Properties

Label 5800.2.a.q.1.1
Level $5800$
Weight $2$
Character 5800.1
Self dual yes
Analytic conductor $46.313$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5800,2,Mod(1,5800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5800.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5800 = 2^{3} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.3132331723\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.229.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1160)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.254102\) of defining polynomial
Character \(\chi\) \(=\) 5800.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.93543 q^{3} +1.25410 q^{7} +5.61676 q^{9} +2.50820 q^{11} +2.93543 q^{13} -7.12497 q^{17} +4.85446 q^{19} -3.68133 q^{21} -1.57277 q^{23} -7.68133 q^{27} -1.00000 q^{29} -4.61676 q^{31} -7.36266 q^{33} -9.87086 q^{37} -8.61676 q^{39} +0.508203 q^{41} -1.38324 q^{43} +1.36266 q^{47} -5.42723 q^{49} +20.9149 q^{51} -2.23769 q^{53} -14.2499 q^{57} -11.6608 q^{59} +3.41082 q^{61} +7.04399 q^{63} +6.72532 q^{67} +4.61676 q^{69} +14.7253 q^{71} +12.3585 q^{73} +3.14554 q^{77} +3.91903 q^{79} +5.69774 q^{81} +1.87086 q^{83} +2.93543 q^{87} -11.8709 q^{89} +3.68133 q^{91} +13.5522 q^{93} -5.31450 q^{97} +14.0880 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{3} + 3 q^{7} + 2 q^{9} + 6 q^{11} + q^{13} - 5 q^{17} + 2 q^{19} - 4 q^{21} - 11 q^{23} - 16 q^{27} - 3 q^{29} + q^{31} - 8 q^{33} - 14 q^{37} - 11 q^{39} - 19 q^{43} - 10 q^{47} - 10 q^{49}+ \cdots + 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.93543 −1.69477 −0.847386 0.530977i \(-0.821825\pi\)
−0.847386 + 0.530977i \(0.821825\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.25410 0.474006 0.237003 0.971509i \(-0.423835\pi\)
0.237003 + 0.971509i \(0.423835\pi\)
\(8\) 0 0
\(9\) 5.61676 1.87225
\(10\) 0 0
\(11\) 2.50820 0.756252 0.378126 0.925754i \(-0.376569\pi\)
0.378126 + 0.925754i \(0.376569\pi\)
\(12\) 0 0
\(13\) 2.93543 0.814142 0.407071 0.913396i \(-0.366550\pi\)
0.407071 + 0.913396i \(0.366550\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −7.12497 −1.72806 −0.864029 0.503442i \(-0.832067\pi\)
−0.864029 + 0.503442i \(0.832067\pi\)
\(18\) 0 0
\(19\) 4.85446 1.11369 0.556845 0.830617i \(-0.312012\pi\)
0.556845 + 0.830617i \(0.312012\pi\)
\(20\) 0 0
\(21\) −3.68133 −0.803332
\(22\) 0 0
\(23\) −1.57277 −0.327945 −0.163973 0.986465i \(-0.552431\pi\)
−0.163973 + 0.986465i \(0.552431\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −7.68133 −1.47827
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −4.61676 −0.829195 −0.414598 0.910005i \(-0.636078\pi\)
−0.414598 + 0.910005i \(0.636078\pi\)
\(32\) 0 0
\(33\) −7.36266 −1.28167
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −9.87086 −1.62276 −0.811380 0.584519i \(-0.801283\pi\)
−0.811380 + 0.584519i \(0.801283\pi\)
\(38\) 0 0
\(39\) −8.61676 −1.37979
\(40\) 0 0
\(41\) 0.508203 0.0793680 0.0396840 0.999212i \(-0.487365\pi\)
0.0396840 + 0.999212i \(0.487365\pi\)
\(42\) 0 0
\(43\) −1.38324 −0.210942 −0.105471 0.994422i \(-0.533635\pi\)
−0.105471 + 0.994422i \(0.533635\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.36266 0.198765 0.0993823 0.995049i \(-0.468313\pi\)
0.0993823 + 0.995049i \(0.468313\pi\)
\(48\) 0 0
\(49\) −5.42723 −0.775318
\(50\) 0 0
\(51\) 20.9149 2.92867
\(52\) 0 0
\(53\) −2.23769 −0.307371 −0.153686 0.988120i \(-0.549114\pi\)
−0.153686 + 0.988120i \(0.549114\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −14.2499 −1.88745
\(58\) 0 0
\(59\) −11.6608 −1.51810 −0.759050 0.651032i \(-0.774336\pi\)
−0.759050 + 0.651032i \(0.774336\pi\)
\(60\) 0 0
\(61\) 3.41082 0.436711 0.218356 0.975869i \(-0.429931\pi\)
0.218356 + 0.975869i \(0.429931\pi\)
\(62\) 0 0
\(63\) 7.04399 0.887460
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 6.72532 0.821629 0.410814 0.911719i \(-0.365244\pi\)
0.410814 + 0.911719i \(0.365244\pi\)
\(68\) 0 0
\(69\) 4.61676 0.555793
\(70\) 0 0
\(71\) 14.7253 1.74757 0.873787 0.486309i \(-0.161657\pi\)
0.873787 + 0.486309i \(0.161657\pi\)
