Properties

Label 580.2.a.c
Level $580$
Weight $2$
Character orbit 580.a
Self dual yes
Analytic conductor $4.631$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [580,2,Mod(1,580)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(580, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("580.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 580 = 2^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 580.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.63132331723\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.564.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 1) q^{3} - q^{5} + (\beta_{2} - 1) q^{7} + (\beta_1 + 4) q^{9} + (\beta_{2} + 3) q^{11} + ( - \beta_1 - 1) q^{13} + ( - \beta_{2} - 1) q^{15} + ( - \beta_{2} - \beta_1) q^{17} + ( - \beta_{2} - \beta_1 + 2) q^{19}+ \cdots + (5 \beta_{2} + 4 \beta_1 + 15) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{3} - 3 q^{5} - 4 q^{7} + 11 q^{9} + 8 q^{11} - 2 q^{13} - 2 q^{15} + 2 q^{17} + 8 q^{19} + 16 q^{21} + 3 q^{25} + 8 q^{27} - 3 q^{29} + 4 q^{31} + 24 q^{33} + 4 q^{35} - 10 q^{37} - 8 q^{39}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 5x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.571993
−2.08613
2.51414
0 −2.67282 0 −1.00000 0 −4.67282 0 4.14399 0
1.2 0 1.35194 0 −1.00000 0 −0.648061 0 −1.17226 0
1.3 0 3.32088 0 −1.00000 0 1.32088 0 8.02827 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 580.2.a.c 3
3.b odd 2 1 5220.2.a.x 3
4.b odd 2 1 2320.2.a.m 3
5.b even 2 1 2900.2.a.g 3
5.c odd 4 2 2900.2.c.f 6
8.b even 2 1 9280.2.a.bk 3
8.d odd 2 1 9280.2.a.bw 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
580.2.a.c 3 1.a even 1 1 trivial
2320.2.a.m 3 4.b odd 2 1
2900.2.a.g 3 5.b even 2 1
2900.2.c.f 6 5.c odd 4 2
5220.2.a.x 3 3.b odd 2 1
9280.2.a.bk 3 8.b even 2 1
9280.2.a.bw 3 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(580))\):

\( T_{3}^{3} - 2T_{3}^{2} - 8T_{3} + 12 \) Copy content Toggle raw display
\( T_{7}^{3} + 4T_{7}^{2} - 4T_{7} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 2 T^{2} + \cdots + 12 \) Copy content Toggle raw display
$5$ \( (T + 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 4 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$11$ \( T^{3} - 8 T^{2} + \cdots + 12 \) Copy content Toggle raw display
$13$ \( T^{3} + 2 T^{2} + \cdots - 24 \) Copy content Toggle raw display
$17$ \( T^{3} - 2 T^{2} + \cdots + 108 \) Copy content Toggle raw display
$19$ \( T^{3} - 8 T^{2} + \cdots + 164 \) Copy content Toggle raw display
$23$ \( T^{3} - 24T - 36 \) Copy content Toggle raw display
$29$ \( (T + 1)^{3} \) Copy content Toggle raw display
$31$ \( T^{3} - 4 T^{2} + \cdots - 36 \) Copy content Toggle raw display
$37$ \( T^{3} + 10 T^{2} + \cdots - 508 \) Copy content Toggle raw display
$41$ \( T^{3} - 10 T^{2} + \cdots + 24 \) Copy content Toggle raw display
$43$ \( T^{3} - 14 T^{2} + \cdots + 548 \) Copy content Toggle raw display
$47$ \( T^{3} + 10 T^{2} + \cdots + 12 \) Copy content Toggle raw display
$53$ \( T^{3} - 10 T^{2} + \cdots + 72 \) Copy content Toggle raw display
$59$ \( T^{3} - 8 T^{2} + \cdots + 1488 \) Copy content Toggle raw display
$61$ \( T^{3} + 22 T^{2} + \cdots + 104 \) Copy content Toggle raw display
$67$ \( T^{3} + 12 T^{2} + \cdots - 68 \) Copy content Toggle raw display
$71$ \( T^{3} + 8 T^{2} + \cdots - 144 \) Copy content Toggle raw display
$73$ \( T^{3} + 2 T^{2} + \cdots - 324 \) Copy content Toggle raw display
$79$ \( T^{3} - 108T + 244 \) Copy content Toggle raw display
$83$ \( T^{3} - 12 T^{2} + \cdots + 108 \) Copy content Toggle raw display
$89$ \( T^{3} - 18 T^{2} + \cdots + 72 \) Copy content Toggle raw display
$97$ \( T^{3} + 38 T^{2} + \cdots + 1908 \) Copy content Toggle raw display
show more
show less