Properties

Label 58.2.d.b.7.1
Level $58$
Weight $2$
Character 58.7
Analytic conductor $0.463$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [58,2,Mod(7,58)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(58, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([6])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("58.7"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 58 = 2 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 58.d (of order \(7\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.463132331723\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{7})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 13 x^{10} - 9 x^{9} - 5 x^{8} + 35 x^{7} + 197 x^{6} - 140 x^{5} - 80 x^{4} + \cdots + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 7.1
Root \(2.06920 - 0.996473i\) of defining polynomial
Character \(\chi\) \(=\) 58.7
Dual form 58.2.d.b.25.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.222521 - 0.974928i) q^{2} +(-2.06920 - 0.996473i) q^{3} +(-0.900969 + 0.433884i) q^{4} +(-0.788529 - 3.45477i) q^{5} +(-0.511050 + 2.23905i) q^{6} +(3.72857 + 1.79558i) q^{7} +(0.623490 + 0.781831i) q^{8} +(1.41815 + 1.77830i) q^{9} +(-3.19269 + 1.53752i) q^{10} +(-1.14832 + 1.43995i) q^{11} +2.29664 q^{12} +(2.09403 - 2.62583i) q^{13} +(0.920880 - 4.03464i) q^{14} +(-1.81096 + 7.93435i) q^{15} +(0.623490 - 0.781831i) q^{16} +3.52078 q^{17} +(1.41815 - 1.77830i) q^{18} +(-2.45556 + 1.18253i) q^{19} +(2.20941 + 2.77051i) q^{20} +(-5.92589 - 7.43083i) q^{21} +(1.65937 + 0.799109i) q^{22} +(0.679736 - 2.97812i) q^{23} +(-0.511050 - 2.23905i) q^{24} +(-6.80881 + 3.27895i) q^{25} +(-3.02595 - 1.45722i) q^{26} +(0.370748 + 1.62435i) q^{27} -4.13840 q^{28} +(0.127372 + 5.38366i) q^{29} +8.13840 q^{30} +(-0.196643 - 0.861548i) q^{31} +(-0.900969 - 0.433884i) q^{32} +(3.81096 - 1.83526i) q^{33} +(-0.783447 - 3.43250i) q^{34} +(3.26324 - 14.2972i) q^{35} +(-2.04929 - 0.986885i) q^{36} +(3.04846 + 3.82264i) q^{37} +(1.69930 + 2.13085i) q^{38} +(-6.94952 + 3.34671i) q^{39} +(2.20941 - 2.77051i) q^{40} -3.01488 q^{41} +(-5.92589 + 7.43083i) q^{42} +(-0.409830 + 1.79558i) q^{43} +(0.409830 - 1.79558i) q^{44} +(5.02538 - 6.30163i) q^{45} -3.05470 q^{46} +(1.25592 - 1.57487i) q^{47} +(-2.06920 + 0.996473i) q^{48} +(6.31365 + 7.91707i) q^{49} +(4.71184 + 5.90847i) q^{50} +(-7.28518 - 3.50836i) q^{51} +(-0.747349 + 3.27435i) q^{52} +(1.47479 + 6.46147i) q^{53} +(1.50113 - 0.722904i) q^{54} +(5.88016 + 2.83174i) q^{55} +(0.920880 + 4.03464i) q^{56} +6.25940 q^{57} +(5.22034 - 1.32216i) q^{58} +6.12406 q^{59} +(-1.81096 - 7.93435i) q^{60} +(-1.64476 - 0.792074i) q^{61} +(-0.796190 + 0.383425i) q^{62} +(2.09457 + 9.17693i) q^{63} +(-0.222521 + 0.974928i) q^{64} +(-10.7228 - 5.16384i) q^{65} +(-2.63727 - 3.30703i) q^{66} +(-0.0862879 - 0.108202i) q^{67} +(-3.17211 + 1.52761i) q^{68} +(-4.37412 + 5.48497i) q^{69} -14.6649 q^{70} +(-8.17273 + 10.2483i) q^{71} +(-0.506132 + 2.21751i) q^{72} +(3.42387 - 15.0009i) q^{73} +(3.04846 - 3.82264i) q^{74} +17.3562 q^{75} +(1.69930 - 2.13085i) q^{76} +(-6.86712 + 3.30703i) q^{77} +(4.80921 + 6.03056i) q^{78} +(-9.90051 - 12.4148i) q^{79} +(-3.19269 - 1.53752i) q^{80} +(2.36987 - 10.3831i) q^{81} +(0.670875 + 2.93929i) q^{82} +(0.0422914 - 0.0203665i) q^{83} +(8.56316 + 4.12380i) q^{84} +(-2.77623 - 12.1635i) q^{85} +1.84176 q^{86} +(5.10111 - 11.2668i) q^{87} -1.84176 q^{88} +(0.800961 + 3.50924i) q^{89} +(-7.26188 - 3.49714i) q^{90} +(12.5226 - 6.03056i) q^{91} +(0.679736 + 2.97812i) q^{92} +(-0.451617 + 1.97866i) q^{93} +(-1.81485 - 0.873987i) q^{94} +(6.02166 + 7.55092i) q^{95} +(1.43193 + 1.79558i) q^{96} +(-4.71887 + 2.27249i) q^{97} +(6.31365 - 7.91707i) q^{98} -4.18915 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{2} - 3 q^{3} - 2 q^{4} + 4 q^{6} + q^{7} - 2 q^{8} - 11 q^{9} - 7 q^{10} - 2 q^{11} + 4 q^{12} + q^{13} + q^{14} - 9 q^{15} - 2 q^{16} - 12 q^{17} - 11 q^{18} - 6 q^{19} + 7 q^{20} - 13 q^{21}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/58\mathbb{Z}\right)^\times\).

\(n\) \(31\)
\(\chi(n)\) \(e\left(\frac{3}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.222521 0.974928i −0.157346 0.689378i
\(3\) −2.06920 0.996473i −1.19465 0.575314i −0.272505 0.962154i \(-0.587852\pi\)
−0.922147 + 0.386840i \(0.873566\pi\)
\(4\) −0.900969 + 0.433884i −0.450484 + 0.216942i
\(5\) −0.788529 3.45477i −0.352641 1.54502i −0.771058 0.636765i \(-0.780272\pi\)
0.418417 0.908255i \(-0.362585\pi\)
\(6\) −0.511050 + 2.23905i −0.208635 + 0.914090i
\(7\) 3.72857 + 1.79558i 1.40927 + 0.678666i 0.975018 0.222127i \(-0.0713001\pi\)
0.434247 + 0.900794i \(0.357014\pi\)
\(8\) 0.623490 + 0.781831i 0.220437 + 0.276419i
\(9\) 1.41815 + 1.77830i 0.472717 + 0.592768i
\(10\) −3.19269 + 1.53752i −1.00962 + 0.486206i
\(11\) −1.14832 + 1.43995i −0.346231 + 0.434160i −0.924206 0.381895i \(-0.875272\pi\)
0.577975 + 0.816055i \(0.303843\pi\)
\(12\) 2.29664 0.662982
\(13\) 2.09403 2.62583i 0.580778 0.728273i −0.401467 0.915873i \(-0.631500\pi\)
0.982245 + 0.187601i \(0.0600710\pi\)
\(14\) 0.920880 4.03464i 0.246115 1.07830i
\(15\) −1.81096 + 7.93435i −0.467589 + 2.04864i
\(16\) 0.623490 0.781831i 0.155872 0.195458i
\(17\) 3.52078 0.853914 0.426957 0.904272i \(-0.359586\pi\)
0.426957 + 0.904272i \(0.359586\pi\)
\(18\) 1.41815 1.77830i 0.334261 0.419150i
\(19\) −2.45556 + 1.18253i −0.563344 + 0.271292i −0.693807 0.720161i \(-0.744068\pi\)
0.130463 + 0.991453i \(0.458354\pi\)
\(20\) 2.20941 + 2.77051i 0.494039 + 0.619505i
\(21\) −5.92589 7.43083i −1.29313 1.62154i
\(22\) 1.65937 + 0.799109i 0.353778 + 0.170371i
\(23\) 0.679736 2.97812i 0.141735 0.620980i −0.853297 0.521425i \(-0.825401\pi\)
0.995032 0.0995556i \(-0.0317421\pi\)
\(24\) −0.511050 2.23905i −0.104318 0.457045i
\(25\) −6.80881 + 3.27895i −1.36176 + 0.655790i
\(26\) −3.02595 1.45722i −0.593439 0.285785i
\(27\) 0.370748 + 1.62435i 0.0713504 + 0.312607i
\(28\) −4.13840 −0.782083
\(29\) 0.127372 + 5.38366i 0.0236524 + 0.999720i
\(30\) 8.13840 1.48586
\(31\) −0.196643 0.861548i −0.0353181 0.154739i 0.954194 0.299188i \(-0.0967159\pi\)
−0.989512 + 0.144450i \(0.953859\pi\)
\(32\) −0.900969 0.433884i −0.159270 0.0767005i
\(33\) 3.81096 1.83526i 0.663404 0.319478i
\(34\) −0.783447 3.43250i −0.134360 0.588670i
\(35\) 3.26324 14.2972i 0.551589 2.41667i
\(36\) −2.04929 0.986885i −0.341548 0.164481i
\(37\) 3.04846 + 3.82264i 0.501163 + 0.628439i 0.966491 0.256700i \(-0.0826351\pi\)
−0.465328 + 0.885138i \(0.654064\pi\)
\(38\) 1.69930 + 2.13085i 0.275663 + 0.345670i
\(39\) −6.94952 + 3.34671i −1.11281 + 0.535903i
\(40\) 2.20941 2.77051i 0.349338 0.438056i
\(41\) −3.01488 −0.470846 −0.235423 0.971893i \(-0.575647\pi\)
−0.235423 + 0.971893i \(0.575647\pi\)
\(42\) −5.92589 + 7.43083i −0.914384 + 1.14660i
\(43\) −0.409830 + 1.79558i −0.0624985 + 0.273824i −0.996516 0.0834039i \(-0.973421\pi\)
0.934017 + 0.357228i \(0.116278\pi\)
\(44\) 0.409830 1.79558i 0.0617842 0.270694i
\(45\) 5.02538 6.30163i 0.749139 0.939391i
\(46\) −3.05470 −0.450392
\(47\) 1.25592 1.57487i 0.183194 0.229718i −0.681751 0.731584i \(-0.738781\pi\)
0.864946 + 0.501866i \(0.167353\pi\)
\(48\) −2.06920 + 0.996473i −0.298663 + 0.143828i
\(49\) 6.31365 + 7.91707i 0.901950 + 1.13101i
\(50\) 4.71184 + 5.90847i 0.666355 + 0.835583i
\(51\) −7.28518 3.50836i −1.02013 0.491269i
\(52\) −0.747349 + 3.27435i −0.103639 + 0.454071i
\(53\) 1.47479 + 6.46147i 0.202578 + 0.887551i 0.969360 + 0.245644i \(0.0789993\pi\)
−0.766783 + 0.641907i \(0.778144\pi\)
\(54\) 1.50113 0.722904i 0.204277 0.0983748i
\(55\) 5.88016 + 2.83174i 0.792881 + 0.381831i
\(56\) 0.920880 + 4.03464i 0.123058 + 0.539151i
\(57\) 6.25940 0.829077
\(58\) 5.22034 1.32216i 0.685464 0.173607i
\(59\) 6.12406 0.797285 0.398642 0.917106i \(-0.369481\pi\)
