Properties

Label 5796.2
Level 5796
Weight 2
Dimension 400372
Nonzero newspaces 80
Sturm bound 3649536

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 5796 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 23 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 80 \)
Sturm bound: \(3649536\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(5796))\).

Total New Old
Modular forms 922944 404148 518796
Cusp forms 901825 400372 501453
Eisenstein series 21119 3776 17343

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(5796))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
5796.2.a \(\chi_{5796}(1, \cdot)\) 5796.2.a.a 1 1
5796.2.a.b 1
5796.2.a.c 1
5796.2.a.d 1
5796.2.a.e 1
5796.2.a.f 1
5796.2.a.g 1
5796.2.a.h 1
5796.2.a.i 2
5796.2.a.j 2
5796.2.a.k 2
5796.2.a.l 2
5796.2.a.m 2
5796.2.a.n 2
5796.2.a.o 3
5796.2.a.p 3
5796.2.a.q 4
5796.2.a.r 4
5796.2.a.s 5
5796.2.a.t 5
5796.2.a.u 6
5796.2.a.v 6
5796.2.b \(\chi_{5796}(5795, \cdot)\) n/a 384 1
5796.2.c \(\chi_{5796}(2071, \cdot)\) n/a 440 1
5796.2.h \(\chi_{5796}(323, \cdot)\) n/a 264 1
5796.2.i \(\chi_{5796}(3403, \cdot)\) n/a 360 1
5796.2.j \(\chi_{5796}(2393, \cdot)\) 5796.2.j.a 56 1
5796.2.k \(\chi_{5796}(5473, \cdot)\) 5796.2.k.a 8 1
5796.2.k.b 16
5796.2.k.c 24
5796.2.k.d 32
5796.2.p \(\chi_{5796}(3725, \cdot)\) 5796.2.p.a 48 1
5796.2.q \(\chi_{5796}(277, \cdot)\) n/a 352 2
5796.2.r \(\chi_{5796}(1933, \cdot)\) n/a 264 2
5796.2.s \(\chi_{5796}(3313, \cdot)\) n/a 148 2
5796.2.t \(\chi_{5796}(2209, \cdot)\) n/a 352 2
5796.2.w \(\chi_{5796}(691, \cdot)\) n/a 2112 2
5796.2.x \(\chi_{5796}(551, \cdot)\) n/a 2288 2
5796.2.y \(\chi_{5796}(2851, \cdot)\) n/a 2288 2
5796.2.z \(\chi_{5796}(599, \cdot)\) n/a 2112 2
5796.2.be \(\chi_{5796}(137, \cdot)\) n/a 384 2
5796.2.bf \(\chi_{5796}(1793, \cdot)\) n/a 288 2
5796.2.bk \(\chi_{5796}(1241, \cdot)\) n/a 128 2
5796.2.bl \(\chi_{5796}(1333, \cdot)\) n/a 160 2
5796.2.bm \(\chi_{5796}(4049, \cdot)\) n/a 120 2
5796.2.br \(\chi_{5796}(229, \cdot)\) n/a 384 2
5796.2.bs \(\chi_{5796}(1013, \cdot)\) n/a 352 2
5796.2.bt \(\chi_{5796}(461, \cdot)\) n/a 352 2
5796.2.bu \(\chi_{5796}(1609, \cdot)\) n/a 384 2
5796.2.bz \(\chi_{5796}(2255, \cdot)\) n/a 1584 2
5796.2.ca \(\chi_{5796}(1471, \cdot)\) n/a 1728 2
5796.2.cb \(\chi_{5796}(3679, \cdot)\) n/a 2288 2
5796.2.cc \(\chi_{5796}(2531, \cdot)\) n/a 2112 2
5796.2.ch \(\chi_{5796}(919, \cdot)\) n/a 952 2
5796.2.ci \(\chi_{5796}(3635, \cdot)\) n/a 704 2
5796.2.cj \(\chi_{5796}(3727, \cdot)\) n/a 880 2
5796.2.ck \(\chi_{5796}(1655, \cdot)\) n/a 768 2
5796.2.cp \(\chi_{5796}(1931, \cdot)\) n/a 2288 2
5796.2.cq \(\chi_{5796}(139, \cdot)\) n/a 2112 2
5796.2.cr \(\chi_{5796}(2623, \cdot)\) n/a 2112 2
5796.2.cs \(\chi_{5796}(4415, \cdot)\) n/a 2288 2
5796.2.cx \(\chi_{5796}(4093, \cdot)\) n/a 384 2
5796.2.cy \(\chi_{5796}(185, \cdot)\) n/a 352 2
5796.2.cz \(\chi_{5796}(4001, \cdot)\) n/a 384 2
5796.2.dc \(\chi_{5796}(1513, \cdot)\) n/a 600 10
5796.2.dd \(\chi_{5796}(701, \cdot)\) n/a 480 10