\(72\) 0 0
\(73\) 12.3585 1.44645 0.723226 0.690611i \(-0.242658\pi\)
0.723226 + 0.690611i \(0.242658\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.14554 0.358468
\(78\) 0 0
\(79\) 3.91903 0.440925 0.220462 0.975395i \(-0.429243\pi\)
0.220462 + 0.975395i \(0.429243\pi\)
\(80\) 0 0
\(81\) 5.69774 0.633082
\(82\) 0 0
\(83\) 1.87086 0.205354 0.102677 0.994715i \(-0.467259\pi\)
0.102677 + 0.994715i \(0.467259\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.93543 0.314711
\(88\) 0 0
\(89\) −11.8709 −1.25831 −0.629155 0.777280i \(-0.716599\pi\)
−0.629155 + 0.777280i \(0.716599\pi\)
\(90\) 0 0
\(91\) 3.68133 0.385908
\(92\) 0 0
\(93\) 13.5522 1.40530
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −5.31450 −0.539606 −0.269803 0.962916i \(-0.586959\pi\)
−0.269803 + 0.962916i \(0.586959\pi\)
\(98\) 0 0
\(99\) 14.0880 1.41590
\(100\) 0 0
\(101\) −13.4436 −1.33769 −0.668846 0.743401i \(-0.733211\pi\)
−0.668846 + 0.743401i \(0.733211\pi\)
\(102\) 0 0
\(103\) 2.03281 0.200299 0.100150 0.994972i \(-0.468068\pi\)
0.100150 + 0.994972i \(0.468068\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.11273 −0.107572 −0.0537858 0.998552i \(-0.517129\pi\)
−0.0537858 + 0.998552i \(0.517129\pi\)
\(108\) 0 0
\(109\) −6.21712 −0.595492 −0.297746 0.954645i \(-0.596235\pi\)
−0.297746 + 0.954645i \(0.596235\pi\)
\(110\) 0 0
\(111\) 28.9753 2.75021
\(112\) 0 0
\(113\) 19.1854 1.80481 0.902404 0.430892i \(-0.141801\pi\)
0.902404 + 0.430892i \(0.141801\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 16.4876 1.52428
\(118\) 0 0
\(119\) −8.93543 −0.819110
\(120\) 0 0
\(121\) −4.70892 −0.428083
\(122\) 0 0
\(123\) −1.49180 −0.134511
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 4.34625 0.385668 0.192834 0.981231i \(-0.438232\pi\)
0.192834 + 0.981231i \(0.438232\pi\)
\(128\) 0 0
\(129\) 4.06040 0.357498
\(130\) 0 0
\(131\) −15.1044 −1.31968 −0.659838 0.751408i \(-0.729375\pi\)
−0.659838 + 0.751408i \(0.729375\pi\)
\(132\) 0 0
\(133\) 6.08798 0.527895
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.44364 0.294210 0.147105 0.989121i \(-0.453005\pi\)
0.147105 + 0.989121i \(0.453005\pi\)
\(138\) 0 0
\(139\) 1.41605 0.120108 0.0600539 0.998195i \(-0.480873\pi\)
0.0600539 + 0.998195i \(0.480873\pi\)
\(140\) 0 0
\(141\) −4.00000 −0.336861
\(142\) 0 0
\(143\) 7.36266 0.615697
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 15.9313 1.31399
\(148\) 0 0
\(149\) −21.5798 −1.76788 −0.883942 0.467596i \(-0.845120\pi\)
−0.883942 + 0.467596i \(0.845120\pi\)
\(150\) 0 0
\(151\) 18.6290 1.51601 0.758003 0.652251i \(-0.226175\pi\)
0.758003 + 0.652251i \(0.226175\pi\)
\(152\) 0 0
\(153\) −40.0192 −3.23536
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −21.0716 −1.68169 −0.840847 0.541272i \(-0.817943\pi\)
−0.840847 + 0.541272i \(0.817943\pi\)
\(158\) 0 0
\(159\) 6.56860 0.520924
\(160\) 0 0
\(161\) −1.97241 −0.155448
\(162\) 0 0
\(163\) −9.36266 −0.733340 −0.366670 0.930351i \(-0.619502\pi\)
−0.366670 + 0.930351i \(0.619502\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −14.2294 −1.10110 −0.550550 0.834802i \(-0.685582\pi\)
−0.550550 + 0.834802i \(0.685582\pi\)
\(168\) 0 0
\(169\) −4.38324 −0.337172
\(170\) 0 0
\(171\) 27.2663 2.08511
\(172\) 0 0
\(173\) −3.95184 −0.300453 −0.150226 0.988652i \(-0.548000\pi\)
−0.150226 + 0.988652i \(0.548000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 34.2294 2.57284
\(178\) 0 0
\(179\) 11.6608 0.871566 0.435783 0.900052i \(-0.356472\pi\)
0.435783 + 0.900052i \(0.356472\pi\)
\(180\) 0 0
\(181\) 11.2335 0.834981 0.417491 0.908681i \(-0.362910\pi\)
0.417491 + 0.908681i \(0.362910\pi\)
\(182\) 0 0
\(183\) −10.0122 −0.740126
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −17.8709 −1.30685
\(188\) 0 0
\(189\) −9.63317 −0.700710
\(190\) 0 0
\(191\) 15.3421 1.11011 0.555057 0.831812i \(-0.312696\pi\)
0.555057 + 0.831812i \(0.312696\pi\)
\(192\) 0 0
\(193\) −2.42723 −0.174716 −0.0873579 0.996177i \(-0.527842\pi\)
−0.0873579 + 0.996177i \(0.527842\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.4876 1.17469 0.587347 0.809335i \(-0.300172\pi\)