0.398642 + 0.917106i \(0.369481\pi\)
\(60\) −1.81096 7.93435i −0.233794 1.02432i
\(61\) −1.64476 0.792074i −0.210590 0.101415i 0.325616 0.945502i \(-0.394428\pi\)
−0.536205 + 0.844088i \(0.680143\pi\)
\(62\) −0.796190 + 0.383425i −0.101116 + 0.0486950i
\(63\) 2.09457 + 9.17693i 0.263892 + 1.15618i
\(64\) −0.222521 + 0.974928i −0.0278151 + 0.121866i
\(65\) −10.7228 5.16384i −1.33000 0.640495i
\(66\) −2.63727 3.30703i −0.324625 0.407067i
\(67\) −0.0862879 0.108202i −0.0105417 0.0132189i 0.776533 0.630077i \(-0.216977\pi\)
−0.787074 + 0.616858i \(0.788405\pi\)
\(68\) −3.17211 + 1.52761i −0.384675 + 0.185250i
\(69\) −4.37412 + 5.48497i −0.526582 + 0.660313i
\(70\) −14.6649 −1.75279
\(71\) −8.17273 + 10.2483i −0.969925 + 1.21625i 0.00640935 + 0.999979i \(0.497960\pi\)
−0.976334 + 0.216268i \(0.930612\pi\)
\(72\) −0.506132 + 2.21751i −0.0596482 + 0.261336i
\(73\) 3.42387 15.0009i 0.400733 1.75573i −0.223709 0.974656i \(-0.571817\pi\)
0.624442 0.781071i \(-0.285326\pi\)
\(74\) 3.04846 3.82264i 0.354376 0.444373i
\(75\) 17.3562 2.00412
\(76\) 1.69930 2.13085i 0.194923 0.244426i
\(77\) −6.86712 + 3.30703i −0.782581 + 0.376871i
\(78\) 4.80921 + 6.03056i 0.544536 + 0.682827i
\(79\) −9.90051 12.4148i −1.11389 1.39678i −0.908390 0.418123i \(-0.862688\pi\)
−0.205504 0.978656i \(-0.565883\pi\)
\(80\) −3.19269 1.53752i −0.356953 0.171900i
\(81\) 2.36987 10.3831i 0.263319 1.15367i
\(82\) 0.670875 + 2.93929i 0.0740857 + 0.324591i
\(83\) 0.0422914 0.0203665i 0.00464209 0.00223551i −0.431561 0.902084i \(-0.642037\pi\)
0.436203 + 0.899848i \(0.356323\pi\)
\(84\) 8.56316 + 4.12380i 0.934317 + 0.449943i
\(85\) −2.77623 12.1635i −0.301125 1.31931i
\(86\) 1.84176 0.198602
\(87\) 5.10111 11.2668i 0.546897 1.20793i
\(88\) −1.84176 −0.196332
\(89\) 0.800961 + 3.50924i 0.0849017 + 0.371979i 0.999474 0.0324449i \(-0.0103293\pi\)
−0.914572 + 0.404423i \(0.867472\pi\)
\(90\) −7.26188 3.49714i −0.765470 0.368631i
\(91\) 12.5226 6.03056i 1.31272 0.632175i
\(92\) 0.679736 + 2.97812i 0.0708673 + 0.310490i
\(93\) −0.451617 + 1.97866i −0.0468305 + 0.205178i
\(94\) −1.81485 0.873987i −0.187188 0.0901449i
\(95\) 6.02166 + 7.55092i 0.617809 + 0.774708i
\(96\) 1.43193 + 1.79558i 0.146146 + 0.183261i
\(97\) −4.71887 + 2.27249i −0.479129 + 0.230736i −0.657829 0.753167i \(-0.728525\pi\)
0.178700 + 0.983904i \(0.442811\pi\)
\(98\) 6.31365 7.91707i 0.637775 0.799745i
\(99\) −4.18915 −0.421025
\(100\) 4.71184 5.90847i 0.471184 0.590847i
\(101\) −2.14719 + 9.40747i −0.213654 + 0.936079i 0.748406 + 0.663241i \(0.230819\pi\)
−0.962060 + 0.272838i \(0.912038\pi\)
\(102\) −1.79929 + 7.88321i −0.178156 + 0.780554i
\(103\) −9.84264 + 12.3423i −0.969824 + 1.21612i 0.00653753 + 0.999979i \(0.497919\pi\)
−0.976362 + 0.216143i \(0.930652\pi\)
\(104\) 3.35856 0.329334
\(105\) −20.9991 + 26.3320i −2.04930 + 2.56974i
\(106\) 5.97129 2.87562i 0.579983 0.279305i
\(107\) −10.6232 13.3211i −1.02699 1.28780i −0.956950 0.290254i \(-0.906260\pi\)
−0.0700358 0.997544i \(-0.522311\pi\)
\(108\) −1.03881 1.30263i −0.0999597 0.125346i
\(109\) 18.0142 + 8.67517i 1.72545 + 0.830931i 0.987797 + 0.155746i \(0.0497780\pi\)
0.737648 + 0.675185i \(0.235936\pi\)
\(110\) 1.45228 6.36285i 0.138469 0.606674i
\(111\) −2.49870 10.9475i −0.237166 1.03909i
\(112\) 3.72857 1.79558i 0.352316 0.169667i
\(113\) −9.91629 4.77544i −0.932847 0.449235i −0.0952063 0.995458i \(-0.530351\pi\)
−0.837640 + 0.546222i \(0.816065\pi\)
\(114\) −1.39285 6.10246i −0.130452 0.571548i
\(115\) −10.8247 −1.00941
\(116\) −2.45064 4.79524i −0.227536 0.445227i
\(117\) 7.63916 0.706241
\(118\) −1.36273 5.97052i −0.125450 0.549631i
\(119\) 13.1274 + 6.32185i 1.20339 + 0.579523i
\(120\) −7.33244 + 3.53112i −0.669357 + 0.322345i
\(121\) 1.69292 + 7.41718i 0.153902 + 0.674289i
\(122\) −0.406222 + 1.77977i −0.0367776 + 0.161133i
\(123\) 6.23839 + 3.00425i 0.562497 + 0.270884i
\(124\) 0.550981 + 0.690908i 0.0494795 + 0.0620453i
\(125\) 5.64992 + 7.08478i 0.505345 + 0.633682i
\(126\) 8.48076 4.08412i 0.755526 0.363842i
\(127\) −1.41252 + 1.77125i −0.125341 + 0.157173i −0.840543 0.541746i \(-0.817764\pi\)
0.715201 + 0.698919i \(0.246335\pi\)
\(128\) 1.00000 0.0883883
\(129\) 2.63727 3.30703i 0.232199 0.291168i
\(130\) −2.64832 + 11.6030i −0.232273 + 1.01765i
\(131\) −0.622714 + 2.72829i −0.0544068 + 0.238372i −0.994819 0.101666i \(-0.967583\pi\)
0.940412 + 0.340038i \(0.110440\pi\)
\(132\) −2.63727 + 3.30703i −0.229545 + 0.287840i
\(133\) −11.2790 −0.978017
\(134\) −0.0862879 + 0.108202i −0.00745414 + 0.00934719i
\(135\) 5.31942 2.56170i 0.457822 0.220476i
\(136\) 2.19517 + 2.75265i 0.188234 + 0.236038i
\(137\) −0.165560 0.207606i −0.0141448 0.0177370i 0.774709 0.632318i \(-0.217896\pi\)
−0.788854 + 0.614581i \(0.789325\pi\)
\(138\) 6.32079 + 3.04393i 0.538061 + 0.259117i
\(139\) 1.42402 6.23904i 0.120784 0.529189i −0.877944 0.478763i \(-0.841085\pi\)
0.998728 0.0504252i \(-0.0160577\pi\)
\(140\) 3.26324 + 14.2972i 0.275794 + 1.20833i
\(141\) −4.16806 + 2.00723i −0.351014 + 0.169039i
\(142\) 11.8099 + 5.68737i 0.991068 + 0.477273i
\(143\) 1.37644 + 6.03056i 0.115103 + 0.504301i
\(144\) 2.27454 0.189545
\(145\) 18.4989 4.68521i 1.53625 0.389085i
\(146\) −15.3867 −1.27341
\(147\) −5.17505 22.6734i −0.426831 1.87007i
\(148\) −4.40515 2.12141i −0.362101 0.174379i
\(149\) −9.33977 + 4.49780i −0.765144 + 0.368474i −0.775397 0.631474i \(-0.782450\pi\)
0.0102535 + 0.999947i \(0.496736\pi\)
\(150\) −3.86211 16.9210i −0.315340 1.38159i
\(151\) −2.41525 + 10.5819i −0.196550 + 0.861143i 0.776421 + 0.630215i \(0.217033\pi\)
−0.972971 + 0.230928i \(0.925824\pi\)
\(152\) −2.45556 1.18253i −0.199172 0.0959162i
\(153\) 4.99299 + 6.26101i 0.403659 + 0.506173i
\(154\) 4.75219 + 5.95906i 0.382943 + 0.480195i
\(155\) −2.82139 + 1.35871i −0.226620 + 0.109134i
\(156\) 4.80921 6.03056i 0.385045 0.482832i
\(157\) 24.3534 1.94362 0.971808 0.235772i \(-0.0757619\pi\)
0.971808 + 0.235772i \(0.0757619\pi\)
\(158\) −9.90051 + 12.4148i −0.787642 + 0.987672i
\(159\) 3.38705 14.8396i 0.268611 1.17686i
\(160\) −0.788529 + 3.45477i −0.0623387 + 0.273124i
\(161\) 7.88189 9.88358i 0.621180 0.778935i
\(162\) −10.6501 −0.836750
\(163\) 8.34151 10.4599i 0.653358 0.819285i −0.339244 0.940698i \(-0.610171\pi\)
0.992602 + 0.121414i \(0.0387427\pi\)
\(164\) 2.71632 1.30811i 0.212109 0.102146i
\(165\) −9.34547 11.7188i −0.727543 0.912311i
\(166\) −0.0292666 0.0366991i −0.00227153 0.00284841i
\(167\) 9.05074 + 4.35860i 0.700367 + 0.337279i 0.749953 0.661491i \(-0.230076\pi\)
−0.0495862 + 0.998770i \(0.515790\pi\)
\(168\) 2.11493 9.26609i 0.163170 0.714895i
\(169\) 0.382758 + 1.67697i 0.0294429 + 0.128998i
\(170\) −11.2407 + 5.41326i −0.862126 + 0.415178i
\(171\) −5.58526 2.68972i −0.427115 0.205688i
\(172\) −0.409830 1.79558i −0.0312492 0.136912i
\(173\) −16.3814 −1.24545 −0.622727 0.782439i \(-0.713975\pi\)
−0.622727 + 0.782439i \(0.713975\pi\)
\(174\) −12.1194 2.46612i −0.918769 0.186956i
\(175\) −31.2747 −2.36415
\(176\) 0.409830 + 1.79558i 0.0308921 + 0.135347i
\(177\) −12.6719 6.10246i −0.952478 0.458689i
\(178\) 3.24302 1.56176i 0.243075 0.117059i
\(179\) −1.89387 8.29757i −0.141554 0.620189i −0.995075 0.0991299i \(-0.968394\pi\)
0.853520 0.521060i \(-0.174463\pi\)
\(180\) −1.79354 + 7.85800i −0.133682 + 0.585701i
\(181\) −7.65851 3.68815i −0.569253 0.274138i 0.127038 0.991898i \(-0.459453\pi\)
−0.696290 + 0.717760i \(0.745167\pi\)
\(182\) −8.66591 10.8667i −0.642360 0.805494i
\(183\) 2.61405 + 3.27792i 0.193236 + 0.242310i
\(184\) 2.75219 1.32539i 0.202894 0.0977088i
\(185\) 10.8026 13.5460i 0.794220 0.995920i
\(186\) 2.02955 0.148814
\(187\) −4.04297 + 5.06973i −0.295651 + 0.370735i
\(188\) −0.448232 + 1.96383i −0.0326907 + 0.143227i
\(189\) −1.53430 + 6.72221i −0.111604 + 0.488969i