5796.2.di \(\chi_{5796}(181, \cdot)\) n/a 800 10
5796.2.dj \(\chi_{5796}(377, \cdot)\) n/a 640 10
5796.2.dk \(\chi_{5796}(379, \cdot)\) n/a 3600 10
5796.2.dl \(\chi_{5796}(71, \cdot)\) n/a 2880 10
5796.2.dq \(\chi_{5796}(55, \cdot)\) n/a 4760 10
5796.2.dr \(\chi_{5796}(251, \cdot)\) n/a 3840 10
5796.2.ds \(\chi_{5796}(193, \cdot)\) n/a 3840 20
5796.2.dt \(\chi_{5796}(289, \cdot)\) n/a 1600 20
5796.2.du \(\chi_{5796}(85, \cdot)\) n/a 2880 20
5796.2.dv \(\chi_{5796}(25, \cdot)\) n/a 3840 20
5796.2.dy \(\chi_{5796}(65, \cdot)\) n/a 3840 20
5796.2.dz \(\chi_{5796}(173, \cdot)\) n/a 3840 20
5796.2.ea \(\chi_{5796}(61, \cdot)\) n/a 3840 20
5796.2.ef \(\chi_{5796}(227, \cdot)\) n/a 22880 20
5796.2.eg \(\chi_{5796}(607, \cdot)\) n/a 22880 20
5796.2.eh \(\chi_{5796}(223, \cdot)\) n/a 22880 20
5796.2.ei \(\chi_{5796}(83, \cdot)\) n/a 22880 20
5796.2.en \(\chi_{5796}(143, \cdot)\) n/a 7680 20
5796.2.eo \(\chi_{5796}(271, \cdot)\) n/a 9520 20
5796.2.ep \(\chi_{5796}(179, \cdot)\) n/a 7680 20
5796.2.eq \(\chi_{5796}(235, \cdot)\) n/a 9520 20
5796.2.ev \(\chi_{5796}(515, \cdot)\) n/a 22880 20
5796.2.ew \(\chi_{5796}(247, \cdot)\) n/a 22880 20
5796.2.ex \(\chi_{5796}(43, \cdot)\) n/a 17280 20
5796.2.ey \(\chi_{5796}(239, \cdot)\) n/a 17280 20
5796.2.fd \(\chi_{5796}(97, \cdot)\) n/a 3840 20
5796.2.fe \(\chi_{5796}(41, \cdot)\) n/a 3840 20
5796.2.ff \(\chi_{5796}(101, \cdot)\) n/a 3840 20
5796.2.fg \(\chi_{5796}(241, \cdot)\) n/a 3840 20
5796.2.fl \(\chi_{5796}(269, \cdot)\) n/a 1280 20
5796.2.fm \(\chi_{5796}(145, \cdot)\) n/a 1600 20
5796.2.fn \(\chi_{5796}(53, \cdot)\) n/a 1280 20
5796.2.fs \(\chi_{5796}(113, \cdot)\) n/a 2880 20
5796.2.ft \(\chi_{5796}(149, \cdot)\) n/a 3840 20
5796.2.fy \(\chi_{5796}(95, \cdot)\) n/a 22880 20
5796.2.fz \(\chi_{5796}(67, \cdot)\) n/a 22880 20
5796.2.ga \(\chi_{5796}(563, \cdot)\) n/a 22880 20
5796.2.gb \(\chi_{5796}(31, \cdot)\) n/a 22880 20

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(5796))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(5796)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(92))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(126))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(138))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(161))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(207))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(252))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(276))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(322))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(414))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(483))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(644))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(828))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(966))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1449))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1932))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2898))\)\(^{\oplus 2}\)