0.587347 + 0.809335i \(0.300172\pi\)
\(198\) 0 0
\(199\) 14.2499 1.01015 0.505075 0.863075i \(-0.331465\pi\)
0.505075 + 0.863075i \(0.331465\pi\)
\(200\) 0 0
\(201\) −19.7417 −1.39247
\(202\) 0 0
\(203\) −1.25410 −0.0880207
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −8.83388 −0.613997
\(208\) 0 0
\(209\) 12.1760 0.842229
\(210\) 0 0
\(211\) 15.5246 1.06876 0.534379 0.845245i \(-0.320545\pi\)
0.534379 + 0.845245i \(0.320545\pi\)
\(212\) 0 0
\(213\) −43.2252 −2.96174
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −5.78989 −0.393043
\(218\) 0 0
\(219\) −36.2775 −2.45141
\(220\) 0 0
\(221\) −20.9149 −1.40689
\(222\) 0 0
\(223\) 26.1690 1.75240 0.876202 0.481945i \(-0.160069\pi\)
0.876202 + 0.481945i \(0.160069\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −16.3791 −1.08712 −0.543558 0.839371i \(-0.682923\pi\)
−0.543558 + 0.839371i \(0.682923\pi\)
\(228\) 0 0
\(229\) −10.1414 −0.670161 −0.335080 0.942190i \(-0.608763\pi\)
−0.335080 + 0.942190i \(0.608763\pi\)
\(230\) 0 0
\(231\) −9.23353 −0.607521
\(232\) 0 0
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −11.5040 −0.747267
\(238\) 0 0
\(239\) −12.3791 −0.800735 −0.400368 0.916355i \(-0.631118\pi\)
−0.400368 + 0.916355i \(0.631118\pi\)
\(240\) 0 0
\(241\) 7.41082 0.477373 0.238687 0.971097i \(-0.423283\pi\)
0.238687 + 0.971097i \(0.423283\pi\)
\(242\) 0 0
\(243\) 6.31867 0.405343
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 14.2499 0.906702
\(248\) 0 0
\(249\) −5.49180 −0.348028
\(250\) 0 0
\(251\) −17.8709 −1.12800 −0.563999 0.825775i \(-0.690738\pi\)
−0.563999 + 0.825775i \(0.690738\pi\)
\(252\) 0 0
\(253\) −3.94483 −0.248009
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 24.2499 1.51267 0.756335 0.654185i \(-0.226988\pi\)
0.756335 + 0.654185i \(0.226988\pi\)
\(258\) 0 0
\(259\) −12.3791 −0.769198
\(260\) 0 0
\(261\) −5.61676 −0.347669
\(262\) 0 0
\(263\) −8.34625 −0.514652 −0.257326 0.966325i \(-0.582841\pi\)
−0.257326 + 0.966325i \(0.582841\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 34.8461 2.13255
\(268\) 0 0
\(269\) −26.8339 −1.63609 −0.818045 0.575154i \(-0.804942\pi\)
−0.818045 + 0.575154i \(0.804942\pi\)
\(270\) 0 0
\(271\) −25.7745 −1.56569 −0.782846 0.622216i \(-0.786233\pi\)
−0.782846 + 0.622216i \(0.786233\pi\)
\(272\) 0 0
\(273\) −10.8063 −0.654027
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 10.6925 0.642451 0.321225 0.947003i \(-0.395905\pi\)
0.321225 + 0.947003i \(0.395905\pi\)
\(278\) 0 0
\(279\) −25.9313 −1.55246
\(280\) 0 0
\(281\) −19.3749 −1.15581 −0.577905 0.816104i \(-0.696130\pi\)
−0.577905 + 0.816104i \(0.696130\pi\)
\(282\) 0 0
\(283\) −1.87086 −0.111211 −0.0556057 0.998453i \(-0.517709\pi\)
−0.0556057 + 0.998453i \(0.517709\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.637339 0.0376209
\(288\) 0 0
\(289\) 33.7651 1.98619
\(290\) 0 0
\(291\) 15.6004 0.914509
\(292\) 0 0
\(293\) 4.59619 0.268512 0.134256 0.990947i \(-0.457136\pi\)
0.134256 + 0.990947i \(0.457136\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −19.2663 −1.11795
\(298\) 0 0
\(299\) −4.61676 −0.266994
\(300\) 0 0
\(301\) −1.73472 −0.0999876
\(302\) 0 0
\(303\) 39.4629 2.26708
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −8.08798 −0.461606 −0.230803 0.973001i \(-0.574135\pi\)
−0.230803 + 0.973001i \(0.574135\pi\)
\(308\) 0 0
\(309\) −5.96719 −0.339461
\(310\) 0 0
\(311\) −10.6443 −0.603586 −0.301793 0.953374i \(-0.597585\pi\)
−0.301793 + 0.953374i \(0.597585\pi\)
\(312\) 0 0
\(313\) −3.96719 −0.224239 −0.112119 0.993695i \(-0.535764\pi\)
−0.112119 + 0.993695i \(0.535764\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −14.2499 −0.800356 −0.400178 0.916437i \(-0.631052\pi\)
−0.400178 + 0.916437i \(0.631052\pi\)
\(318\) 0 0
\(319\) −2.50820 −0.140432
\(320\) 0 0
\(321\) 3.26634 0.182309
\(322\) 0 0
\(323\) −34.5878 −1.92452
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 18.2499 1.00922
\(328\) 0 0
\(329\) 1.70892 0.0942156
\(330\) 0 0