\(190\) 6.02166 7.55092i 0.436857 0.547802i
\(191\) 24.4078 1.76609 0.883044 0.469291i \(-0.155490\pi\)
0.883044 + 0.469291i \(0.155490\pi\)
\(192\) 1.43193 1.79558i 0.103341 0.129585i
\(193\) −4.45144 + 2.14370i −0.320422 + 0.154307i −0.587180 0.809456i \(-0.699762\pi\)
0.266758 + 0.963764i \(0.414048\pi\)
\(194\) 3.26556 + 4.09489i 0.234454 + 0.293996i
\(195\) 17.0420 + 21.3700i 1.22040 + 1.53034i
\(196\) −9.12349 4.39364i −0.651678 0.313832i
\(197\) −0.163605 + 0.716798i −0.0116563 + 0.0510698i −0.980422 0.196910i \(-0.936909\pi\)
0.968765 + 0.247979i \(0.0797666\pi\)
\(198\) 0.932173 + 4.08412i 0.0662467 + 0.290246i
\(199\) 1.19231 0.574188i 0.0845209 0.0407031i −0.391146 0.920329i \(-0.627921\pi\)
0.475667 + 0.879626i \(0.342207\pi\)
\(200\) −6.80881 3.27895i −0.481456 0.231857i
\(201\) 0.0707267 + 0.309874i 0.00498868 + 0.0218568i
\(202\) 9.64941 0.678930
\(203\) −9.19189 + 20.3020i −0.645144 + 1.42492i
\(204\) 8.08594 0.566129
\(205\) 2.37732 + 10.4157i 0.166039 + 0.727466i
\(206\) 14.2230 + 6.84945i 0.990965 + 0.477224i
\(207\) 6.25997 3.01464i 0.435098 0.209532i
\(208\) −0.747349 3.27435i −0.0518193 0.227035i
\(209\) 1.11698 4.89379i 0.0772629 0.338511i
\(210\) 30.3445 + 14.6132i 2.09397 + 1.00840i
\(211\) 1.89916 + 2.38147i 0.130743 + 0.163947i 0.842894 0.538080i \(-0.180850\pi\)
−0.712151 + 0.702027i \(0.752279\pi\)
\(212\) −4.13226 5.18169i −0.283805 0.355880i
\(213\) 27.1231 13.0618i 1.85845 0.894981i
\(214\) −10.6232 + 13.3211i −0.726188 + 0.910611i
\(215\) 6.52649 0.445103
\(216\) −1.03881 + 1.30263i −0.0706822 + 0.0886327i
\(217\) 0.813785 3.56543i 0.0552433 0.242037i
\(218\) 4.44914 19.4929i 0.301333 1.32023i
\(219\) −22.0327 + 27.6281i −1.48883 + 1.86693i
\(220\) −6.52649 −0.440016
\(221\) 7.37260 9.24495i 0.495935 0.621882i
\(222\) −10.1170 + 4.87210i −0.679010 + 0.326994i
\(223\) −5.37834 6.74423i −0.360161 0.451627i 0.568431 0.822731i \(-0.307551\pi\)
−0.928591 + 0.371104i \(0.878979\pi\)
\(224\) −2.58025 3.23553i −0.172400 0.216183i
\(225\) −15.4869 7.45810i −1.03246 0.497206i
\(226\) −2.44912 + 10.7303i −0.162913 + 0.713769i
\(227\) 0.104102 + 0.456102i 0.00690951 + 0.0302725i 0.978265 0.207358i \(-0.0664864\pi\)
−0.971356 + 0.237630i \(0.923629\pi\)
\(228\) −5.63952 + 2.71585i −0.373486 + 0.179862i
\(229\) −22.7826 10.9715i −1.50551 0.725018i −0.514341 0.857586i \(-0.671963\pi\)
−0.991174 + 0.132568i \(0.957678\pi\)
\(230\) 2.40872 + 10.5533i 0.158826 + 0.695864i
\(231\) 17.5048 1.15173
\(232\) −4.12970 + 3.45624i −0.271128 + 0.226913i
\(233\) 13.2841 0.870270 0.435135 0.900365i \(-0.356701\pi\)
0.435135 + 0.900365i \(0.356701\pi\)
\(234\) −1.69987 7.44763i −0.111124 0.486867i
\(235\) −6.43114 3.09707i −0.419521 0.202031i
\(236\) −5.51759 + 2.65713i −0.359164 + 0.172964i
\(237\) 8.11505 + 35.5544i 0.527129 + 2.30950i
\(238\) 3.24221 14.2051i 0.210161 0.920777i
\(239\) −14.4978 6.98177i −0.937784 0.451613i −0.0983969 0.995147i \(-0.531371\pi\)
−0.839387 + 0.543534i \(0.817086\pi\)
\(240\) 5.07421 + 6.36285i 0.327539 + 0.410720i
\(241\) −9.27842 11.6348i −0.597676 0.749462i 0.387338 0.921938i \(-0.373395\pi\)
−0.985014 + 0.172476i \(0.944823\pi\)
\(242\) 6.85450 3.30095i 0.440624 0.212193i
\(243\) −12.1337 + 15.2152i −0.778380 + 0.976058i
\(244\) 1.82554 0.116869
\(245\) 22.3732 28.0551i 1.42937 1.79237i
\(246\) 1.54075 6.75049i 0.0982349 0.430395i
\(247\) −2.03687 + 8.92412i −0.129603 + 0.567828i
\(248\) 0.550981 0.690908i 0.0349873 0.0438727i
\(249\) −0.107804 −0.00683180
\(250\) 5.64992 7.08478i 0.357333 0.448081i
\(251\) 0.327432 0.157683i 0.0206673 0.00995285i −0.423522 0.905886i \(-0.639206\pi\)
0.444189 + 0.895933i \(0.353492\pi\)
\(252\) −5.86887 7.35933i −0.369704 0.463594i
\(253\) 3.50777 + 4.39861i 0.220532 + 0.276538i
\(254\) 2.04116 + 0.982970i 0.128074 + 0.0616770i
\(255\) −6.37600 + 27.9351i −0.399281 + 1.74936i
\(256\) −0.222521 0.974928i −0.0139076 0.0609330i
\(257\) −4.56869 + 2.20017i −0.284987 + 0.137243i −0.570917 0.821008i \(-0.693412\pi\)
0.285929 + 0.958251i \(0.407698\pi\)
\(258\) −3.81096 1.83526i −0.237260 0.114258i
\(259\) 4.50250 + 19.7267i 0.279772 + 1.22576i
\(260\) 11.9014 0.738096
\(261\) −9.39315 + 7.86134i −0.581421 + 0.486605i
\(262\) 2.79845 0.172889
\(263\) 2.42180 + 10.6106i 0.149335 + 0.654279i 0.993071 + 0.117520i \(0.0374944\pi\)
−0.843736 + 0.536759i \(0.819648\pi\)
\(264\) 3.81096 + 1.83526i 0.234549 + 0.112953i
\(265\) 21.1600 10.1901i 1.29985 0.625973i
\(266\) 2.50982 + 10.9963i 0.153887 + 0.674224i
\(267\) 1.83952 8.05944i 0.112577 0.493230i
\(268\) 0.124690 + 0.0600474i 0.00761663 + 0.00366798i
\(269\) −16.8131 21.0830i −1.02511 1.28545i −0.957712 0.287727i \(-0.907100\pi\)
−0.0674024 0.997726i \(-0.521471\pi\)
\(270\) −3.68115 4.61602i −0.224028 0.280922i
\(271\) −12.7323 + 6.13158i −0.773435 + 0.372467i −0.778600 0.627520i \(-0.784070\pi\)
0.00516543 + 0.999987i \(0.498356\pi\)
\(272\) 2.19517 2.75265i 0.133102 0.166904i
\(273\) −31.9210 −1.93195
\(274\) −0.165560 + 0.207606i −0.0100019 + 0.0125420i
\(275\) 3.09717 13.5696i 0.186766 0.818277i
\(276\) 1.56111 6.83965i 0.0939675 0.411699i
\(277\) 8.12000 10.1822i 0.487883 0.611786i −0.475565 0.879681i \(-0.657756\pi\)
0.963448 + 0.267894i \(0.0863277\pi\)
\(278\) −6.39949 −0.383816
\(279\) 1.25323 1.57150i 0.0750286 0.0940829i
\(280\) 13.2126 6.36285i 0.789604 0.380253i
\(281\) 18.1332 + 22.7384i 1.08174 + 1.35646i 0.929799 + 0.368068i \(0.119981\pi\)
0.151940 + 0.988390i \(0.451448\pi\)
\(282\) 2.88438 + 3.61690i 0.171763 + 0.215383i
\(283\) −16.9605 8.16773i −1.00820 0.485521i −0.144483 0.989507i \(-0.546152\pi\)
−0.863712 + 0.503986i \(0.831866\pi\)
\(284\) 2.91681 12.7794i 0.173081 0.758318i
\(285\) −4.93571 21.6248i −0.292366 1.28094i
\(286\) 5.57308 2.68385i 0.329543 0.158700i
\(287\) −11.2412 5.41347i −0.663546 0.319547i
\(288\) −0.506132 2.21751i −0.0298241 0.130668i
\(289\) −4.60413 −0.270831
\(290\) −8.68413 16.9925i −0.509949 0.997834i
\(291\) 12.0288 0.705138
\(292\) 3.42387 + 15.0009i 0.200367 + 0.877863i
\(293\) 5.38294 + 2.59229i 0.314475 + 0.151443i 0.584463 0.811421i \(-0.301305\pi\)
−0.269988 + 0.962864i \(0.587020\pi\)
\(294\) −20.9533 + 10.0906i −1.22202 + 0.588496i
\(295\) −4.82900 21.1572i −0.281155 1.23182i
\(296\) −1.08798 + 4.76676i −0.0632376 + 0.277062i
\(297\) −2.76471 1.33142i −0.160425 0.0772566i
\(298\) 6.46332 + 8.10475i 0.374410 + 0.469496i
\(299\) −6.39663 8.02112i −0.369927 0.463873i
\(300\) −15.6374 + 7.53056i −0.902824 + 0.434777i
\(301\) −4.75219 + 5.95906i −0.273912 + 0.343475i
\(302\) 10.8540 0.624579
\(303\) 13.8173 17.3263i 0.793781 0.995370i
\(304\) −0.606473 + 2.65713i −0.0347836 + 0.152397i
\(305\) −1.43949 + 6.30684i −0.0824252 + 0.361128i
\(306\) 4.99299 6.26101i 0.285430 0.357918i
\(307\) −11.1008 −0.633556 −0.316778 0.948500i \(-0.602601\pi\)
−0.316778 + 0.948500i \(0.602601\pi\)
\(308\) 4.75219 5.95906i 0.270781 0.339549i
\(309\) 32.6651 15.7307i 1.85825 0.894888i
\(310\) 1.95246 + 2.44831i 0.110892 + 0.139055i
\(311\) −0.265341 0.332727i −0.0150461 0.0188672i 0.774252 0.632878i \(-0.218127\pi\)
−0.789298 + 0.614011i \(0.789555\pi\)
\(312\) −6.94952 3.34671i −0.393439 0.189470i
\(313\) −3.00305 + 13.1572i −0.169743 + 0.743691i 0.816359 + 0.577545i \(0.195989\pi\)
−0.986101 + 0.166146i \(0.946868\pi\)
\(314\) −5.41915 23.7429i −0.305820 1.33989i
\(315\) 30.0525 14.4725i 1.69327 0.815435i
\(316\) 14.3067 + 6.88972i 0.804812 + 0.387577i
\(317\) 3.21490 + 14.0854i 0.180567 + 0.791115i 0.981361 + 0.192175i \(0.0615540\pi\)
−0.800794 + 0.598940i \(0.795589\pi\)
\(318\) −15.2213 −0.853566
\(319\) −7.89844 5.99874i −0.442228 0.335865i
\(320\) 3.54362 0.198094
\(321\) 8.70743 + 38.1497i 0.486001 + 2.12931i
\(322\) −11.3897 5.48497i −0.634721 0.305666i
