i \(-0.452238\pi\)
0.149487 + 0.988764i \(0.452238\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) −8.94427 −0.661180
\(184\) 0 0
\(185\) 4.00000 0.294086
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −4.47214 −0.325300
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −17.8885 −1.28765 −0.643823 0.765175i \(-0.722653\pi\)
−0.643823 + 0.765175i \(0.722653\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 22.3607 1.59313 0.796566 0.604551i \(-0.206648\pi\)
0.796566 + 0.604551i \(0.206648\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) −12.0000 −0.846415
\(202\) 0 0
\(203\) 20.0000 1.40372
\(204\) 0 0
\(205\) −8.94427 −0.624695
\(206\) 0 0
\(207\) 4.00000 0.278019
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 4.47214 0.307875 0.153937 0.988081i \(-0.450805\pi\)
0.153937 + 0.988081i \(0.450805\pi\)
\(212\) 0 0
\(213\) −8.00000 −0.548151
\(214\) 0 0
\(215\) −8.94427 −0.609994
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 8.94427 0.604398
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) −8.94427 −0.593652 −0.296826 0.954932i \(-0.595928\pi\)
−0.296826 + 0.954932i \(0.595928\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4.47214 −0.292979 −0.146490 0.989212i \(-0.546798\pi\)
−0.146490 + 0.989212i \(0.546798\pi\)
\(234\) 0 0
\(235\) −16.0000 −1.04372
\(236\) 0 0
\(237\) 13.4164 0.871489
\(238\) 0 0
\(239\) −8.94427 −0.578557 −0.289278 0.957245i \(-0.593415\pi\)
−0.289278 + 0.957245i \(0.593415\pi\)
\(240\) 0 0
\(241\) 8.94427 0.576151 0.288076 0.957608i \(-0.406985\pi\)
0.288076 + 0.957608i \(0.406985\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 26.0000 1.66108
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −8.94427 −0.566820
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −8.94427 −0.560112
\(256\) 0 0
\(257\) −22.0000 −1.37232 −0.686161 0.727450i \(-0.740706\pi\)
−0.686161 + 0.727450i \(0.740706\pi\)
\(258\) 0 0
\(259\) 8.94427 0.555770
\(260\) 0 0
\(261\) 4.47214 0.276818
\(262\) 0 0
\(263\) −8.94427 −0.551527 −0.275764 0.961225i \(-0.588931\pi\)
−0.275764 + 0.961225i \(0.588931\pi\)
\(264\) 0 0
\(265\) 12.0000 0.737154
\(266\) 0 0
\(267\) 14.0000 0.856786
\(268\) 0 0
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) 0 0
\(271\) 13.4164 0.814989 0.407494 0.913208i \(-0.366403\pi\)
0.407494 + 0.913208i \(0.366403\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 31.3050 1.86750 0.933748 0.357930i \(-0.116517\pi\)
0.933748 + 0.357930i \(0.116517\pi\)
\(282\) 0 0
\(283\) 13.4164 0.797523 0.398761 0.917055i \(-0.369440\pi\)
0.398761 + 0.917055i \(0.369440\pi\)
\(284\) 0 0
\(285\) −8.94427 −0.529813
\(286\) 0 0
\(287\) −20.0000 −1.18056
\(288\) 0 0
\(289\) 3.00000 0.176471
\(290\) 0 0
\(291\) −2.00000 −0.117242
\(292\) 0 0
\(293\) −22.3607 −1.30632 −0.653162 0.757218i \(-0.726558\pi\)
−0.653162 + 0.757218i \(0.726558\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −20.0000 −1.15278
\(302\) 0 0
\(303\) −4.47214 −0.256917
\(304\) 0 0
\(305\) 17.8885 1.02430
\(306\) 0 0
\(307\) 4.47214 0.255238 0.127619 0.991823i \(-0.459266\pi\)
0.127619 + 0.991823i \(0.459266\pi\)
\(308\) 0 0
\(309\) 16.0000 0.910208
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 0 0