\(331\) −8.97526 −0.493325 −0.246662 0.969101i \(-0.579334\pi\)
−0.246662 + 0.969101i \(0.579334\pi\)
\(332\) 0 0
\(333\) −55.4423 −3.03822
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −22.6496 −1.23380 −0.616901 0.787041i \(-0.711612\pi\)
−0.616901 + 0.787041i \(0.711612\pi\)
\(338\) 0 0
\(339\) −56.3173 −3.05874
\(340\) 0 0
\(341\) −11.5798 −0.627080
\(342\) 0 0
\(343\) −15.5850 −0.841511
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −26.8873 −1.44338 −0.721692 0.692214i \(-0.756635\pi\)
−0.721692 + 0.692214i \(0.756635\pi\)
\(348\) 0 0
\(349\) 22.8133 1.22117 0.610584 0.791951i \(-0.290935\pi\)
0.610584 + 0.791951i \(0.290935\pi\)
\(350\) 0 0
\(351\) −22.5480 −1.20352
\(352\) 0 0
\(353\) 21.7969 1.16013 0.580066 0.814570i \(-0.303027\pi\)
0.580066 + 0.814570i \(0.303027\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 26.2294 1.38820
\(358\) 0 0
\(359\) −17.9518 −0.947462 −0.473731 0.880670i \(-0.657093\pi\)
−0.473731 + 0.880670i \(0.657093\pi\)
\(360\) 0 0
\(361\) 4.56576 0.240303
\(362\) 0 0
\(363\) 13.8227 0.725504
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −19.9917 −1.04356 −0.521778 0.853081i \(-0.674731\pi\)
−0.521778 + 0.853081i \(0.674731\pi\)
\(368\) 0 0
\(369\) 2.85446 0.148597
\(370\) 0 0
\(371\) −2.80630 −0.145696
\(372\) 0 0
\(373\) −27.6883 −1.43365 −0.716824 0.697254i \(-0.754405\pi\)
−0.716824 + 0.697254i \(0.754405\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.93543 −0.151182
\(378\) 0 0
\(379\) −36.7170 −1.88602 −0.943012 0.332758i \(-0.892021\pi\)
−0.943012 + 0.332758i \(0.892021\pi\)
\(380\) 0 0
\(381\) −12.7581 −0.653619
\(382\) 0 0
\(383\) −10.2294 −0.522696 −0.261348 0.965245i \(-0.584167\pi\)
−0.261348 + 0.965245i \(0.584167\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −7.76931 −0.394936
\(388\) 0 0
\(389\) −2.75814 −0.139843 −0.0699215 0.997552i \(-0.522275\pi\)
−0.0699215 + 0.997552i \(0.522275\pi\)
\(390\) 0 0
\(391\) 11.2059 0.566709
\(392\) 0 0
\(393\) 44.3379 2.23655
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 15.6883 0.787375 0.393688 0.919244i \(-0.371199\pi\)
0.393688 + 0.919244i \(0.371199\pi\)
\(398\) 0 0
\(399\) −17.8709 −0.894662
\(400\) 0 0
\(401\) −31.3145 −1.56377 −0.781886 0.623422i \(-0.785742\pi\)
−0.781886 + 0.623422i \(0.785742\pi\)
\(402\) 0 0
\(403\) −13.5522 −0.675083
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −24.7581 −1.22722
\(408\) 0 0
\(409\) −17.8625 −0.883245 −0.441623 0.897201i \(-0.645597\pi\)
−0.441623 + 0.897201i \(0.645597\pi\)
\(410\) 0 0
\(411\) −10.1086 −0.498618
\(412\) 0 0
\(413\) −14.6238 −0.719589
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −4.15672 −0.203555
\(418\) 0 0
\(419\) 38.0674 1.85971 0.929857 0.367920i \(-0.119930\pi\)
0.929857 + 0.367920i \(0.119930\pi\)
\(420\) 0 0
\(421\) −26.4999 −1.29152 −0.645762 0.763539i \(-0.723460\pi\)
−0.645762 + 0.763539i \(0.723460\pi\)
\(422\) 0 0
\(423\) 7.65375 0.372138
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 4.27752 0.207004
\(428\) 0 0
\(429\) −21.6126 −1.04347
\(430\) 0 0
\(431\) −30.3707 −1.46291 −0.731453 0.681892i \(-0.761158\pi\)
−0.731453 + 0.681892i \(0.761158\pi\)
\(432\) 0 0
\(433\) −8.63734 −0.415084 −0.207542 0.978226i \(-0.566546\pi\)
−0.207542 + 0.978226i \(0.566546\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7.63495 −0.365229
\(438\) 0 0
\(439\) 4.70297 0.224460 0.112230 0.993682i \(-0.464201\pi\)
0.112230 + 0.993682i \(0.464201\pi\)
\(440\) 0 0
\(441\) −30.4835 −1.45159
\(442\) 0 0
\(443\) 3.25933 0.154855 0.0774277 0.996998i \(-0.475329\pi\)
0.0774277 + 0.996998i \(0.475329\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 63.3460 2.99616
\(448\) 0 0
\(449\) 36.7498 1.73433 0.867165 0.498021i \(-0.165940\pi\)
0.867165 + 0.498021i \(0.165940\pi\)
\(450\) 0 0
\(451\) 1.27468 0.0600222
\(452\) 0 0
\(453\) −54.6842 −2.56929
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −10.9508 −0.512256 −0.256128 0.966643i \(-0.582447\pi\)
−0.256128 + 0.966643i \(0.582447\pi\)
\(458\) 0 0
\(459\) 54.7292 2.55454
\(460\) 0 0
\(461\) 26.4241 1.23069 0.615347 0.788256i \(-0.289016\pi\)