\(323\) −8.64547 + 4.16344i −0.481047 + 0.231660i
\(324\) 2.36987 + 10.3831i 0.131659 + 0.576837i
\(325\) −5.64788 + 24.7450i −0.313288 + 1.37260i
\(326\) −12.0538 5.80482i −0.667600 0.321499i
\(327\) −28.6303 35.9013i −1.58326 1.98535i
\(328\) −1.87975 2.35713i −0.103792 0.130151i
\(329\) 7.51058 3.61690i 0.414072 0.199406i
\(330\) −9.34547 + 11.7188i −0.514451 + 0.645101i
\(331\) 9.53743 0.524225 0.262112 0.965037i \(-0.415581\pi\)
0.262112 + 0.965037i \(0.415581\pi\)
\(332\) −0.0292666 + 0.0366991i −0.00160621 + 0.00201413i
\(333\) −2.47465 + 10.8422i −0.135610 + 0.594147i
\(334\) 2.23535 9.79370i 0.122313 0.535887i
\(335\) −0.305771 + 0.383425i −0.0167061 + 0.0209487i
\(336\) −9.50439 −0.518507
\(337\) 9.46514 11.8689i 0.515599 0.646541i −0.454069 0.890967i \(-0.650028\pi\)
0.969668 + 0.244426i \(0.0785994\pi\)
\(338\) 1.54976 0.746323i 0.0842956 0.0405946i
\(339\) 15.7602 + 19.7626i 0.855975 + 1.07336i
\(340\) 7.77883 + 9.75435i 0.421867 + 0.529004i
\(341\) 1.46639 + 0.706176i 0.0794095 + 0.0382416i
\(342\) −1.37944 + 6.04374i −0.0745918 + 0.326808i
\(343\) 2.87896 + 12.6135i 0.155449 + 0.681067i
\(344\) −1.65937 + 0.799109i −0.0894671 + 0.0430851i
\(345\) 22.3984 + 10.7865i 1.20589 + 0.580727i
\(346\) 3.64520 + 15.9707i 0.195967 + 0.858589i
\(347\) 21.6519 1.16234 0.581168 0.813784i \(-0.302596\pi\)
0.581168 + 0.813784i \(0.302596\pi\)
\(348\) 0.292527 + 12.3643i 0.0156811 + 0.662796i
\(349\) −28.7253 −1.53763 −0.768815 0.639471i \(-0.779153\pi\)
−0.768815 + 0.639471i \(0.779153\pi\)
\(350\) 6.95928 + 30.4906i 0.371989 + 1.62979i
\(351\) 5.04162 + 2.42792i 0.269102 + 0.129593i
\(352\) 1.65937 0.799109i 0.0884446 0.0425927i
\(353\) −3.44192 15.0800i −0.183195 0.802629i −0.980097 0.198520i \(-0.936386\pi\)
0.796902 0.604109i \(-0.206471\pi\)
\(354\) −3.12970 + 13.7121i −0.166342 + 0.728790i
\(355\) 41.8499 + 20.1538i 2.22116 + 1.06965i
\(356\) −2.24424 2.81419i −0.118945 0.149152i
\(357\) −20.8637 26.1623i −1.10423 1.38466i
\(358\) −7.66811 + 3.69277i −0.405272 + 0.195169i
\(359\) 15.2177 19.0824i 0.803158 1.00713i −0.196488 0.980506i \(-0.562954\pi\)
0.999646 0.0266219i \(-0.00847502\pi\)
\(360\) 8.06008 0.424804
\(361\) −7.21493 + 9.04724i −0.379733 + 0.476170i
\(362\) −1.89150 + 8.28719i −0.0994149 + 0.435565i
\(363\) 3.88803 17.0346i 0.204068 0.894082i
\(364\) −8.66591 + 10.8667i −0.454217 + 0.569570i
\(365\) −54.5246 −2.85395
\(366\) 2.61405 3.27792i 0.136639 0.171339i
\(367\) −10.1869 + 4.90574i −0.531751 + 0.256078i −0.680437 0.732807i \(-0.738210\pi\)
0.148686 + 0.988884i \(0.452496\pi\)
\(368\) −1.90458 2.38826i −0.0992829 0.124497i
\(369\) −4.27556 5.36138i −0.222577 0.279102i
\(370\) −15.6101 7.51745i −0.811533 0.390814i
\(371\) −6.10325 + 26.7401i −0.316865 + 1.38828i
\(372\) −0.451617 1.97866i −0.0234152 0.102589i
\(373\) 30.8098 14.8372i 1.59527 0.768241i 0.595876 0.803076i \(-0.296805\pi\)
0.999393 + 0.0348353i \(0.0110907\pi\)
\(374\) 5.84226 + 2.81349i 0.302096 + 0.145482i
\(375\) −4.63102 20.2898i −0.239145 1.04776i
\(376\) 2.01433 0.103881
\(377\) 14.4033 + 10.9391i 0.741806 + 0.563390i
\(378\) 6.89508 0.354645
\(379\) 0.797796 + 3.49537i 0.0409800 + 0.179545i 0.991276 0.131803i \(-0.0420766\pi\)
−0.950296 + 0.311348i \(0.899219\pi\)
\(380\) −8.70155 4.19045i −0.446380 0.214965i
\(381\) 4.68780 2.25752i 0.240163 0.115656i
\(382\) −5.43125 23.7959i −0.277887 1.21750i
\(383\) 5.78965 25.3661i 0.295837 1.29615i −0.580425 0.814314i \(-0.697114\pi\)
0.876262 0.481834i \(-0.160029\pi\)
\(384\) −2.06920 0.996473i −0.105593 0.0508511i
\(385\) 16.8399 + 21.1166i 0.858243 + 1.07620i
\(386\) 3.08049 + 3.86282i 0.156793 + 0.196612i
\(387\) −3.77429 + 1.81760i −0.191858 + 0.0923940i
\(388\) 3.26556 4.09489i 0.165784 0.207886i
\(389\) −7.48891 −0.379703 −0.189851 0.981813i \(-0.560801\pi\)
−0.189851 + 0.981813i \(0.560801\pi\)
\(390\) 17.0420 21.3700i 0.862956 1.08211i
\(391\) 2.39320 10.4853i 0.121029 0.530264i
\(392\) −2.25332 + 9.87243i −0.113810 + 0.498633i
\(393\) 4.00719 5.02485i 0.202136 0.253470i
\(394\) 0.735232 0.0370405
\(395\) −35.0836 + 43.9935i −1.76525 + 2.21355i
\(396\) 3.77429 1.81760i 0.189665 0.0913380i
\(397\) −7.47716 9.37606i −0.375268 0.470571i 0.557954 0.829872i \(-0.311587\pi\)
−0.933222 + 0.359301i \(0.883015\pi\)
\(398\) −0.825107 1.03465i −0.0413589 0.0518624i
\(399\) 23.3386 + 11.2393i 1.16839 + 0.562667i
\(400\) −1.68164 + 7.36774i −0.0840819 + 0.368387i
\(401\) −0.802492 3.51595i −0.0400745 0.175578i 0.950930 0.309406i \(-0.100130\pi\)
−0.991005 + 0.133828i \(0.957273\pi\)
\(402\) 0.286367 0.137907i 0.0142827 0.00687817i
\(403\) −2.67405 1.28775i −0.133204 0.0641476i
\(404\) −2.14719 9.40747i −0.106827 0.468039i
\(405\) −37.7398 −1.87531
\(406\) 21.8384 + 4.44380i 1.08382 + 0.220542i
\(407\) −9.00499 −0.446361
\(408\) −1.79929 7.88321i −0.0890782 0.390277i
\(409\) 16.8495 + 8.11431i 0.833156 + 0.401227i 0.801298 0.598266i \(-0.204143\pi\)
0.0318582 + 0.999492i \(0.489857\pi\)
\(410\) 9.62558 4.63543i 0.475373 0.228928i
\(411\) 0.135703 + 0.594555i 0.00669375 + 0.0293272i
\(412\) 3.51280 15.3906i 0.173063 0.758239i
\(413\) 22.8340 + 10.9963i 1.12359 + 0.541090i
\(414\) −4.33203 5.43219i −0.212908 0.266978i
\(415\) −0.103710 0.130048i −0.00509090 0.00638379i
\(416\) −3.02595 + 1.45722i −0.148360 + 0.0714462i
\(417\) −9.16361 + 11.4908i −0.448744 + 0.562707i
\(418\) −5.01965 −0.245519
\(419\) 20.8170 26.1037i 1.01698 1.27525i 0.0560586 0.998427i \(-0.482147\pi\)
0.960921 0.276824i \(-0.0892819\pi\)
\(420\) 7.49448 32.8355i 0.365693 1.60221i
\(421\) −1.76150 + 7.71764i −0.0858503 + 0.376135i −0.999542 0.0302742i \(-0.990362\pi\)
0.913691 + 0.406409i \(0.133219\pi\)
\(422\) 1.89916 2.38147i 0.0924496 0.115928i
\(423\) 4.58168 0.222769
\(424\) −4.13226 + 5.18169i −0.200680 + 0.251645i
\(425\) −23.9723 + 11.5445i −1.16283 + 0.559988i
\(426\) −18.7698 23.5366i −0.909399 1.14035i
\(427\) −4.71036 5.90660i −0.227950 0.285840i
\(428\) 15.3510 + 7.39265i 0.742018 + 0.357337i
\(429\) 3.16117 13.8500i 0.152623 0.668685i
\(430\) −1.45228 6.36285i −0.0700351 0.306844i
\(431\) −4.91253 + 2.36575i −0.236628 + 0.113954i −0.548440 0.836190i \(-0.684778\pi\)
0.311812 + 0.950144i \(0.399064\pi\)
\(432\) 1.50113 + 0.722904i 0.0722230 + 0.0347808i
\(433\) −8.51733 37.3169i −0.409317 1.79333i −0.587376 0.809314i \(-0.699839\pi\)
0.178059 0.984020i \(-0.443018\pi\)
\(434\) −3.65712 −0.175547
\(435\) −42.9465 8.73899i −2.05913 0.419003i
\(436\) −19.9942 −0.957550
\(437\) 1.85259 + 8.11675i 0.0886216 + 0.388277i
\(438\) 31.8381 + 15.3324i 1.52129 + 0.732613i
\(439\) −10.4170 + 5.01658i −0.497178 + 0.239428i −0.665631 0.746281i \(-0.731837\pi\)
0.168452 + 0.985710i \(0.446123\pi\)
\(440\) 1.45228 + 6.36285i 0.0692347 + 0.303337i
\(441\) −5.12525 + 22.4552i −0.244060 + 1.06930i
\(442\) −10.6537 5.13056i −0.506745 0.244036i
\(443\) 16.8781 + 21.1644i 0.801902 + 1.00555i 0.999680 + 0.0253059i \(0.00805599\pi\)
−0.197778 + 0.980247i \(0.563373\pi\)
\(444\) 7.00120 + 8.77922i 0.332262 + 0.416643i
\(445\) 11.4920 5.53427i 0.544775 0.262350i
\(446\) −5.37834 + 6.74423i −0.254672 + 0.319349i
\(447\) 23.8078 1.12607
\(448\) −2.58025 + 3.23553i −0.121905 + 0.152864i
\(449\) −0.814923 + 3.57041i −0.0384586 + 0.168498i −0.990510 0.137439i \(-0.956113\pi\)
0.952052 + 0.305938i \(0.0989699\pi\)
\(450\) −3.82495 + 16.7582i −0.180310 + 0.789989i
\(451\) 3.46204 4.34127i 0.163021 0.204422i
\(452\) 11.0063 0.517691
\(453\) 15.5422 19.4893i 0.730236 0.915687i
\(454\) 0.421501 0.202984i 0.0197820 0.00952653i
\(455\) −30.7086 38.5074i −1.43964 1.80526i
\(456\) 3.90267 + 4.89379i 0.182759 + 0.229173i
\(457\) −29.7907 14.3464i −1.39355 0.671098i −0.421708 0.906732i \(-0.638569\pi\)
−0.971842 + 0.235633i \(0.924284\pi\)
\(458\) −5.62683 + 24.6528i −0.262924 + 1.15195i