\(315\) 8.94427 0.503953
\(316\) 0 0
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 8.94427 0.499221
\(322\) 0 0
\(323\) 20.0000 1.11283
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −35.7771 −1.97245
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 0 0
\(333\) 2.00000 0.109599
\(334\) 0 0
\(335\) 24.0000 1.31126
\(336\) 0 0
\(337\) 8.94427 0.487226 0.243613 0.969873i \(-0.421667\pi\)
0.243613 + 0.969873i \(0.421667\pi\)
\(338\) 0 0
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 26.8328 1.44884
\(344\) 0 0
\(345\) −8.00000 −0.430706
\(346\) 0 0
\(347\) −8.94427 −0.480154 −0.240077 0.970754i \(-0.577173\pi\)
−0.240077 + 0.970754i \(0.577173\pi\)
\(348\) 0 0
\(349\) −26.8328 −1.43633 −0.718164 0.695874i \(-0.755017\pi\)
−0.718164 + 0.695874i \(0.755017\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.0000 −0.745145 −0.372572 0.928003i \(-0.621524\pi\)
−0.372572 + 0.928003i \(0.621524\pi\)
\(354\) 0 0
\(355\) 16.0000 0.849192
\(356\) 0 0
\(357\) −20.0000 −1.05851
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −17.8885 −0.936329
\(366\) 0 0
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) 0 0
\(369\) −4.47214 −0.232810
\(370\) 0 0
\(371\) 26.8328 1.39309
\(372\) 0 0
\(373\) −26.8328 −1.38935 −0.694675 0.719323i \(-0.744452\pi\)
−0.694675 + 0.719323i \(0.744452\pi\)
\(374\) 0 0
\(375\) 12.0000 0.619677
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 0 0
\(381\) 13.4164 0.687343
\(382\) 0 0
\(383\) 36.0000 1.83951 0.919757 0.392488i \(-0.128386\pi\)
0.919757 + 0.392488i \(0.128386\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −4.47214 −0.227331
\(388\) 0 0
\(389\) 10.0000 0.507020 0.253510 0.967333i \(-0.418415\pi\)
0.253510 + 0.967333i \(0.418415\pi\)
\(390\) 0 0
\(391\) 17.8885 0.904663
\(392\) 0 0
\(393\) −17.8885 −0.902358
\(394\) 0 0
\(395\) −26.8328 −1.35011
\(396\) 0 0
\(397\) 22.0000 1.10415 0.552074 0.833795i \(-0.313837\pi\)
0.552074 + 0.833795i \(0.313837\pi\)
\(398\) 0 0
\(399\) −20.0000 −1.00125
\(400\) 0 0
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 2.00000 0.0993808
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −26.8328 −1.32680 −0.663399 0.748266i \(-0.730887\pi\)
−0.663399 + 0.748266i \(0.730887\pi\)
\(410\) 0 0
\(411\) −22.0000 −1.08518
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 17.8885 0.878114
\(416\) 0 0
\(417\) 13.4164 0.657004
\(418\) 0 0
\(419\) −4.00000 −0.195413 −0.0977064 0.995215i \(-0.531151\pi\)
−0.0977064 + 0.995215i \(0.531151\pi\)
\(420\) 0 0
\(421\) 10.0000 0.487370 0.243685 0.969854i \(-0.421644\pi\)
0.243685 + 0.969854i \(0.421644\pi\)
\(422\) 0 0
\(423\) −8.00000 −0.388973
\(424\) 0 0
\(425\) −4.47214 −0.216930
\(426\) 0 0
\(427\) 40.0000 1.93574
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8.94427 0.430830 0.215415 0.976523i \(-0.430890\pi\)
0.215415 + 0.976523i \(0.430890\pi\)
\(432\) 0 0
\(433\) −6.00000 −0.288342 −0.144171 0.989553i \(-0.546051\pi\)
−0.144171 + 0.989553i \(0.546051\pi\)
\(434\) 0 0
\(435\) −8.94427 −0.428845
\(436\) 0 0
\(437\) 17.8885 0.855725
\(438\) 0 0
\(439\) 13.4164 0.640330 0.320165 0.947362i \(-0.396262\pi\)
0.320165 + 0.947362i \(0.396262\pi\)
