Properties

Label 58.3.f
Level $58$
Weight $3$
Character orbit 58.f
Rep. character $\chi_{58}(3,\cdot)$
Character field $\Q(\zeta_{28})$
Dimension $60$
Newform subspaces $2$
Sturm bound $22$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 58 = 2 \cdot 29 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 58.f (of order \(28\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 29 \)
Character field: \(\Q(\zeta_{28})\)
Newform subspaces: \( 2 \)
Sturm bound: \(22\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(58, [\chi])\).

Total New Old
Modular forms 204 60 144
Cusp forms 156 60 96
Eisenstein series 48 0 48

Trace form

\( 60 q + 2 q^{2} - 4 q^{8} + 24 q^{11} - 16 q^{14} - 28 q^{15} + 40 q^{16} + 46 q^{17} - 30 q^{18} - 28 q^{19} - 40 q^{20} - 432 q^{21} - 168 q^{22} - 116 q^{23} - 80 q^{24} - 58 q^{25} - 66 q^{26} - 216 q^{27}+ \cdots + 720 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(58, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
58.3.f.a 58.f 29.f $24$ $1.580$ None 58.3.f.a \(-4\) \(-4\) \(28\) \(34\) $\mathrm{SU}(2)[C_{28}]$
58.3.f.b 58.f 29.f $36$ $1.580$ None 58.3.f.b \(6\) \(4\) \(-28\) \(-34\) $\mathrm{SU}(2)[C_{28}]$

Decomposition of \(S_{3}^{\mathrm{old}}(58, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(58, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 2}\)