\(459\) 1.30532 + 5.71898i 0.0609271 + 0.266939i
\(460\) 9.75272 4.69666i 0.454723 0.218983i
\(461\) 29.7228 + 14.3137i 1.38433 + 0.666657i 0.969917 0.243434i \(-0.0782739\pi\)
0.414409 + 0.910091i \(0.363988\pi\)
\(462\) −3.89518 17.0659i −0.181220 0.793978i
\(463\) 29.1773 1.35599 0.677993 0.735069i \(-0.262850\pi\)
0.677993 + 0.735069i \(0.262850\pi\)
\(464\) 4.28853 + 3.25707i 0.199090 + 0.151206i
\(465\) 7.19193 0.333518
\(466\) −2.95599 12.9510i −0.136934 0.599945i
\(467\) −14.1160 6.79792i −0.653212 0.314570i 0.0777658 0.996972i \(-0.475221\pi\)
−0.730978 + 0.682401i \(0.760936\pi\)
\(468\) −6.88265 + 3.31451i −0.318150 + 0.153213i
\(469\) −0.127445 0.558374i −0.00588487 0.0257833i
\(470\) −1.58836 + 6.95906i −0.0732656 + 0.320998i
\(471\) −50.3921 24.2676i −2.32195 1.11819i
\(472\) 3.81829 + 4.78798i 0.175751 + 0.220385i
\(473\) −2.11493 2.65203i −0.0972444 0.121941i
\(474\) 32.8572 15.8232i 1.50918 0.726783i
\(475\) 12.8420 16.1033i 0.589229 0.738870i
\(476\) −14.5704 −0.667832
\(477\) −9.39898 + 11.7860i −0.430350 + 0.539642i
\(478\) −3.58066 + 15.6879i −0.163775 + 0.717547i
\(479\) 0.856371 3.75200i 0.0391286 0.171433i −0.951588 0.307376i \(-0.900549\pi\)
0.990717 + 0.135942i \(0.0434062\pi\)
\(480\) 5.07421 6.36285i 0.231605 0.290423i
\(481\) 16.4211 0.748740
\(482\) −9.27842 + 11.6348i −0.422621 + 0.529949i
\(483\) −26.1579 + 12.5970i −1.19023 + 0.573183i
\(484\) −4.74346 5.94811i −0.215612 0.270369i
\(485\) 11.5719 + 14.5107i 0.525453 + 0.658897i
\(486\) 17.5338 + 8.44382i 0.795348 + 0.383019i
\(487\) −6.37692 + 27.9391i −0.288966 + 1.26604i 0.596981 + 0.802255i \(0.296367\pi\)
−0.885947 + 0.463787i \(0.846490\pi\)
\(488\) −0.406222 1.77977i −0.0183888 0.0805666i
\(489\) −27.6833 + 13.3316i −1.25188 + 0.602874i
\(490\) −32.3302 15.5694i −1.46053 0.703353i
\(491\) −3.96577 17.3752i −0.178973 0.784130i −0.982106 0.188331i \(-0.939692\pi\)
0.803133 0.595800i \(-0.203165\pi\)
\(492\) −6.92409 −0.312162
\(493\) 0.448448 + 18.9547i 0.0201971 + 0.853675i
\(494\) 9.15362 0.411841
\(495\) 3.30326 + 14.4725i 0.148471 + 0.650492i
\(496\) −0.796190 0.383425i −0.0357500 0.0172163i
\(497\) −48.8742 + 23.5366i −2.19231 + 1.05576i
\(498\) 0.0239886 + 0.105101i 0.00107496 + 0.00470969i
\(499\) −5.40765 + 23.6925i −0.242080 + 1.06062i 0.697040 + 0.717032i \(0.254500\pi\)
−0.939120 + 0.343589i \(0.888357\pi\)
\(500\) −8.16438 3.93176i −0.365122 0.175833i
\(501\) −14.3845 18.0376i −0.642653 0.805862i
\(502\) −0.226590 0.284135i −0.0101132 0.0126815i
\(503\) 17.1240 8.24649i 0.763522 0.367693i −0.0112474 0.999937i \(-0.503580\pi\)
0.774769 + 0.632244i \(0.217866\pi\)
\(504\) −5.86887 + 7.35933i −0.261420 + 0.327810i
\(505\) 34.1938 1.52160
\(506\) 3.50777 4.39861i 0.155939 0.195542i
\(507\) 0.879056 3.85139i 0.0390402 0.171046i
\(508\) 0.504124 2.20871i 0.0223669 0.0979958i
\(509\) −9.56212 + 11.9905i −0.423833 + 0.531470i −0.947203 0.320636i \(-0.896103\pi\)
0.523369 + 0.852106i \(0.324675\pi\)
\(510\) 28.6535 1.26880
\(511\) 39.7015 49.7841i 1.75629 2.20232i
\(512\) −0.900969 + 0.433884i −0.0398176 + 0.0191751i
\(513\) −2.83124 3.55027i −0.125002 0.156748i
\(514\) 3.16163 + 3.96456i 0.139454 + 0.174869i
\(515\) 50.4009 + 24.2718i 2.22093 + 1.06954i
\(516\) −0.941230 + 4.12380i −0.0414353 + 0.181540i
\(517\) 0.825535 + 3.61690i 0.0363070 + 0.159071i
\(518\) 18.2302 8.77922i 0.800991 0.385737i
\(519\) 33.8964 + 16.3236i 1.48788 + 0.716528i
\(520\) −2.64832 11.6030i −0.116136 0.508827i
\(521\) −4.82047 −0.211189 −0.105594 0.994409i \(-0.533674\pi\)
−0.105594 + 0.994409i \(0.533674\pi\)
\(522\) 9.75442 + 7.40833i 0.426939 + 0.324254i
\(523\) 23.9143 1.04570 0.522849 0.852425i \(-0.324869\pi\)
0.522849 + 0.852425i \(0.324869\pi\)
\(524\) −0.622714 2.72829i −0.0272034 0.119186i
\(525\) 64.7136 + 31.1644i 2.82433 + 1.36013i
\(526\) 9.80569 4.72217i 0.427548 0.205896i
\(527\) −0.692335 3.03332i −0.0301586 0.132133i
\(528\) 0.941230 4.12380i 0.0409618 0.179465i
\(529\) 12.3151 + 5.93066i 0.535441 + 0.257855i
\(530\) −14.6432 18.3619i −0.636058 0.797591i
\(531\) 8.68484 + 10.8904i 0.376890 + 0.472605i
\(532\) 10.1621 4.89379i 0.440581 0.212173i
\(533\) −6.31324 + 7.91656i −0.273457 + 0.342904i
\(534\) −8.26671 −0.357735
\(535\) −37.6446 + 47.2048i −1.62752 + 2.04084i
\(536\) 0.0307958 0.134925i 0.00133018 0.00582788i
\(537\) −4.34952 + 19.0565i −0.187696 + 0.822349i
\(538\) −16.8131 + 21.0830i −0.724866 + 0.908953i
\(539\) −18.6502 −0.803322
\(540\) −3.68115 + 4.61602i −0.158411 + 0.198642i
\(541\) 2.02943 0.977322i 0.0872520 0.0420184i −0.389749 0.920921i \(-0.627438\pi\)
0.477001 + 0.878903i \(0.341724\pi\)
\(542\) 8.81106 + 11.0487i 0.378467 + 0.474583i
\(543\) 12.1718 + 15.2630i 0.522344 + 0.654998i
\(544\) −3.17211 1.52761i −0.136003 0.0654957i
\(545\) 15.7660 69.0755i 0.675342 2.95887i
\(546\) 7.10310 + 31.1207i 0.303984 + 1.33184i
\(547\) 8.15731 3.92835i 0.348781 0.167964i −0.251288 0.967912i \(-0.580854\pi\)
0.600069 + 0.799948i \(0.295140\pi\)
\(548\) 0.239242 + 0.115213i 0.0102199 + 0.00492165i
\(549\) −0.923967 4.04816i −0.0394339 0.172771i
\(550\) −13.9186 −0.593489
\(551\) −6.67913 13.0693i −0.284540 0.556769i
\(552\) −7.01554 −0.298601
\(553\) −14.6228 64.0668i −0.621826 2.72440i
\(554\) −11.7337 5.65067i −0.498519 0.240074i
\(555\) −35.8508 + 17.2648i −1.52178 + 0.732852i
\(556\) 1.42402 + 6.23904i 0.0603919 + 0.264594i
\(557\) −2.34742 + 10.2847i −0.0994633 + 0.435777i 0.900536 + 0.434781i \(0.143174\pi\)
−1.00000 0.000996194i \(0.999683\pi\)
\(558\) −1.81096 0.872114i −0.0766642 0.0369195i
\(559\) 3.85669 + 4.83614i 0.163121 + 0.204547i
\(560\) −9.14340 11.4655i −0.386379 0.484504i
\(561\) 13.4176 6.46155i 0.566490 0.272807i
\(562\) 18.1332 22.7384i 0.764905 0.959160i
\(563\) −39.1477 −1.64988 −0.824939 0.565222i \(-0.808791\pi\)
−0.824939 + 0.565222i \(0.808791\pi\)
\(564\) 2.88438 3.61690i 0.121455 0.152299i
\(565\) −8.67875 + 38.0241i −0.365118 + 1.59969i
\(566\) −4.18889 + 18.3527i −0.176072 + 0.771422i
\(567\) 27.4799 34.4587i 1.15405 1.44713i
\(568\) −13.1080 −0.550001
\(569\) −5.18890 + 6.50667i −0.217530 + 0.272774i −0.878608 0.477543i \(-0.841528\pi\)
0.661079 + 0.750317i \(0.270099\pi\)
\(570\) −19.9843 + 9.62393i −0.837050 + 0.403102i
\(571\) −26.9622 33.8095i −1.12833 1.41488i −0.897013 0.442005i \(-0.854267\pi\)
−0.231319 0.972878i \(-0.574304\pi\)
\(572\) −3.85669 4.83614i −0.161256 0.202209i
\(573\) −50.5046 24.3217i −2.10986 1.01605i
\(574\) −2.77634 + 12.1640i −0.115882 + 0.507714i
\(575\) 5.13691 + 22.5063i 0.214224 + 0.938576i
\(576\) −2.04929 + 0.986885i −0.0853870 + 0.0411202i
\(577\) −11.5941 5.58341i −0.482668 0.232441i 0.176695 0.984266i \(-0.443459\pi\)
−0.659363 + 0.751825i \(0.729174\pi\)
\(578\) 1.02451 + 4.48869i 0.0426142 + 0.186705i
\(579\) 11.3471 0.471568
\(580\) −14.6341 + 12.2476i −0.607646 + 0.508553i
\(581\) 0.194256 0.00805910
\(582\) −2.67665 11.7272i −0.110951 0.486107i
\(583\) −10.9977 5.29620i −0.455477 0.219346i
\(584\) 13.8629 6.67604i 0.573653 0.276257i
\(585\) −6.02370 26.3915i −0.249049 1.09116i
\(586\) 1.32948 5.82482i 0.0549202 0.240621i
\(587\) 12.3948 + 5.96902i 0.511588 + 0.246368i 0.671824 0.740711i \(-0.265511\pi\)
−0.160236 + 0.987079i \(0.551226\pi\)
\(588\) 14.5002 + 18.1826i 0.597977 + 0.749839i
\(589\) 1.50168 + 1.88304i 0.0618755 + 0.0775895i
\(590\) −19.5522 + 9.41585i −0.804952 + 0.387644i
\(591\) 1.05280 1.32017i 0.0433064 0.0543045i
\(592\) 4.88934 0.200951
\(593\) −13.3356 + 16.7223i −0.547626 + 0.686702i −0.976217 0.216797i \(-0.930439\pi\)
0.428590 + 0.903499i \(0.359010\pi\)
\(594\) −0.682828 + 2.99166i −0.0280168 + 0.122749i
\(595\) 11.4892 50.3373i 0.471009 2.06363i
\(596\) 6.46332 8.10475i 0.264748 0.331984i
\(597\) −3.03930 −0.124390
\(598\) −6.39663 + 8.02112i −0.261578 + 0.328008i