0.615347 + 0.788256i \(0.289016\pi\)
\(462\) 0 0
\(463\) 29.5163 1.37174 0.685869 0.727725i \(-0.259422\pi\)
0.685869 + 0.727725i \(0.259422\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5.38324 −0.249107 −0.124553 0.992213i \(-0.539750\pi\)
−0.124553 + 0.992213i \(0.539750\pi\)
\(468\) 0 0
\(469\) 8.43424 0.389457
\(470\) 0 0
\(471\) 61.8542 2.85009
\(472\) 0 0
\(473\) −3.46944 −0.159525
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −12.5686 −0.575477
\(478\) 0 0
\(479\) −14.6084 −0.667476 −0.333738 0.942666i \(-0.608310\pi\)
−0.333738 + 0.942666i \(0.608310\pi\)
\(480\) 0 0
\(481\) −28.9753 −1.32116
\(482\) 0 0
\(483\) 5.78989 0.263449
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −5.41082 −0.245188 −0.122594 0.992457i \(-0.539121\pi\)
−0.122594 + 0.992457i \(0.539121\pi\)
\(488\) 0 0
\(489\) 27.4835 1.24284
\(490\) 0 0
\(491\) 16.6925 0.753322 0.376661 0.926351i \(-0.377072\pi\)
0.376661 + 0.926351i \(0.377072\pi\)
\(492\) 0 0
\(493\) 7.12497 0.320892
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 18.4671 0.828360
\(498\) 0 0
\(499\) 30.8859 1.38264 0.691322 0.722546i \(-0.257028\pi\)
0.691322 + 0.722546i \(0.257028\pi\)
\(500\) 0 0
\(501\) 41.7693 1.86612
\(502\) 0 0
\(503\) 21.0388 0.938072 0.469036 0.883179i \(-0.344601\pi\)
0.469036 + 0.883179i \(0.344601\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 12.8667 0.571430
\(508\) 0 0
\(509\) −37.7006 −1.67105 −0.835524 0.549453i \(-0.814836\pi\)
−0.835524 + 0.549453i \(0.814836\pi\)
\(510\) 0 0
\(511\) 15.4988 0.685627
\(512\) 0 0
\(513\) −37.2887 −1.64634
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 3.41783 0.150316
\(518\) 0 0
\(519\) 11.6004 0.509199
\(520\) 0 0
\(521\) 27.5920 1.20883 0.604414 0.796670i \(-0.293407\pi\)
0.604414 + 0.796670i \(0.293407\pi\)
\(522\) 0 0
\(523\) −40.6618 −1.77802 −0.889008 0.457891i \(-0.848605\pi\)
−0.889008 + 0.457891i \(0.848605\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 32.8943 1.43290
\(528\) 0 0
\(529\) −20.5264 −0.892452
\(530\) 0 0
\(531\) −65.4957 −2.84227
\(532\) 0 0
\(533\) 1.49180 0.0646169
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −34.2294 −1.47711
\(538\) 0 0
\(539\) −13.6126 −0.586336
\(540\) 0 0
\(541\) 26.4241 1.13606 0.568031 0.823007i \(-0.307705\pi\)
0.568031 + 0.823007i \(0.307705\pi\)
\(542\) 0 0
\(543\) −32.9753 −1.41510
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.54697 0.0661435 0.0330718 0.999453i \(-0.489471\pi\)
0.0330718 + 0.999453i \(0.489471\pi\)
\(548\) 0 0
\(549\) 19.1578 0.817634
\(550\) 0 0
\(551\) −4.85446 −0.206807
\(552\) 0 0
\(553\) 4.91486 0.209001
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7.09738 0.300726 0.150363 0.988631i \(-0.451956\pi\)
0.150363 + 0.988631i \(0.451956\pi\)
\(558\) 0 0
\(559\) −4.06040 −0.171737
\(560\) 0 0
\(561\) 52.4587 2.21481
\(562\) 0 0
\(563\) −3.25933 −0.137364 −0.0686822 0.997639i \(-0.521879\pi\)
−0.0686822 + 0.997639i \(0.521879\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 7.14554 0.300085
\(568\) 0 0
\(569\) −2.81331 −0.117940 −0.0589700 0.998260i \(-0.518782\pi\)
−0.0589700 + 0.998260i \(0.518782\pi\)
\(570\) 0 0
\(571\) 35.3369 1.47880 0.739401 0.673266i \(-0.235109\pi\)
0.739401 + 0.673266i \(0.235109\pi\)
\(572\) 0 0
\(573\) −45.0357 −1.88139
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 21.6332 0.900601 0.450300 0.892877i \(-0.351317\pi\)
0.450300 + 0.892877i \(0.351317\pi\)
\(578\) 0 0
\(579\) 7.12497 0.296103
\(580\) 0 0
\(581\) 2.34625 0.0973390
\(582\) 0 0
\(583\) −5.61259 −0.232450
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −44.1208 −1.82106 −0.910530 0.413443i \(-0.864326\pi\)
−0.910530 + 0.413443i \(0.864326\pi\)
\(588\) 0 0
\(589\) −22.4119 −0.923465
\(590\) 0 0
\(591\) −48.3983 −1.99084
\(592\) 0 0
\(593\) 17.3871 0.714004 0.357002 0.934104i \(-0.383799\pi\)
0.357002 + 0.934104i \(0.383799\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −41.8297 −1.71198
\(598\) 0 0
\(599\) 17.5920 0.718790 0.359395 0.933185i \(-0.382983\pi\)
