Newspace parameters
Level: | \( N \) | \(=\) | \( 58 = 2 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 58.d (of order \(7\), degree \(6\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.42211078033\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{7})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{7}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 | −0.445042 | − | 1.94986i | −7.53743 | − | 3.62983i | −3.60388 | + | 1.73553i | 2.19061 | + | 9.59767i | −3.72318 | + | 16.3123i | 3.58891 | + | 1.72833i | 4.98792 | + | 6.25465i | 26.8029 | + | 33.6097i | 17.7392 | − | 8.54273i |
7.2 | −0.445042 | − | 1.94986i | −0.764033 | − | 0.367939i | −3.60388 | + | 1.73553i | −1.81600 | − | 7.95642i | −0.377401 | + | 1.65350i | −17.0430 | − | 8.20747i | 4.98792 | + | 6.25465i | −16.3859 | − | 20.5472i | −14.7057 | + | 7.08188i |
7.3 | −0.445042 | − | 1.94986i | 3.55161 | + | 1.71037i | −3.60388 | + | 1.73553i | 4.17045 | + | 18.2719i | 1.75435 | − | 7.68631i | 13.7257 | + | 6.60997i | 4.98792 | + | 6.25465i | −7.14564 | − | 8.96035i | 33.7716 | − | 16.2635i |
7.4 | −0.445042 | − | 1.94986i | 7.05179 | + | 3.39596i | −3.60388 | + | 1.73553i | −3.69031 | − | 16.1683i | 3.48329 | − | 15.2613i | 22.0013 | + | 10.5953i | 4.98792 | + | 6.25465i | 21.3609 | + | 26.7857i | −29.8835 | + | 14.3912i |
23.1 | 1.24698 | − | 1.56366i | −1.36256 | + | 5.96975i | −0.890084 | − | 3.89971i | −11.8479 | + | 14.8567i | 7.63560 | + | 9.57474i | −1.70791 | + | 7.48282i | −7.20775 | − | 3.47107i | −9.45521 | − | 4.55339i | 8.45690 | + | 37.0521i |
23.2 | 1.24698 | − | 1.56366i | −0.504121 | + | 2.20870i | −0.890084 | − | 3.89971i | 7.88231 | − | 9.88411i | 2.82503 | + | 3.54248i | 2.98095 | − | 13.0604i | −7.20775 | − | 3.47107i | 19.7020 | + | 9.48796i | −5.62633 | − | 24.6506i |
23.3 | 1.24698 | − | 1.56366i | 0.975670 | − | 4.27469i | −0.890084 | − | 3.89971i | −2.22476 | + | 2.78977i | −5.46753 | − | 6.85607i | 5.92598 | − | 25.9634i | −7.20775 | − | 3.47107i | 7.00512 | + | 3.37349i | 1.58802 | + | 6.95756i |
23.4 | 1.24698 | − | 1.56366i | 1.83605 | − | 8.04426i | −0.890084 | − | 3.89971i | 3.15831 | − | 3.96040i | −10.2890 | − | 12.9020i | −7.28208 | + | 31.9049i | −7.20775 | − | 3.47107i | −37.0128 | − | 17.8244i | −2.25438 | − | 9.87706i |
25.1 | −0.445042 | + | 1.94986i | −7.53743 | + | 3.62983i | −3.60388 | − | 1.73553i | 2.19061 | − | 9.59767i | −3.72318 | − | 16.3123i | 3.58891 | − | 1.72833i | 4.98792 | − | 6.25465i | 26.8029 | − | 33.6097i | 17.7392 | + | 8.54273i |
25.2 | −0.445042 | + | 1.94986i | −0.764033 | + | 0.367939i | −3.60388 | − | 1.73553i | −1.81600 | + | 7.95642i | −0.377401 | − | 1.65350i | −17.0430 | + | 8.20747i | 4.98792 | − | 6.25465i | −16.3859 | + | 20.5472i | −14.7057 | − | 7.08188i |
25.3 | −0.445042 | + | 1.94986i | 3.55161 | − | 1.71037i | −3.60388 | − | 1.73553i | 4.17045 | − | 18.2719i | 1.75435 | + | 7.68631i | 13.7257 | − | 6.60997i | 4.98792 | − | 6.25465i | −7.14564 | + | 8.96035i | 33.7716 | + | 16.2635i |