\(599\) 24.5010 11.7991i 1.00109 0.482097i 0.139779 0.990183i \(-0.455361\pi\)
0.861307 + 0.508085i \(0.169647\pi\)
\(600\) 10.8214 + 13.5696i 0.441781 + 0.553976i
\(601\) −12.2761 15.3938i −0.500754 0.627925i 0.465645 0.884971i \(-0.345822\pi\)
−0.966399 + 0.257046i \(0.917251\pi\)
\(602\) 6.86712 + 3.30703i 0.279883 + 0.134784i
\(603\) 0.0700462 0.306892i 0.00285250 0.0124976i
\(604\) −2.41525 10.5819i −0.0982751 0.430571i
\(605\) 24.2897 11.6973i 0.987518 0.475563i
\(606\) −19.9665 9.61537i −0.811085 0.390598i
\(607\) 5.79688 + 25.3978i 0.235288 + 1.03086i 0.945179 + 0.326553i \(0.105887\pi\)
−0.709891 + 0.704312i \(0.751256\pi\)
\(608\) 2.72546 0.110532
\(609\) 39.2503 32.8494i 1.59050 1.33113i
\(610\) 6.46903 0.261923
\(611\) −1.50541 6.59564i −0.0609024 0.266831i
\(612\) −7.21508 3.47460i −0.291652 0.140452i
\(613\) 4.03925 1.94520i 0.163144 0.0785658i −0.350530 0.936552i \(-0.613999\pi\)
0.513674 + 0.857986i \(0.328284\pi\)
\(614\) 2.47016 + 10.8225i 0.0996875 + 0.436759i
\(615\) 5.45984 23.9211i 0.220162 0.964593i
\(616\) −6.86712 3.30703i −0.276684 0.133244i
\(617\) 12.3400 + 15.4739i 0.496791 + 0.622956i 0.965502 0.260396i \(-0.0838530\pi\)
−0.468711 + 0.883351i \(0.655282\pi\)
\(618\) −22.6050 28.3457i −0.909305 1.14023i
\(619\) −5.69144 + 2.74085i −0.228758 + 0.110164i −0.544752 0.838597i \(-0.683376\pi\)
0.315994 + 0.948761i \(0.397662\pi\)
\(620\) 1.95246 2.44831i 0.0784128 0.0983265i
\(621\) 5.08952 0.204235
\(622\) −0.265341 + 0.332727i −0.0106392 + 0.0133411i
\(623\) −3.31469 + 14.5226i −0.132800 + 0.581836i
\(624\) −1.71639 + 7.51999i −0.0687105 + 0.301041i
\(625\) −3.53806 + 4.43659i −0.141523 + 0.177464i
\(626\) 13.4956 0.539393
\(627\) −7.18778 + 9.01319i −0.287052 + 0.359952i
\(628\) −21.9417 + 10.5666i −0.875569 + 0.421652i
\(629\) 10.7329 + 13.4587i 0.427950 + 0.536633i
\(630\) −20.7970 26.0786i −0.828573 1.03900i
\(631\) −0.398880 0.192091i −0.0158792 0.00764700i 0.425927 0.904757i \(-0.359948\pi\)
−0.441806 + 0.897110i \(0.645662\pi\)
\(632\) 3.53345 15.4811i 0.140553 0.615804i
\(633\) −1.55666 6.82019i −0.0618718 0.271078i
\(634\) 13.0169 6.26859i 0.516966 0.248958i
\(635\) 7.23308 + 3.48327i 0.287036 + 0.138229i
\(636\) 3.38705 + 14.8396i 0.134305 + 0.588430i
\(637\) 34.0098 1.34752
\(638\) −4.09077 + 9.03525i −0.161955 + 0.357709i
\(639\) −29.8147 −1.17945
\(640\) −0.788529 3.45477i −0.0311693 0.136562i
\(641\) −18.3361 8.83019i −0.724232 0.348772i 0.0351807 0.999381i \(-0.488799\pi\)
−0.759413 + 0.650609i \(0.774514\pi\)
\(642\) 35.2557 16.9782i 1.39143 0.670077i
\(643\) 2.10122 + 9.20604i 0.0828640 + 0.363051i 0.999311 0.0371042i \(-0.0118134\pi\)
−0.916447 + 0.400155i \(0.868956\pi\)
\(644\) −2.81301 + 12.3246i −0.110848 + 0.485658i
\(645\) −13.5046 6.50347i −0.531743 0.256074i
\(646\) 5.98285 + 7.50226i 0.235392 + 0.295172i
\(647\) 11.9421 + 14.9749i 0.469492 + 0.588725i 0.959047 0.283248i \(-0.0914119\pi\)
−0.489554 + 0.871973i \(0.662840\pi\)
\(648\) 9.59540 4.62090i 0.376943 0.181526i
\(649\) −7.03237 + 8.81831i −0.276045 + 0.346149i
\(650\) 25.3813 0.995537
\(651\) −5.23673 + 6.56665i −0.205244 + 0.257367i
\(652\) −2.97705 + 13.0433i −0.116590 + 0.510816i
\(653\) −0.433110 + 1.89758i −0.0169489 + 0.0742581i −0.982695 0.185230i \(-0.940697\pi\)
0.965746 + 0.259489i \(0.0835540\pi\)
\(654\) −28.6303 + 35.9013i −1.11953 + 1.40385i
\(655\) 9.91664 0.387475
\(656\) −1.87975 + 2.35713i −0.0733919 + 0.0920305i
\(657\) 31.5318 15.1849i 1.23017 0.592420i
\(658\) −5.19748 6.51744i −0.202619 0.254076i
\(659\) −20.1167 25.2256i −0.783637 0.982650i −0.999980 0.00633221i \(-0.997984\pi\)
0.216343 0.976317i \(-0.430587\pi\)
\(660\) 13.5046 + 6.50347i 0.525665 + 0.253147i
\(661\) −10.3459 + 45.3284i −0.402409 + 1.76307i 0.215185 + 0.976573i \(0.430965\pi\)
−0.617594 + 0.786497i \(0.711893\pi\)
\(662\) −2.12228 9.29831i −0.0824847 0.361389i
\(663\) −24.4677 + 11.7830i −0.950247 + 0.457615i
\(664\) 0.0422914 + 0.0203665i 0.00164123 + 0.000790373i
\(665\) 8.89385 + 38.9665i 0.344889 + 1.51106i
\(666\) 11.1210 0.430930
\(667\) 16.1197 + 3.28014i 0.624159 + 0.127007i
\(668\) −10.0456 −0.388674
\(669\) 4.40841 + 19.3145i 0.170439 + 0.746742i
\(670\) 0.441852 + 0.212785i 0.0170702 + 0.00822059i
\(671\) 3.02925 1.45881i 0.116943 0.0563167i
\(672\) 2.11493 + 9.26609i 0.0815850 + 0.357447i
\(673\) 7.90055 34.6146i 0.304544 1.33429i −0.558643 0.829408i \(-0.688678\pi\)
0.863187 0.504885i \(-0.168465\pi\)
\(674\) −13.6775 6.58675i −0.526839 0.253712i
\(675\) −7.85052 9.84424i −0.302167 0.378905i
\(676\) −1.07246 1.34483i −0.0412486 0.0517241i
\(677\) −2.60268 + 1.25338i −0.100029 + 0.0481714i −0.483229 0.875494i \(-0.660536\pi\)
0.383200 + 0.923665i \(0.374822\pi\)
\(678\) 15.7602 19.7626i 0.605266 0.758980i
\(679\) −21.6751 −0.831813
\(680\) 7.77883 9.75435i 0.298305 0.374062i
\(681\) 0.239085 1.04750i 0.00916176 0.0401403i
\(682\) 0.362168 1.58676i 0.0138681 0.0607603i
\(683\) −21.1280 + 26.4936i −0.808439 + 1.01375i 0.191043 + 0.981582i \(0.438813\pi\)
−0.999482 + 0.0321690i \(0.989759\pi\)
\(684\) 6.19917 0.237031
\(685\) −0.586683 + 0.735677i −0.0224160 + 0.0281088i
\(686\) 11.6567 5.61355i 0.445053 0.214326i
\(687\) 36.2088 + 45.4044i 1.38145 + 1.73229i
\(688\) 1.14832 + 1.43995i 0.0437792 + 0.0548974i
\(689\) 20.0549 + 9.65794i 0.764032 + 0.367938i
\(690\) 5.53196 24.2371i 0.210598 0.922690i
\(691\) −4.51470 19.7802i −0.171747 0.752473i −0.985279 0.170953i \(-0.945315\pi\)
0.813532 0.581520i \(-0.197542\pi\)
\(692\) 14.7591 7.10762i 0.561058 0.270191i
\(693\) −15.6195 7.52196i −0.593336 0.285736i
\(694\) −4.81801 21.1091i −0.182889 0.801289i
\(695\) −22.6773 −0.860200
\(696\) 11.9892 3.03651i 0.454450 0.115099i
\(697\) −10.6147 −0.402062
\(698\) 6.39198 + 28.0051i 0.241940 + 1.06001i
\(699\) −27.4874 13.2372i −1.03967 0.500678i
\(700\) 28.1776 13.5696i 1.06501 0.512882i
\(701\) −2.40132 10.5209i −0.0906965 0.397367i 0.909120 0.416535i \(-0.136756\pi\)
−0.999816 + 0.0191675i \(0.993898\pi\)
\(702\) 1.24518 5.45548i 0.0469962 0.205904i
\(703\) −12.0061 5.78182i −0.452817 0.218065i
\(704\) −1.14832 1.43995i −0.0432789 0.0542700i
\(705\) 10.2212 + 12.8169i 0.384951 + 0.482713i
\(706\) −13.9360 + 6.71125i −0.524490 + 0.252581i
\(707\) −24.8979 + 31.2209i −0.936380 + 1.17418i
\(708\) 14.0647 0.528585
\(709\) 1.54717 1.94009i 0.0581053 0.0728617i −0.751930 0.659243i \(-0.770877\pi\)
0.810035 + 0.586382i \(0.199448\pi\)
\(710\) 10.3361 45.2853i 0.387906 1.69953i
\(711\) 8.03697 35.2122i 0.301410 1.32056i
\(712\) −2.24424 + 2.81419i −0.0841065 + 0.105466i
\(713\) −2.69945 −0.101095
\(714\) −20.8637 + 26.1623i −0.780806 + 0.979099i
\(715\) 19.7489 9.51055i 0.738565 0.355674i
\(716\) 5.30650 + 6.65413i 0.198313 + 0.248677i
\(717\) 23.0416 + 28.8933i 0.860506 + 1.07904i
\(718\) −21.9902 10.5899i −0.820666 0.395212i
\(719\) 5.52493 24.2063i 0.206045 0.902742i −0.761124 0.648607i \(-0.775352\pi\)
0.967169 0.254135i \(-0.0817909\pi\)
\(720\) −1.79354 7.85800i −0.0668412 0.292850i
\(721\) −58.8605 + 28.3457i −2.19208 + 1.05565i
\(722\) 10.4259 + 5.02084i 0.388011 + 0.186856i
\(723\) 7.60515 + 33.3203i 0.282839 + 1.23920i
\(724\) 8.50031 0.315912
\(725\) −18.5200 36.2387i −0.687816 1.34587i
\(726\) −17.4726 −0.648470
\(727\) 9.47808 + 41.5262i 0.351523 + 1.54012i 0.773667 + 0.633593i \(0.218420\pi\)
−0.422144 + 0.906529i \(0.638722\pi\)
\(728\) 12.5226 + 6.03056i 0.464118 + 0.223508i
\(729\) 11.4825 5.52967i 0.425277 0.204802i
\(730\) 12.1329 + 53.1576i 0.449057 + 1.96745i
\(731\) −1.44292 + 6.32185i −0.0533683 + 0.233822i
\(732\) −3.77741 1.81911i −0.139617 0.0672361i
\(733\) 15.8494 + 19.8745i 0.585412 + 0.734083i 0.983025 0.183470i \(-0.0587330\pi\)
−0.397614 + 0.917553i \(0.630162\pi\)
\(734\) 7.04954 + 8.83984i 0.260203 + 0.326285i