0.359395 + 0.933185i \(0.382983\pi\)
\(600\) 0 0
\(601\) 6.78883 0.276922 0.138461 0.990368i \(-0.455784\pi\)
0.138461 + 0.990368i \(0.455784\pi\)
\(602\) 0 0
\(603\) 37.7745 1.53830
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 8.60453 0.349247 0.174623 0.984635i \(-0.444129\pi\)
0.174623 + 0.984635i \(0.444129\pi\)
\(608\) 0 0
\(609\) 3.68133 0.149175
\(610\) 0 0
\(611\) 4.00000 0.161823
\(612\) 0 0
\(613\) −38.4137 −1.55151 −0.775757 0.631032i \(-0.782632\pi\)
−0.775757 + 0.631032i \(0.782632\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.15778 0.368678 0.184339 0.982863i \(-0.440986\pi\)
0.184339 + 0.982863i \(0.440986\pi\)
\(618\) 0 0
\(619\) −30.1536 −1.21198 −0.605988 0.795474i \(-0.707222\pi\)
−0.605988 + 0.795474i \(0.707222\pi\)
\(620\) 0 0
\(621\) 12.0810 0.484793
\(622\) 0 0
\(623\) −14.8873 −0.596446
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −35.7417 −1.42739
\(628\) 0 0
\(629\) 70.3296 2.80422
\(630\) 0 0
\(631\) 21.6537 0.862022 0.431011 0.902347i \(-0.358157\pi\)
0.431011 + 0.902347i \(0.358157\pi\)
\(632\) 0 0
\(633\) −45.5714 −1.81130
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −15.9313 −0.631220
\(638\) 0 0
\(639\) 82.7086 3.27190
\(640\) 0 0
\(641\) −49.4423 −1.95285 −0.976427 0.215849i \(-0.930748\pi\)
−0.976427 + 0.215849i \(0.930748\pi\)
\(642\) 0 0
\(643\) −23.4423 −0.924474 −0.462237 0.886756i \(-0.652953\pi\)
−0.462237 + 0.886756i \(0.652953\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 14.2911 0.561840 0.280920 0.959731i \(-0.409360\pi\)
0.280920 + 0.959731i \(0.409360\pi\)
\(648\) 0 0
\(649\) −29.2475 −1.14807
\(650\) 0 0
\(651\) 16.9958 0.666119
\(652\) 0 0
\(653\) −23.5246 −0.920589 −0.460295 0.887766i \(-0.652256\pi\)
−0.460295 + 0.887766i \(0.652256\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 69.4147 2.70813
\(658\) 0 0
\(659\) −6.24993 −0.243463 −0.121731 0.992563i \(-0.538845\pi\)
−0.121731 + 0.992563i \(0.538845\pi\)
\(660\) 0 0
\(661\) 20.6290 0.802375 0.401188 0.915996i \(-0.368598\pi\)
0.401188 + 0.915996i \(0.368598\pi\)
\(662\) 0 0
\(663\) 61.3941 2.38435
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.57277 0.0608979
\(668\) 0 0
\(669\) −76.8172 −2.96992
\(670\) 0 0
\(671\) 8.55504 0.330263
\(672\) 0 0
\(673\) 27.2335 1.04978 0.524888 0.851172i \(-0.324107\pi\)
0.524888 + 0.851172i \(0.324107\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −24.8238 −0.954055 −0.477027 0.878888i \(-0.658286\pi\)
−0.477027 + 0.878888i \(0.658286\pi\)
\(678\) 0 0
\(679\) −6.66492 −0.255776
\(680\) 0 0
\(681\) 48.0796 1.84242
\(682\) 0 0
\(683\) 34.3707 1.31516 0.657580 0.753385i \(-0.271580\pi\)
0.657580 + 0.753385i \(0.271580\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 29.7693 1.13577
\(688\) 0 0
\(689\) −6.56860 −0.250244
\(690\) 0 0
\(691\) 17.0922 0.650216 0.325108 0.945677i \(-0.394599\pi\)
0.325108 + 0.945677i \(0.394599\pi\)
\(692\) 0 0
\(693\) 17.6678 0.671143
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −3.62093 −0.137153
\(698\) 0 0
\(699\) 52.8378 1.99851
\(700\) 0 0
\(701\) 24.8050 0.936871 0.468435 0.883498i \(-0.344818\pi\)
0.468435 + 0.883498i \(0.344818\pi\)
\(702\) 0 0
\(703\) −47.9177 −1.80725
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −16.8597 −0.634074
\(708\) 0 0
\(709\) −41.5631 −1.56094 −0.780468 0.625196i \(-0.785019\pi\)
−0.780468 + 0.625196i \(0.785019\pi\)
\(710\) 0 0
\(711\) 22.0122 0.825523
\(712\) 0 0
\(713\) 7.26111 0.271931
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 36.3379 1.35706
\(718\) 0 0
\(719\) −10.6290 −0.396395 −0.198197 0.980162i \(-0.563509\pi\)
−0.198197 + 0.980162i \(0.563509\pi\)
\(720\) 0 0
\(721\) 2.54935 0.0949429
\(722\) 0 0
\(723\) −21.7540 −0.809039
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 10.8545 0.402570 0.201285 0.979533i \(-0.435488\pi\)
0.201285 + 0.979533i \(0.435488\pi\)
\(728\) 0 0
\(729\) −35.6412 −1.32005
\(730\) 0 0
\(731\) 9.85552 0.364519
\(732\) 0 0
\(733\) −11.0492 −0.408112 −0.204056 0.978959i \(-0.565413\pi\)