\(440\) 0 0
\(441\) 13.0000 0.619048
\(442\) 0 0
\(443\) 24.0000 1.14027 0.570137 0.821549i \(-0.306890\pi\)
0.570137 + 0.821549i \(0.306890\pi\)
\(444\) 0 0
\(445\) −28.0000 −1.32733
\(446\) 0 0
\(447\) 22.3607 1.05762
\(448\) 0 0
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 13.4164 0.630358
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 26.8328 1.25519 0.627593 0.778542i \(-0.284040\pi\)
0.627593 + 0.778542i \(0.284040\pi\)
\(458\) 0 0
\(459\) −4.47214 −0.208741
\(460\) 0 0
\(461\) 13.4164 0.624864 0.312432 0.949940i \(-0.398856\pi\)
0.312432 + 0.949940i \(0.398856\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.00000 0.370196 0.185098 0.982720i \(-0.440740\pi\)
0.185098 + 0.982720i \(0.440740\pi\)
\(468\) 0 0
\(469\) 53.6656 2.47805
\(470\) 0 0
\(471\) −2.00000 −0.0921551
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −4.47214 −0.205196
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 0 0
\(479\) 8.94427 0.408674 0.204337 0.978901i \(-0.434496\pi\)
0.204337 + 0.978901i \(0.434496\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −17.8885 −0.813957
\(484\) 0 0
\(485\) 4.00000 0.181631
\(486\) 0 0
\(487\) −8.00000 −0.362515 −0.181257 0.983436i \(-0.558017\pi\)
−0.181257 + 0.983436i \(0.558017\pi\)
\(488\) 0 0
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) 26.8328 1.21095 0.605474 0.795865i \(-0.292984\pi\)
0.605474 + 0.795865i \(0.292984\pi\)
\(492\) 0 0
\(493\) 20.0000 0.900755
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 35.7771 1.60482
\(498\) 0 0
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) 0 0
\(501\) 8.94427 0.399601
\(502\) 0 0
\(503\) 26.8328 1.19642 0.598208 0.801341i \(-0.295880\pi\)
0.598208 + 0.801341i \(0.295880\pi\)
\(504\) 0 0
\(505\) 8.94427 0.398015
\(506\) 0 0
\(507\) 13.0000 0.577350
\(508\) 0 0
\(509\) 30.0000 1.32973 0.664863 0.746965i \(-0.268490\pi\)
0.664863 + 0.746965i \(0.268490\pi\)
\(510\) 0 0
\(511\) −40.0000 −1.76950
\(512\) 0 0
\(513\) −4.47214 −0.197450
\(514\) 0 0
\(515\) −32.0000 −1.41009
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 13.4164 0.588915
\(520\) 0 0
\(521\) 30.0000 1.31432 0.657162 0.753749i \(-0.271757\pi\)
0.657162 + 0.753749i \(0.271757\pi\)
\(522\) 0 0
\(523\) −4.47214 −0.195553 −0.0977764 0.995208i \(-0.531173\pi\)
−0.0977764 + 0.995208i \(0.531173\pi\)
\(524\) 0 0
\(525\) 4.47214 0.195180
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −17.8885 −0.773389
\(536\) 0 0
\(537\) −4.00000 −0.172613
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) 10.0000 0.429141
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −40.2492 −1.72093 −0.860466 0.509507i \(-0.829828\pi\)
−0.860466 + 0.509507i \(0.829828\pi\)
\(548\) 0 0
\(549\) 8.94427 0.381732
\(550\) 0 0
\(551\) 20.0000 0.852029
\(552\) 0 0
\(553\) −60.0000 −2.55146
\(554\) 0 0
\(555\) −4.00000 −0.169791
\(556\) 0 0
\(557\) −40.2492 −1.70541 −0.852707 0.522389i \(-0.825041\pi\)
−0.852707 + 0.522389i \(0.825041\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −17.8885 −0.753912 −0.376956 0.926231i \(-0.623029\pi\)
−0.376956 + 0.926231i \(0.623029\pi\)
\(564\) 0 0
\(565\) 12.0000 0.504844
\(566\) 0 0
\(567\) 4.47214 0.187812
\(568\) 0 0