\(735\) −74.2506 + 35.7572i −2.73877 + 1.31892i
\(736\) −1.90458 + 2.38826i −0.0702036 + 0.0880326i
\(737\) 0.254890 0.00938901
\(738\) −4.27556 + 5.36138i −0.157385 + 0.197355i
\(739\) 0.447605 1.96109i 0.0164654 0.0721397i −0.966028 0.258438i \(-0.916792\pi\)
0.982493 + 0.186299i \(0.0596492\pi\)
\(740\) −3.85539 + 16.8916i −0.141727 + 0.620946i
\(741\) 13.1073 16.4361i 0.481510 0.603795i
\(742\) 27.4278 1.00691
\(743\) −17.7644 + 22.2759i −0.651714 + 0.817224i −0.992413 0.122949i \(-0.960765\pi\)
0.340699 + 0.940172i \(0.389336\pi\)
\(744\) −1.82856 + 0.880587i −0.0670382 + 0.0322839i
\(745\) 22.9035 + 28.7201i 0.839120 + 1.05222i
\(746\) −21.3210 26.7357i −0.780618 0.978864i
\(747\) 0.0961934 + 0.0463243i 0.00351953 + 0.00169492i
\(748\) 1.44292 6.32185i 0.0527584 0.231150i
\(749\) −15.6902 68.7434i −0.573309 2.51183i
\(750\) −18.7506 + 9.02981i −0.684675 + 0.329722i
\(751\) 23.1668 + 11.1565i 0.845367 + 0.407107i 0.805856 0.592112i \(-0.201706\pi\)
0.0395112 + 0.999219i \(0.487420\pi\)
\(752\) −0.448232 1.96383i −0.0163453 0.0716136i
\(753\) −0.834648 −0.0304163
\(754\) 7.45977 16.4763i 0.271669 0.600032i
\(755\) 38.4625 1.39979
\(756\) −1.53430 6.72221i −0.0558020 0.244484i
\(757\) −27.4721 13.2299i −0.998491 0.480848i −0.138065 0.990423i \(-0.544088\pi\)
−0.860426 + 0.509575i \(0.829803\pi\)
\(758\) 3.23021 1.55559i 0.117327 0.0565015i
\(759\) −2.87518 12.5970i −0.104362 0.457242i
\(760\) −2.14911 + 9.41585i −0.0779563 + 0.341549i
\(761\) 20.7821 + 10.0081i 0.753350 + 0.362794i 0.770820 0.637053i \(-0.219847\pi\)
−0.0174701 + 0.999847i \(0.505561\pi\)
\(762\) −3.24405 4.06792i −0.117520 0.147365i
\(763\) 51.5901 + 64.6919i 1.86769 + 2.34200i
\(764\) −21.9907 + 10.5902i −0.795595 + 0.383138i
\(765\) 17.6932 22.1866i 0.639701 0.802159i
\(766\) −26.0185 −0.940085
\(767\) 12.8239 16.0807i 0.463046 0.580641i
\(768\) −0.511050 + 2.23905i −0.0184409 + 0.0807949i
\(769\) −9.64160 + 42.2426i −0.347685 + 1.52331i 0.434736 + 0.900558i \(0.356842\pi\)
−0.782421 + 0.622749i \(0.786016\pi\)
\(770\) 16.8399 21.1166i 0.606870 0.760990i
\(771\) 11.6459 0.419418
\(772\) 3.08049 3.86282i 0.110869 0.139026i
\(773\) 36.0804 17.3754i 1.29772 0.624951i 0.347840 0.937554i \(-0.386915\pi\)
0.949884 + 0.312603i \(0.101201\pi\)
\(774\) 2.61189 + 3.27521i 0.0938825 + 0.117725i
\(775\) 4.16388 + 5.22134i 0.149571 + 0.187556i
\(776\) −4.71887 2.27249i −0.169398 0.0815776i
\(777\) 10.3406 45.3051i 0.370967 1.62531i
\(778\) 1.66644 + 7.30115i 0.0597447 + 0.261759i
\(779\) 7.40322 3.56520i 0.265248 0.127737i
\(780\) −24.6264 11.8595i −0.881767 0.424637i
\(781\) −5.37207 23.5366i −0.192228 0.842205i
\(782\) −10.7549 −0.384596
\(783\) −8.69773 + 2.20288i −0.310832 + 0.0787244i
\(784\) 10.1263 0.361654
\(785\) −19.2034 84.1356i −0.685398 3.00293i
\(786\) −5.79055 2.78858i −0.206542 0.0994655i
\(787\) 29.8560 14.3779i 1.06425 0.512516i 0.182002 0.983298i \(-0.441742\pi\)
0.882250 + 0.470782i \(0.156028\pi\)
\(788\) −0.163605 0.716798i −0.00582817 0.0255349i
\(789\) 5.56200 24.3687i 0.198013 0.867550i
\(790\) 50.6973 + 24.4145i 1.80373 + 0.868630i
\(791\) −28.3989 35.6110i −1.00975 1.26618i
\(792\) −2.61189 3.27521i −0.0928095 0.116379i
\(793\) −5.52401 + 2.66023i −0.196164 + 0.0944674i
\(794\) −7.47716 + 9.37606i −0.265354 + 0.332744i
\(795\) −53.9383 −1.91299
\(796\) −0.825107 + 1.03465i −0.0292451 + 0.0366723i
\(797\) 4.18410 18.3318i 0.148209 0.649344i −0.845174 0.534491i \(-0.820503\pi\)
0.993383 0.114853i \(-0.0366396\pi\)
\(798\) 5.76415 25.2544i 0.204049 0.893996i
\(799\) 4.42180 5.54477i 0.156432 0.196160i
\(800\) 7.55721 0.267188
\(801\) −5.10461 + 6.40098i −0.180363 + 0.226168i
\(802\) −3.24922 + 1.56474i −0.114734 + 0.0552530i
\(803\) 17.6688 + 22.1560i 0.623520 + 0.781869i
\(804\) −0.198172 0.248500i −0.00698898 0.00876391i
\(805\) −40.3606 19.4366i −1.42252 0.685051i
\(806\) −0.660436 + 2.89356i −0.0232628 + 0.101921i
\(807\) 13.7810 + 60.3787i 0.485116 + 2.12543i
\(808\) −8.69381 + 4.18672i −0.305847 + 0.147288i
\(809\) −11.5860 5.57950i −0.407341 0.196165i 0.218982 0.975729i \(-0.429726\pi\)
−0.626323 + 0.779564i \(0.715441\pi\)
\(810\) 8.39790 + 36.7936i 0.295072 + 1.29280i
\(811\) −22.8504 −0.802385 −0.401193 0.915994i \(-0.631404\pi\)
−0.401193 + 0.915994i \(0.631404\pi\)
\(812\) −0.527116 22.2797i −0.0184981 0.781864i
\(813\) 32.4557 1.13827
\(814\) 2.00380 + 8.77922i 0.0702331 + 0.307712i
\(815\) −42.7142 20.5701i −1.49621 0.720538i
\(816\) −7.28518 + 3.50836i −0.255032 + 0.122817i
\(817\) −1.11698 4.89379i −0.0390781 0.171212i
\(818\) 4.16149 18.2327i 0.145503 0.637491i
\(819\) 28.4831 + 13.7167i 0.995280 + 0.479302i
\(820\) −6.66111 8.35276i −0.232616 0.291691i
\(821\) −16.4283 20.6005i −0.573353 0.718961i 0.407610 0.913156i \(-0.366362\pi\)
−0.980963 + 0.194195i \(0.937791\pi\)
\(822\) 0.549451 0.264602i 0.0191643 0.00922905i
\(823\) 16.5875 20.8001i 0.578204 0.725045i −0.403601 0.914935i \(-0.632242\pi\)
0.981805 + 0.189890i \(0.0608132\pi\)
\(824\) −15.7864 −0.549944
\(825\) −19.9304 + 24.9919i −0.693887 + 0.870107i
\(826\) 5.63952 24.7084i 0.196224 0.859714i
\(827\) 8.17418 35.8134i 0.284244 1.24535i −0.608050 0.793899i \(-0.708048\pi\)
0.892294 0.451456i \(-0.149095\pi\)
\(828\) −4.33203 + 5.43219i −0.150548 + 0.188782i
\(829\) −36.8254 −1.27900 −0.639500 0.768791i \(-0.720859\pi\)
−0.639500 + 0.768791i \(0.720859\pi\)
\(830\) −0.103710 + 0.130048i −0.00359981 + 0.00451402i
\(831\) −26.9481 + 12.9775i −0.934820 + 0.450186i
\(832\) 2.09403 + 2.62583i 0.0725973 + 0.0910341i
\(833\) 22.2290 + 27.8742i 0.770188 + 0.965785i
\(834\) 13.2418 + 6.37692i 0.458526 + 0.220815i
\(835\) 7.92121 34.7051i 0.274125 1.20102i
\(836\) 1.11698 + 4.89379i 0.0386314 + 0.169255i
\(837\) 1.32655 0.638834i 0.0458523 0.0220813i
\(838\) −30.0815 14.4865i −1.03915 0.500427i
\(839\) 4.65941 + 20.4142i 0.160861 + 0.704776i 0.989445 + 0.144911i \(0.0462897\pi\)
−0.828584 + 0.559865i \(0.810853\pi\)
\(840\) −33.6799 −1.16207
\(841\) −28.9676 + 1.37145i −0.998881 + 0.0472915i
\(842\) 7.91611 0.272807
\(843\) −14.8631 65.1195i −0.511912 2.24283i
\(844\) −2.74436 1.32162i −0.0944649 0.0454919i
\(845\) 5.49174 2.64468i 0.188921 0.0909798i
\(846\) −1.01952 4.46681i −0.0350518 0.153572i
\(847\) −7.00598 + 30.6952i −0.240728 + 1.05470i
\(848\) 5.97129 + 2.87562i 0.205055 + 0.0987493i
\(849\) 26.9556 + 33.8013i 0.925115 + 1.16006i
\(850\) 16.5894 + 20.8024i 0.569010 + 0.713516i
\(851\) 13.4564 6.48027i 0.461280 0.222141i
\(852\) −18.7698 + 23.5366i −0.643042 + 0.806350i
\(853\) −8.14070 −0.278732 −0.139366 0.990241i \(-0.544507\pi\)
−0.139366 + 0.990241i \(0.544507\pi\)
\(854\) −4.71036 + 5.90660i −0.161185 + 0.202120i
\(855\) −4.88822 + 21.4167i −0.167174 + 0.732435i
\(856\) 3.79138 16.6111i 0.129587 0.567757i
\(857\) 24.8327 31.1392i 0.848268 1.06369i −0.148927 0.988848i \(-0.547582\pi\)
0.997195 0.0748463i \(-0.0238466\pi\)
\(858\) −14.2062 −0.484991
\(859\) 27.8901 34.9731i 0.951598 1.19327i −0.0294631 0.999566i \(-0.509380\pi\)
0.981061 0.193700i \(-0.0620488\pi\)
\(860\) −5.88016 + 2.83174i −0.200512 + 0.0965614i
\(861\) 17.8659 + 22.4031i 0.608867 + 0.763495i
\(862\) 3.39958 + 4.26293i 0.115790 + 0.145196i
\(863\) 1.94440 + 0.936373i 0.0661881 + 0.0318745i 0.466685 0.884424i \(-0.345448\pi\)
−0.400497 + 0.916298i \(0.631162\pi\)
\(864\) 0.370748 1.62435i 0.0126131 0.0552616i
\(865\) 12.9172 + 56.5940i 0.439198 + 1.92425i
\(866\) −34.4860 + 16.6076i −1.17188 + 0.564348i
\(867\) 9.52685 + 4.58789i 0.323549 + 0.155813i
\(868\) 0.813785 + 3.56543i 0.0276217 + 0.121018i
\(869\) 29.2456 0.992090
\(870\) 1.03660 + 43.8143i 0.0351441 + 1.48545i
\(871\) −0.464808 −0.0157494
\(872\) 4.44914 + 19.4929i 0.150667 + 0.660114i
\(873\) −10.7333 5.16886i −0.363266 0.174939i
