Defining parameters
Level: | \( N \) | \(=\) | \( 58 = 2 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 58.f (of order \(28\) and degree \(12\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 29 \) |
Character field: | \(\Q(\zeta_{28})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(22\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(58, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 204 | 60 | 144 |
Cusp forms | 156 | 60 | 96 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(58, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
58.3.f.a | $24$ | $1.580$ | None | \(-4\) | \(-4\) | \(28\) | \(34\) | ||
58.3.f.b | $36$ | $1.580$ | None | \(6\) | \(4\) | \(-28\) | \(-34\) |
Decomposition of \(S_{3}^{\mathrm{old}}(58, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(58, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 2}\)