−0.204056 + 0.978959i \(0.565413\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 16.8685 0.621358
\(738\) 0 0
\(739\) 40.7581 1.49931 0.749656 0.661828i \(-0.230219\pi\)
0.749656 + 0.661828i \(0.230219\pi\)
\(740\) 0 0
\(741\) −41.8297 −1.53665
\(742\) 0 0
\(743\) −8.08798 −0.296719 −0.148360 0.988933i \(-0.547399\pi\)
−0.148360 + 0.988933i \(0.547399\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 10.5082 0.384475
\(748\) 0 0
\(749\) −1.39547 −0.0509895
\(750\) 0 0
\(751\) −6.20878 −0.226562 −0.113281 0.993563i \(-0.536136\pi\)
−0.113281 + 0.993563i \(0.536136\pi\)
\(752\) 0 0
\(753\) 52.4587 1.91170
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −20.0963 −0.730413 −0.365207 0.930926i \(-0.619002\pi\)
−0.365207 + 0.930926i \(0.619002\pi\)
\(758\) 0 0
\(759\) 11.5798 0.420319
\(760\) 0 0
\(761\) 13.0838 0.474288 0.237144 0.971475i \(-0.423789\pi\)
0.237144 + 0.971475i \(0.423789\pi\)
\(762\) 0 0
\(763\) −7.79690 −0.282267
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −34.2294 −1.23595
\(768\) 0 0
\(769\) 3.61259 0.130273 0.0651367 0.997876i \(-0.479252\pi\)
0.0651367 + 0.997876i \(0.479252\pi\)
\(770\) 0 0
\(771\) −71.1840 −2.56363
\(772\) 0 0
\(773\) 38.0880 1.36993 0.684965 0.728576i \(-0.259818\pi\)
0.684965 + 0.728576i \(0.259818\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 36.3379 1.30362
\(778\) 0 0
\(779\) 2.46705 0.0883913
\(780\) 0 0
\(781\) 36.9341 1.32161
\(782\) 0 0
\(783\) 7.68133 0.274508
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −54.5467 −1.94438 −0.972190 0.234194i \(-0.924755\pi\)
−0.972190 + 0.234194i \(0.924755\pi\)
\(788\) 0 0
\(789\) 24.4999 0.872218
\(790\) 0 0
\(791\) 24.0604 0.855489
\(792\) 0 0
\(793\) 10.0122 0.355545
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1.27468 −0.0451514 −0.0225757 0.999745i \(-0.507187\pi\)
−0.0225757 + 0.999745i \(0.507187\pi\)
\(798\) 0 0
\(799\) −9.70892 −0.343477
\(800\) 0 0
\(801\) −66.6758 −2.35587
\(802\) 0 0
\(803\) 30.9976 1.09388
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 78.7690 2.77280
\(808\) 0 0
\(809\) 21.3627 0.751071 0.375536 0.926808i \(-0.377459\pi\)
0.375536 + 0.926808i \(0.377459\pi\)
\(810\) 0 0
\(811\) −23.8175 −0.836345 −0.418172 0.908368i \(-0.637329\pi\)
−0.418172 + 0.908368i \(0.637329\pi\)
\(812\) 0 0
\(813\) 75.6594 2.65349
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −6.71487 −0.234923
\(818\) 0 0
\(819\) 20.6772 0.722519
\(820\) 0 0
\(821\) 6.59619 0.230209 0.115104 0.993353i \(-0.463280\pi\)
0.115104 + 0.993353i \(0.463280\pi\)
\(822\) 0 0
\(823\) 2.00000 0.0697156 0.0348578 0.999392i \(-0.488902\pi\)
0.0348578 + 0.999392i \(0.488902\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −18.5511 −0.645086 −0.322543 0.946555i \(-0.604538\pi\)
−0.322543 + 0.946555i \(0.604538\pi\)
\(828\) 0 0
\(829\) 6.55114 0.227530 0.113765 0.993508i \(-0.463709\pi\)
0.113765 + 0.993508i \(0.463709\pi\)
\(830\) 0 0
\(831\) −31.3871 −1.08881
\(832\) 0 0
\(833\) 38.6688 1.33980
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 35.4629 1.22578
\(838\) 0 0
\(839\) −43.9833 −1.51847 −0.759236 0.650815i \(-0.774427\pi\)
−0.759236 + 0.650815i \(0.774427\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) 56.8737 1.95883
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −5.90546 −0.202914
\(848\) 0 0
\(849\) 5.49180 0.188478
\(850\) 0 0
\(851\) 15.5246 0.532177
\(852\) 0 0
\(853\) −16.8545 −0.577086 −0.288543 0.957467i \(-0.593171\pi\)
−0.288543 + 0.957467i \(0.593171\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −14.0796 −0.480952 −0.240476 0.970655i \(-0.577303\pi\)
−0.240476 + 0.970655i \(0.577303\pi\)
\(858\) 0 0
\(859\) −48.5795 −1.65751 −0.828756 0.559610i \(-0.810951\pi\)
−0.828756 + 0.559610i \(0.810951\pi\)
\(860\) 0 0
\(861\) −1.87086 −0.0637589
\(862\) 0 0
\(863\) −8.13614 −0.276958 −0.138479 0.990365i \(-0.544221\pi\)
−0.138479 + 0.990365i \(0.544221\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −99.1153 −3.36613
\(868\) 0 0
\(869\) 9.82971 0.333450
\(870\) 0 0
\(871\) 19.7417 0.668923
\(872\) 0 0
\(873\) −29.8503 −1.01028