\(569\) 4.47214 0.187482 0.0937408 0.995597i \(-0.470117\pi\)
0.0937408 + 0.995597i \(0.470117\pi\)
\(570\) 0 0
\(571\) 13.4164 0.561459 0.280730 0.959787i \(-0.409424\pi\)
0.280730 + 0.959787i \(0.409424\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −4.00000 −0.166812
\(576\) 0 0
\(577\) −2.00000 −0.0832611 −0.0416305 0.999133i \(-0.513255\pi\)
−0.0416305 + 0.999133i \(0.513255\pi\)
\(578\) 0 0
\(579\) 17.8885 0.743423
\(580\) 0 0
\(581\) 40.0000 1.65948
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.00000 0.330195 0.165098 0.986277i \(-0.447206\pi\)
0.165098 + 0.986277i \(0.447206\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −22.3607 −0.919795
\(592\) 0 0
\(593\) −22.3607 −0.918243 −0.459122 0.888373i \(-0.651836\pi\)
−0.459122 + 0.888373i \(0.651836\pi\)
\(594\) 0 0
\(595\) 40.0000 1.63984
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 36.0000 1.47092 0.735460 0.677568i \(-0.236966\pi\)
0.735460 + 0.677568i \(0.236966\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 12.0000 0.488678
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 4.47214 0.181518 0.0907592 0.995873i \(-0.471071\pi\)
0.0907592 + 0.995873i \(0.471071\pi\)
\(608\) 0 0
\(609\) −20.0000 −0.810441
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 44.7214 1.80628 0.903139 0.429348i \(-0.141256\pi\)
0.903139 + 0.429348i \(0.141256\pi\)
\(614\) 0 0
\(615\) 8.94427 0.360668
\(616\) 0 0
\(617\) −2.00000 −0.0805170 −0.0402585 0.999189i \(-0.512818\pi\)
−0.0402585 + 0.999189i \(0.512818\pi\)
\(618\) 0 0
\(619\) −44.0000 −1.76851 −0.884255 0.467005i \(-0.845333\pi\)
−0.884255 + 0.467005i \(0.845333\pi\)
\(620\) 0 0
\(621\) −4.00000 −0.160514
\(622\) 0 0
\(623\) −62.6099 −2.50841
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8.94427 0.356631
\(630\) 0 0
\(631\) −32.0000 −1.27390 −0.636950 0.770905i \(-0.719804\pi\)
−0.636950 + 0.770905i \(0.719804\pi\)
\(632\) 0 0
\(633\) −4.47214 −0.177751
\(634\) 0 0
\(635\) −26.8328 −1.06483
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 8.00000 0.316475
\(640\) 0 0
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) 0 0
\(643\) −36.0000 −1.41970 −0.709851 0.704352i \(-0.751238\pi\)
−0.709851 + 0.704352i \(0.751238\pi\)
\(644\) 0 0
\(645\) 8.94427 0.352180
\(646\) 0 0
\(647\) 12.0000 0.471769 0.235884 0.971781i \(-0.424201\pi\)
0.235884 + 0.971781i \(0.424201\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 46.0000 1.80012 0.900060 0.435767i \(-0.143523\pi\)
0.900060 + 0.435767i \(0.143523\pi\)
\(654\) 0 0
\(655\) 35.7771 1.39793
\(656\) 0 0
\(657\) −8.94427 −0.348949
\(658\) 0 0
\(659\) −17.8885 −0.696839 −0.348419 0.937339i \(-0.613281\pi\)
−0.348419 + 0.937339i \(0.613281\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 40.0000 1.55113
\(666\) 0 0
\(667\) 17.8885 0.692647
\(668\) 0 0
\(669\) −16.0000 −0.618596
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −17.8885 −0.689553 −0.344776 0.938685i \(-0.612045\pi\)
−0.344776 + 0.938685i \(0.612045\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) −31.3050 −1.20315 −0.601574 0.798817i \(-0.705459\pi\)
−0.601574 + 0.798817i \(0.705459\pi\)
\(678\) 0 0
\(679\) 8.94427 0.343250
\(680\) 0 0