\(874\) 7.50100 3.61229i 0.253725 0.122188i
\(875\) 8.34480 + 36.5610i 0.282106 + 1.23599i
\(876\) 7.86337 34.4517i 0.265679 1.16401i
\(877\) −25.1844 12.1282i −0.850417 0.409539i −0.0426847 0.999089i \(-0.513591\pi\)
−0.807732 + 0.589549i \(0.799305\pi\)
\(878\) 7.20882 + 9.03957i 0.243286 + 0.305071i
\(879\) −8.55523 10.7279i −0.288561 0.361844i
\(880\) 5.88016 2.83174i 0.198220 0.0954578i
\(881\) 11.8199 14.8216i 0.398221 0.499353i −0.541782 0.840519i \(-0.682250\pi\)
0.940003 + 0.341166i \(0.110822\pi\)
\(882\) 23.0327 0.775550
\(883\) 27.4634 34.4380i 0.924218 1.15893i −0.0627523 0.998029i \(-0.519988\pi\)
0.986970 0.160903i \(-0.0514408\pi\)
\(884\) −2.63125 + 11.5283i −0.0884985 + 0.387737i
\(885\) −11.0904 + 48.5904i −0.372801 + 1.63335i
\(886\) 16.8781 21.1644i 0.567030 0.711033i
\(887\) 20.7096 0.695359 0.347679 0.937613i \(-0.386970\pi\)
0.347679 + 0.937613i \(0.386970\pi\)
\(888\) 7.00120 8.77922i 0.234945 0.294611i
\(889\) −8.44712 + 4.06792i −0.283307 + 0.136434i
\(890\) −7.95273 9.97241i −0.266576 0.334276i
\(891\) 12.2297 + 15.3356i 0.409710 + 0.513760i
\(892\) 7.77193 + 3.74277i 0.260224 + 0.125317i
\(893\) −1.22164 + 5.35235i −0.0408806 + 0.179110i
\(894\) −5.29773 23.2109i −0.177182 0.776287i
\(895\) −27.1728 + 13.0857i −0.908287 + 0.437408i
\(896\) 3.72857 + 1.79558i 0.124563 + 0.0599862i
\(897\) 5.24306 + 22.9713i 0.175061 + 0.766991i
\(898\) 3.66223 0.122210
\(899\) 4.61323 1.16839i 0.153860 0.0389681i
\(900\) 17.1892 0.572972
\(901\) 5.19240 + 22.7494i 0.172984 + 0.757892i
\(902\) −5.00280 2.40922i −0.166575 0.0802183i
\(903\) 15.7713 7.59504i 0.524835 0.252747i
\(904\) −2.44912 10.7303i −0.0814566 0.356885i
\(905\) −6.70274 + 29.3666i −0.222807 + 0.976179i
\(906\) −22.4591 10.8157i −0.746155 0.359329i
\(907\) −28.3949 35.6061i −0.942838 1.18228i −0.983096 0.183092i \(-0.941390\pi\)
0.0402583 0.999189i \(-0.487182\pi\)
\(908\) −0.291688 0.365765i −0.00968001 0.0121383i
\(909\) −19.7744 + 9.52285i −0.655875 + 0.315853i
\(910\) −30.7086 + 38.5074i −1.01798 + 1.27651i
\(911\) 59.3261 1.96556 0.982781 0.184775i \(-0.0591556\pi\)
0.982781 + 0.184775i \(0.0591556\pi\)
\(912\) 3.90267 4.89379i 0.129230 0.162050i
\(913\) −0.0192374 + 0.0842846i −0.000636665 + 0.00278941i
\(914\) −7.35770 + 32.2362i −0.243371 + 1.06628i
\(915\) 9.26319 11.6157i 0.306232 0.384002i
\(916\) 25.2867 0.835497
\(917\) −7.22070 + 9.05447i −0.238449 + 0.299005i
\(918\) 5.28513 2.54519i 0.174435 0.0840036i
\(919\) 6.28260 + 7.87814i 0.207244 + 0.259876i 0.874580 0.484881i \(-0.161137\pi\)
−0.667336 + 0.744757i \(0.732566\pi\)
\(920\) −6.74909 8.46309i −0.222511 0.279020i
\(921\) 22.9697 + 11.0616i 0.756878 + 0.364493i
\(922\) 7.34091 32.1626i 0.241760 1.05922i
\(923\) 9.79628 + 42.9203i 0.322449 + 1.41274i
\(924\) −15.7713 + 7.59504i −0.518837 + 0.249859i
\(925\) −33.2906 16.0319i −1.09459 0.527126i
\(926\) −6.49256 28.4458i −0.213359 0.934786i
\(927\) −35.9067 −1.17933
\(928\) 2.22112 4.90577i 0.0729120 0.161040i
\(929\) 24.3541 0.799033 0.399517 0.916726i \(-0.369178\pi\)
0.399517 + 0.916726i \(0.369178\pi\)
\(930\) −1.60036 7.01162i −0.0524777 0.229920i
\(931\) −24.8657 11.9747i −0.814942 0.392455i
\(932\) −11.9686 + 5.76375i −0.392043 + 0.188798i
\(933\) 0.217489 + 0.952883i 0.00712028 + 0.0311960i
\(934\) −3.48637 + 15.2748i −0.114078 + 0.499806i
\(935\) 20.7027 + 9.96991i 0.677052 + 0.326051i
\(936\) 4.76294 + 5.97254i 0.155682 + 0.195218i
\(937\) 17.0680 + 21.4026i 0.557588 + 0.699194i 0.978110 0.208089i \(-0.0667243\pi\)
−0.420521 + 0.907283i \(0.638153\pi\)
\(938\) −0.516015 + 0.248500i −0.0168485 + 0.00811380i
\(939\) 19.3247 24.2325i 0.630639 0.790797i
\(940\) 7.13803 0.232817
\(941\) −19.3916 + 24.3163i −0.632147 + 0.792688i −0.989997 0.141092i \(-0.954939\pi\)
0.357849 + 0.933779i \(0.383510\pi\)
\(942\) −12.4458 + 54.5287i −0.405507 + 1.77664i
\(943\) −2.04932 + 8.97867i −0.0667352 + 0.292386i
\(944\) 3.81829 4.78798i 0.124275 0.155836i
\(945\) 24.4335 0.794823
\(946\) −2.11493 + 2.65203i −0.0687621 + 0.0862250i
\(947\) −42.7271 + 20.5763i −1.38844 + 0.668640i −0.970782 0.239963i \(-0.922865\pi\)
−0.417663 + 0.908602i \(0.637151\pi\)
\(948\) −22.7379 28.5124i −0.738492 0.926039i
\(949\) −32.2202 40.4028i −1.04591 1.31153i
\(950\) −18.5572 8.93666i −0.602074 0.289944i
\(951\) 7.38345 32.3490i 0.239425 1.04899i
\(952\) 3.24221 + 14.2051i 0.105081 + 0.460389i
\(953\) −44.7043 + 21.5285i −1.44812 + 0.697375i −0.982267 0.187489i \(-0.939965\pi\)
−0.465848 + 0.884865i \(0.654251\pi\)
\(954\) 13.5819 + 6.54071i 0.439731 + 0.211763i
\(955\) −19.2463 84.3234i −0.622794 2.72864i
\(956\) 16.0913 0.520431
\(957\) 10.3658 + 20.2832i 0.335080 + 0.655662i
\(958\) −3.84849 −0.124339
\(959\) −0.244529 1.07135i −0.00789625 0.0345957i
\(960\) −7.33244 3.53112i −0.236654 0.113966i
\(961\) 27.2264 13.1116i 0.878272 0.422954i
\(962\) −3.65405 16.0094i −0.117811 0.516165i
\(963\) 8.62364 37.7826i 0.277893 1.21753i
\(964\) 13.4077 + 6.45681i 0.431833 + 0.207960i
\(965\) 10.9161 + 13.6883i 0.351401 + 0.440643i
\(966\) 18.1018 + 22.6990i 0.582417 + 0.730328i
\(967\) −8.78018 + 4.22831i −0.282351 + 0.135973i −0.569700 0.821853i \(-0.692941\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(968\) −4.74346 + 5.94811i −0.152461 + 0.191180i
\(969\) 22.0379 0.707961
\(970\) 11.5719 14.5107i 0.371551 0.465910i
\(971\) 7.78130 34.0921i 0.249714 1.09407i −0.682137 0.731225i \(-0.738949\pi\)
0.931850 0.362843i \(-0.118194\pi\)
\(972\) 4.33048 18.9731i 0.138900 0.608562i
\(973\) 16.5123 20.7057i 0.529359 0.663795i
\(974\) 28.6576 0.918250
\(975\) 36.3443 45.5743i 1.16395 1.45954i
\(976\) −1.64476 + 0.792074i −0.0526474 + 0.0253537i
\(977\) 13.8566 + 17.3756i 0.443312 + 0.555896i 0.952413 0.304811i \(-0.0985933\pi\)
−0.509101 + 0.860707i \(0.670022\pi\)
\(978\) 19.1574 + 24.0226i 0.612587 + 0.768160i
\(979\) −5.97287 2.87638i −0.190894 0.0919296i
\(980\) −7.98489 + 34.9841i −0.255068 + 1.11753i
\(981\) 10.1197 + 44.3374i 0.323098 + 1.41558i
\(982\) −16.0571 + 7.73268i −0.512402 + 0.246760i
\(983\) −35.5825 17.1356i −1.13491 0.546542i −0.230440 0.973087i \(-0.574017\pi\)
−0.904467 + 0.426544i \(0.859731\pi\)
\(984\) 1.54075 + 6.75049i 0.0491175 + 0.215198i
\(985\) 2.60538 0.0830143
\(986\) 18.3796 4.65501i 0.585327 0.148246i
\(987\) −19.1450 −0.609393
\(988\) −2.03687 8.92412i −0.0648015 0.283914i
\(989\) 5.06888 + 2.44104i 0.161181 + 0.0776206i
\(990\) 13.3746 6.44089i 0.425074 0.204705i
\(991\) −0.424816 1.86124i −0.0134947 0.0591242i 0.967732 0.251981i \(-0.0810820\pi\)
−0.981227 + 0.192856i \(0.938225\pi\)
\(992\) −0.196643 + 0.861548i −0.00624341 + 0.0273542i
\(993\) −19.7348 9.50379i −0.626266 0.301594i
\(994\) 33.8220 + 42.4114i 1.07277 + 1.34521i
\(995\) −2.92386 3.66641i −0.0926927 0.116233i
\(996\) 0.0971280 0.0467744i 0.00307762 0.00148210i
\(997\) −0.922744 + 1.15708i −0.0292236 + 0.0366452i −0.796229 0.604996i \(-0.793175\pi\)
0.767005 + 0.641641i \(0.221746\pi\)
\(998\) 24.3018 0.769259
\(999\) −5.07911 + 6.36900i −0.160696 + 0.201506i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 58.2.d.b.7.1 12
3.2 odd 2 522.2.k.h.181.2 12
4.3 odd 2 464.2.u.h.65.2 12
29.2 odd 28 1682.2.b.i.1681.2 12
29.5 even 14 1682.2.a.q.1.2 6
29.24 even 7 1682.2.a.t.1.5 6
29.25 even 7 inner 58.2.d.b.25.1 yes 12
29.27 odd 28 1682.2.b.i.1681.11 12
87.83 odd 14 522.2.k.h.199.2 12
116.83 odd 14 464.2.u.h.257.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
58.2.d.b.7.1 12 1.1 even 1 trivial
58.2.d.b.25.1 yes 12 29.25 even 7 inner
464.2.u.h.65.2 12 4.3 odd 2
464.2.u.h.257.2 12 116.83 odd 14
522.2.k.h.181.2 12 3.2 odd 2
522.2.k.h.199.2 12 87.83 odd 14
1682.2.a.q.1.2 6 29.5 even 14
1682.2.a.t.1.5 6 29.24 even 7
1682.2.b.i.1681.2 12 29.2 odd 28
1682.2.b.i.1681.11 12 29.27 odd 28