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −37.8367 −1.27766 −0.638828 0.769350i \(-0.720580\pi\)
−0.638828 + 0.769350i \(0.720580\pi\)
\(878\) 0 0
\(879\) −13.4918 −0.455067
\(880\) 0 0
\(881\) −36.5082 −1.22999 −0.614996 0.788530i \(-0.710843\pi\)
−0.614996 + 0.788530i \(0.710843\pi\)
\(882\) 0 0
\(883\) 18.8050 0.632838 0.316419 0.948620i \(-0.397520\pi\)
0.316419 + 0.948620i \(0.397520\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −39.6371 −1.33088 −0.665441 0.746450i \(-0.731757\pi\)
−0.665441 + 0.746450i \(0.731757\pi\)
\(888\) 0 0
\(889\) 5.45065 0.182809
\(890\) 0 0
\(891\) 14.2911 0.478769
\(892\) 0 0
\(893\) 6.61498 0.221362
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 13.5522 0.452495
\(898\) 0 0
\(899\) 4.61676 0.153978
\(900\) 0 0
\(901\) 15.9435 0.531155
\(902\) 0 0
\(903\) 5.09215 0.169456
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.38324 0.0459296 0.0229648 0.999736i \(-0.492689\pi\)
0.0229648 + 0.999736i \(0.492689\pi\)
\(908\) 0 0
\(909\) −75.5097 −2.50450
\(910\) 0 0
\(911\) −23.3369 −0.773185 −0.386592 0.922251i \(-0.626348\pi\)
−0.386592 + 0.922251i \(0.626348\pi\)
\(912\) 0 0
\(913\) 4.69251 0.155299
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −18.9424 −0.625535
\(918\) 0 0
\(919\) 46.2088 1.52429 0.762144 0.647408i \(-0.224147\pi\)
0.762144 + 0.647408i \(0.224147\pi\)
\(920\) 0 0
\(921\) 23.7417 0.782317
\(922\) 0 0
\(923\) 43.2252 1.42277
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 11.4178 0.375011
\(928\) 0 0
\(929\) 25.4077 0.833600 0.416800 0.908998i \(-0.363152\pi\)
0.416800 + 0.908998i \(0.363152\pi\)
\(930\) 0 0
\(931\) −26.3463 −0.863464
\(932\) 0 0
\(933\) 31.2458 1.02294
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −36.4259 −1.18998 −0.594991 0.803732i \(-0.702844\pi\)
−0.594991 + 0.803732i \(0.702844\pi\)
\(938\) 0 0
\(939\) 11.6454 0.380034
\(940\) 0 0
\(941\) −41.3627 −1.34838 −0.674192 0.738556i \(-0.735508\pi\)
−0.674192 + 0.738556i \(0.735508\pi\)
\(942\) 0 0
\(943\) −0.799288 −0.0260284
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −25.6608 −0.833862 −0.416931 0.908938i \(-0.636894\pi\)
−0.416931 + 0.908938i \(0.636894\pi\)
\(948\) 0 0
\(949\) 36.2775 1.17762
\(950\) 0 0
\(951\) 41.8297 1.35642
\(952\) 0 0
\(953\) 55.1924 1.78786 0.893928 0.448210i \(-0.147938\pi\)
0.893928 + 0.448210i \(0.147938\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 7.36266 0.238001
\(958\) 0 0
\(959\) 4.31867 0.139457
\(960\) 0 0
\(961\) −9.68550 −0.312435
\(962\) 0 0
\(963\) −6.24993 −0.201401
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −8.04683 −0.258769 −0.129384 0.991595i \(-0.541300\pi\)
−0.129384 + 0.991595i \(0.541300\pi\)
\(968\) 0 0
\(969\) 101.530 3.26162
\(970\) 0 0
\(971\) −16.6618 −0.534703 −0.267352 0.963599i \(-0.586148\pi\)
−0.267352 + 0.963599i \(0.586148\pi\)
\(972\) 0 0
\(973\) 1.77587 0.0569318
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 29.9037 0.956703 0.478352 0.878168i \(-0.341234\pi\)
0.478352 + 0.878168i \(0.341234\pi\)
\(978\) 0 0
\(979\) −29.7745 −0.951599
\(980\) 0 0
\(981\) −34.9201 −1.11491
\(982\) 0 0
\(983\) −42.8685 −1.36729 −0.683646 0.729814i \(-0.739607\pi\)
−0.683646 + 0.729814i \(0.739607\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −5.01641 −0.159674
\(988\) 0 0
\(989\) 2.17552 0.0691774
\(990\) 0 0
\(991\) −50.4259 −1.60183 −0.800916 0.598777i \(-0.795654\pi\)
−0.800916 + 0.598777i \(0.795654\pi\)
\(992\) 0 0
\(993\) 26.3463 0.836073
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 29.9260 0.947767 0.473884 0.880588i \(-0.342852\pi\)
0.473884 + 0.880588i \(0.342852\pi\)
\(998\) 0 0
\(999\) 75.8214 2.39888
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5800.2.a.q.1.1 3
5.4 even 2 1160.2.a.g.1.3 3
20.19 odd 2 2320.2.a.p.1.1 3
40.19 odd 2 9280.2.a.bq.1.3 3
40.29 even 2 9280.2.a.bo.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1160.2.a.g.1.3 3 5.4 even 2
2320.2.a.p.1.1 3 20.19 odd 2
5800.2.a.q.1.1 3 1.1 even 1 trivial
9280.2.a.bo.1.1 3 40.29 even 2
9280.2.a.bq.1.3 3 40.19 odd 2