\(681\) 8.94427 0.342745
\(682\) 0 0
\(683\) −44.0000 −1.68361 −0.841807 0.539779i \(-0.818508\pi\)
−0.841807 + 0.539779i \(0.818508\pi\)
\(684\) 0 0
\(685\) 44.0000 1.68115
\(686\) 0 0
\(687\) −10.0000 −0.381524
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −12.0000 −0.456502 −0.228251 0.973602i \(-0.573301\pi\)
−0.228251 + 0.973602i \(0.573301\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −26.8328 −1.01783
\(696\) 0 0
\(697\) −20.0000 −0.757554
\(698\) 0 0
\(699\) 4.47214 0.169152
\(700\) 0 0
\(701\) −22.3607 −0.844551 −0.422276 0.906467i \(-0.638769\pi\)
−0.422276 + 0.906467i \(0.638769\pi\)
\(702\) 0 0
\(703\) 8.94427 0.337340
\(704\) 0 0
\(705\) 16.0000 0.602595
\(706\) 0 0
\(707\) 20.0000 0.752177
\(708\) 0 0
\(709\) −6.00000 −0.225335 −0.112667 0.993633i \(-0.535939\pi\)
−0.112667 + 0.993633i \(0.535939\pi\)
\(710\) 0 0
\(711\) −13.4164 −0.503155
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 8.94427 0.334030
\(718\) 0 0
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) 0 0
\(721\) −71.5542 −2.66482
\(722\) 0 0
\(723\) −8.94427 −0.332641
\(724\) 0 0
\(725\) −4.47214 −0.166091
\(726\) 0 0
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −20.0000 −0.739727
\(732\) 0 0
\(733\) −17.8885 −0.660728 −0.330364 0.943854i \(-0.607172\pi\)
−0.330364 + 0.943854i \(0.607172\pi\)
\(734\) 0 0
\(735\) −26.0000 −0.959024
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −4.47214 −0.164510 −0.0822551 0.996611i \(-0.526212\pi\)
−0.0822551 + 0.996611i \(0.526212\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) −44.7214 −1.63846
\(746\) 0 0
\(747\) 8.94427 0.327254
\(748\) 0 0
\(749\) −40.0000 −1.46157
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 0 0
\(753\) −12.0000 −0.437304
\(754\) 0 0
\(755\) −26.8328 −0.976546
\(756\) 0 0
\(757\) 42.0000 1.52652 0.763258 0.646094i \(-0.223599\pi\)
0.763258 + 0.646094i \(0.223599\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −31.3050 −1.13480 −0.567402 0.823441i \(-0.692051\pi\)
−0.567402 + 0.823441i \(0.692051\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 8.94427 0.323381
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 35.7771 1.29015 0.645077 0.764117i \(-0.276825\pi\)
0.645077 + 0.764117i \(0.276825\pi\)
\(770\) 0 0
\(771\) 22.0000 0.792311
\(772\) 0 0
\(773\) 14.0000 0.503545 0.251773 0.967786i \(-0.418987\pi\)
0.251773 + 0.967786i \(0.418987\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −8.94427 −0.320874
\(778\) 0 0
\(779\) −20.0000 −0.716574
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −4.47214 −0.159821
\(784\) 0 0
\(785\) 4.00000 0.142766
\(786\) 0 0
\(787\) −40.2492 −1.43473 −0.717365 0.696698i \(-0.754652\pi\)
−0.717365 + 0.696698i \(0.754652\pi\)
\(788\) 0 0
\(789\) 8.94427 0.318425
\(790\) 0 0
\(791\) 26.8328 0.954065
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −12.0000 −0.425596
\(796\) 0 0
\(797\) 42.0000 1.48772 0.743858 0.668338i \(-0.232994\pi\)
0.743858 + 0.668338i \(0.232994\pi\)
\(798\) 0 0
\(799\) −35.7771 −1.26570
\(800\) 0 0
\(801\) −14.0000 −0.494666
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 35.7771 1.26098
\(806\) 0 0
\(807\) 10.0000 0.352017
\(808\) 0 0