25.4 | −0.445042 | + | 1.94986i | 7.05179 | − | 3.39596i | −3.60388 | − | 1.73553i | −3.69031 | + | 16.1683i | 3.48329 | + | 15.2613i | 22.0013 | − | 10.5953i | 4.98792 | − | 6.25465i | 21.3609 | − | 26.7857i | −29.8835 | − | 14.3912i |
45.1 | −1.80194 | − | 0.867767i | −6.26334 | + | 7.85398i | 2.49396 | + | 3.12733i | −7.20732 | − | 3.47086i | 18.1016 | − | 8.71726i | 14.4870 | − | 18.1662i | −1.78017 | − | 7.79942i | −16.4475 | − | 72.0612i | 9.97524 | + | 12.5086i |
45.2 | −1.80194 | − | 0.867767i | −0.791302 | + | 0.992261i | 2.49396 | + | 3.12733i | −2.81750 | − | 1.35683i | 2.28693 | − | 1.10133i | −12.3264 | + | 15.4568i | −1.78017 | − | 7.79942i | 5.64964 | + | 24.7527i | 3.89953 | + | 4.88986i |
45.3 | −1.80194 | − | 0.867767i | 0.477146 | − | 0.598322i | 2.49396 | + | 3.12733i | 1.70401 | + | 0.820609i | −1.37899 | + | 0.664087i | 16.1350 | − | 20.2326i | −1.78017 | − | 7.79942i | 5.87774 | + | 25.7521i | −2.35842 | − | 2.95737i |
45.4 | −1.80194 | − | 0.867767i | 5.83052 | − | 7.31124i | 2.49396 | + | 3.12733i | 18.4981 | + | 8.90819i | −16.8507 | + | 8.11486i | −4.98552 | + | 6.25165i | −1.78017 | − | 7.79942i | −13.4512 | − | 58.9335i | −25.6021 | − | 32.1040i |
49.1 | −1.80194 | + | 0.867767i | −6.26334 | − | 7.85398i | 2.49396 | − | 3.12733i | −7.20732 | + | 3.47086i | 18.1016 | + | 8.71726i | 14.4870 | + | 18.1662i | −1.78017 | + | 7.79942i | −16.4475 | + | 72.0612i | 9.97524 | − | 12.5086i |
49.2 | −1.80194 | + | 0.867767i | −0.791302 | − | 0.992261i | 2.49396 | − | 3.12733i | −2.81750 | + | 1.35683i | 2.28693 | + | 1.10133i | −12.3264 | − | 15.4568i | −1.78017 | + | 7.79942i | 5.64964 | − | 24.7527i | 3.89953 | − | 4.88986i |
49.3 | −1.80194 | + | 0.867767i | 0.477146 | + | 0.598322i | 2.49396 | − | 3.12733i | 1.70401 | − | 0.820609i | −1.37899 | − | 0.664087i | 16.1350 | + | 20.2326i | −1.78017 | + | 7.79942i | 5.87774 | − | 25.7521i | −2.35842 | + | 2.95737i |
49.4 | −1.80194 | + | 0.867767i | 5.83052 | + | 7.31124i | 2.49396 | − | 3.12733i | 18.4981 | − | 8.90819i | −16.8507 | − | 8.11486i | −4.98552 | − | 6.25165i | −1.78017 | + | 7.79942i | −13.4512 | + | 58.9335i | −25.6021 | + | 32.1040i |
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
29.d | even | 7 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 58.4.d.b | ✓ | 24 |
29.d | even | 7 | 1 | inner | 58.4.d.b | ✓ | 24 |
29.d | even | 7 | 1 | 1682.4.a.t | 12 | ||
29.e | even | 14 | 1 | 1682.4.a.q | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
58.4.d.b | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
58.4.d.b | ✓ | 24 | 29.d | even | 7 | 1 | inner |
1682.4.a.q | 12 | 29.e | even | 14 | 1 | ||
1682.4.a.t | 12 | 29.d | even | 7 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{24} - 5 T_{3}^{23} + 80 T_{3}^{22} - 302 T_{3}^{21} + 9883 T_{3}^{20} - 60041 T_{3}^{19} + \cdots + 100462613794816 \)
acting on \(S_{4}^{\mathrm{new}}(58, [\chi])\).