\(809\) −13.4164 −0.471696 −0.235848 0.971790i \(-0.575787\pi\)
−0.235848 + 0.971790i \(0.575787\pi\)
\(810\) 0 0
\(811\) 4.47214 0.157038 0.0785190 0.996913i \(-0.474981\pi\)
0.0785190 + 0.996913i \(0.474981\pi\)
\(812\) 0 0
\(813\) −13.4164 −0.470534
\(814\) 0 0
\(815\) −8.00000 −0.280228
\(816\) 0 0
\(817\) −20.0000 −0.699711
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 22.3607 0.780393 0.390197 0.920732i \(-0.372407\pi\)
0.390197 + 0.920732i \(0.372407\pi\)
\(822\) 0 0
\(823\) −16.0000 −0.557725 −0.278862 0.960331i \(-0.589957\pi\)
−0.278862 + 0.960331i \(0.589957\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −44.7214 −1.55511 −0.777557 0.628812i \(-0.783541\pi\)
−0.777557 + 0.628812i \(0.783541\pi\)
\(828\) 0 0
\(829\) 14.0000 0.486240 0.243120 0.969996i \(-0.421829\pi\)
0.243120 + 0.969996i \(0.421829\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 58.1378 2.01435
\(834\) 0 0
\(835\) −17.8885 −0.619059
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 20.0000 0.690477 0.345238 0.938515i \(-0.387798\pi\)
0.345238 + 0.938515i \(0.387798\pi\)
\(840\) 0 0
\(841\) −9.00000 −0.310345
\(842\) 0 0
\(843\) −31.3050 −1.07820
\(844\) 0 0
\(845\) −26.0000 −0.894427
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −13.4164 −0.460450
\(850\) 0 0
\(851\) 8.00000 0.274236
\(852\) 0 0
\(853\) 8.94427 0.306246 0.153123 0.988207i \(-0.451067\pi\)
0.153123 + 0.988207i \(0.451067\pi\)
\(854\) 0 0
\(855\) 8.94427 0.305888
\(856\) 0 0
\(857\) 40.2492 1.37489 0.687444 0.726238i \(-0.258733\pi\)
0.687444 + 0.726238i \(0.258733\pi\)
\(858\) 0 0
\(859\) −4.00000 −0.136478 −0.0682391 0.997669i \(-0.521738\pi\)
−0.0682391 + 0.997669i \(0.521738\pi\)
\(860\) 0 0
\(861\) 20.0000 0.681598
\(862\) 0 0
\(863\) −4.00000 −0.136162 −0.0680808 0.997680i \(-0.521688\pi\)
−0.0680808 + 0.997680i \(0.521688\pi\)
\(864\) 0 0
\(865\) −26.8328 −0.912343
\(866\) 0 0
\(867\) −3.00000 −0.101885
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 2.00000 0.0676897
\(874\) 0 0
\(875\) −53.6656 −1.81423
\(876\) 0 0
\(877\) −8.94427 −0.302027 −0.151013 0.988532i \(-0.548254\pi\)
−0.151013 + 0.988532i \(0.548254\pi\)
\(878\) 0 0
\(879\) 22.3607 0.754207
\(880\) 0 0
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 0 0
\(883\) −44.0000 −1.48072 −0.740359 0.672212i \(-0.765344\pi\)
−0.740359 + 0.672212i \(0.765344\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 53.6656 1.80192 0.900958 0.433907i \(-0.142865\pi\)
0.900958 + 0.433907i \(0.142865\pi\)
\(888\) 0 0
\(889\) −60.0000 −2.01234
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −35.7771 −1.19723
\(894\) 0 0
\(895\) 8.00000 0.267411
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 26.8328 0.893931
\(902\) 0 0
\(903\) 20.0000 0.665558
\(904\) 0 0
\(905\) −20.0000 −0.664822
\(906\) 0 0
\(907\) 12.0000 0.398453 0.199227 0.979953i \(-0.436157\pi\)
0.199227 + 0.979953i \(0.436157\pi\)
\(908\) 0 0
\(909\) 4.47214 0.148331
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −17.8885 −0.591377
\(916\) 0 0
\(917\) 80.0000 2.64183
\(918\) 0 0
\(919\) −22.3607 −0.737611 −0.368805 0.929507i \(-0.620233\pi\)
−0.368805 + 0.929507i \(0.620233\pi\)
\(920\) 0 0
\(921\) −4.47214 −0.147362
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −2.00000 −0.0657596
\(926\) 0 0
\(927\) −16.0000 −0.525509
\(928\) 0 0
\(929\) 30.0000 0.984268 0.492134 0.870519i \(-0.336217\pi\)
0.492134 + 0.870519i \(0.336217\pi\)
\(930\) 0 0
\(931\) 58.1378 1.90539
\(932\) 0 0
\(933\) −12.0000 −0.392862
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 53.6656 1.75318 0.876590 0.481238i \(-0.159813\pi\)
0.876590 + 0.481238i \(0.159813\pi\)
\(938\) 0 0
\(939\) −14.0000 −0.456873
\(940\) 0 0
\(941\) 22.3607 0.728937 0.364469 0.931216i \(-0.381251\pi\)
0.364469 + 0.931216i \(0.381251\pi\)
\(942\) 0 0
\(943\) −17.8885 −0.582531
\(944\) 0 0
\(945\) −8.94427 −0.290957
\(946\) 0 0
\(947\) −52.0000 −1.68977 −0.844886 0.534946i \(-0.820332\pi\)
−0.844886 + 0.534946i \(0.820332\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −18.0000 −0.583690
\(952\) 0 0
\(953\) 22.3607 0.724333 0.362167 0.932113i \(-0.382037\pi\)
0.362167 + 0.932113i \(0.382037\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 98.3870 3.17708
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) −8.94427 −0.288225
\(964\) 0 0
\(965\) −35.7771 −1.15171
\(966\) 0 0
\(967\) −13.4164 −0.431443 −0.215721 0.976455i \(-0.569210\pi\)
−0.215721 + 0.976455i \(0.569210\pi\)
\(968\) 0 0
\(969\) −20.0000 −0.642493
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) −60.0000 −1.92351
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −42.0000 −1.34370 −0.671850 0.740688i \(-0.734500\pi\)
−0.671850 + 0.740688i \(0.734500\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −36.0000 −1.14822 −0.574111 0.818778i \(-0.694652\pi\)
−0.574111 + 0.818778i \(0.694652\pi\)
\(984\) 0 0
\(985\) 44.7214 1.42494
\(986\) 0 0
\(987\) 35.7771 1.13880
\(988\) 0 0
\(989\) −17.8885 −0.568823
\(990\) 0 0
\(991\) −40.0000 −1.27064 −0.635321 0.772248i \(-0.719132\pi\)
−0.635321 + 0.772248i \(0.719132\pi\)
\(992\) 0 0
\(993\) −20.0000 −0.634681
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −26.8328 −0.849804 −0.424902 0.905239i \(-0.639691\pi\)
−0.424902 + 0.905239i \(0.639691\pi\)
\(998\) 0 0
\(999\) −2.00000 −0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5808.2.a.bx.1.2 2
4.3 odd 2 363.2.a.g.1.2 yes 2
11.10 odd 2 inner 5808.2.a.bx.1.1 2
12.11 even 2 1089.2.a.p.1.1 2
20.19 odd 2 9075.2.a.bi.1.1 2
44.3 odd 10 363.2.e.l.130.1 4
44.7 even 10 363.2.e.a.148.1 4
44.15 odd 10 363.2.e.l.148.1 4
44.19 even 10 363.2.e.a.130.1 4
44.27 odd 10 363.2.e.a.124.1 4
44.31 odd 10 363.2.e.a.202.1 4
44.35 even 10 363.2.e.l.202.1 4
44.39 even 10 363.2.e.l.124.1 4
44.43 even 2 363.2.a.g.1.1 2
132.131 odd 2 1089.2.a.p.1.2 2
220.219 even 2 9075.2.a.bi.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
363.2.a.g.1.1 2 44.43 even 2
363.2.a.g.1.2 yes 2 4.3 odd 2
363.2.e.a.124.1 4 44.27 odd 10
363.2.e.a.130.1 4 44.19 even 10
363.2.e.a.148.1 4 44.7 even 10
363.2.e.a.202.1 4 44.31 odd 10
363.2.e.l.124.1 4 44.39 even 10
363.2.e.l.130.1 4 44.3 odd 10
363.2.e.l.148.1 4 44.15 odd 10
363.2.e.l.202.1 4 44.35 even 10
1089.2.a.p.1.1 2 12.11 even 2
1089.2.a.p.1.2 2 132.131 odd 2
5808.2.a.bx.1.1 2 11.10 odd 2 inner
5808.2.a.bx.1.2 2 1.1 even 1 trivial
9075.2.a.bi.1.1 2 20.19 odd 2
9075.2.a.bi.1.2 2 220.219 even 2