Properties

Label 5780.2.a.f
Level $5780$
Weight $2$
Character orbit 5780.a
Self dual yes
Analytic conductor $46.154$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5780,2,Mod(1,5780)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5780, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5780.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5780 = 2^{2} \cdot 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5780.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.1535323683\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 20)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{3} + q^{5} - 2 q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 2 q^{3} + q^{5} - 2 q^{7} + q^{9} + 2 q^{13} + 2 q^{15} - 4 q^{19} - 4 q^{21} - 6 q^{23} + q^{25} - 4 q^{27} - 6 q^{29} + 4 q^{31} - 2 q^{35} - 2 q^{37} + 4 q^{39} - 6 q^{41} - 10 q^{43} + q^{45} - 6 q^{47} - 3 q^{49} - 6 q^{53} - 8 q^{57} + 12 q^{59} - 2 q^{61} - 2 q^{63} + 2 q^{65} + 2 q^{67} - 12 q^{69} + 12 q^{71} - 2 q^{73} + 2 q^{75} - 8 q^{79} - 11 q^{81} + 6 q^{83} - 12 q^{87} - 6 q^{89} - 4 q^{91} + 8 q^{93} - 4 q^{95} - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 2.00000 0 1.00000 0 −2.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5780.2.a.f 1
17.b even 2 1 20.2.a.a 1
17.c even 4 2 5780.2.c.a 2
51.c odd 2 1 180.2.a.a 1
68.d odd 2 1 80.2.a.b 1
85.c even 2 1 100.2.a.a 1
85.g odd 4 2 100.2.c.a 2
119.d odd 2 1 980.2.a.h 1
119.h odd 6 2 980.2.i.c 2
119.j even 6 2 980.2.i.i 2
136.e odd 2 1 320.2.a.a 1
136.h even 2 1 320.2.a.f 1
153.h even 6 2 1620.2.i.h 2
153.i odd 6 2 1620.2.i.b 2
187.b odd 2 1 2420.2.a.a 1
204.h even 2 1 720.2.a.h 1
221.b even 2 1 3380.2.a.c 1
221.g odd 4 2 3380.2.f.b 2
255.h odd 2 1 900.2.a.b 1
255.o even 4 2 900.2.d.c 2
272.k odd 4 2 1280.2.d.g 2
272.r even 4 2 1280.2.d.c 2
323.c odd 2 1 7220.2.a.f 1
340.d odd 2 1 400.2.a.c 1
340.r even 4 2 400.2.c.b 2
357.c even 2 1 8820.2.a.g 1
408.b odd 2 1 2880.2.a.m 1
408.h even 2 1 2880.2.a.f 1
476.e even 2 1 3920.2.a.h 1
595.b odd 2 1 4900.2.a.e 1
595.p even 4 2 4900.2.e.f 2
680.h even 2 1 1600.2.a.c 1
680.k odd 2 1 1600.2.a.w 1
680.u even 4 2 1600.2.c.e 2
680.bi odd 4 2 1600.2.c.d 2
748.f even 2 1 9680.2.a.ba 1
1020.b even 2 1 3600.2.a.be 1
1020.x odd 4 2 3600.2.f.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
20.2.a.a 1 17.b even 2 1
80.2.a.b 1 68.d odd 2 1
100.2.a.a 1 85.c even 2 1
100.2.c.a 2 85.g odd 4 2
180.2.a.a 1 51.c odd 2 1
320.2.a.a 1 136.e odd 2 1
320.2.a.f 1 136.h even 2 1
400.2.a.c 1 340.d odd 2 1
400.2.c.b 2 340.r even 4 2
720.2.a.h 1 204.h even 2 1
900.2.a.b 1 255.h odd 2 1
900.2.d.c 2 255.o even 4 2
980.2.a.h 1 119.d odd 2 1
980.2.i.c 2 119.h odd 6 2
980.2.i.i 2 119.j even 6 2
1280.2.d.c 2 272.r even 4 2
1280.2.d.g 2 272.k odd 4 2
1600.2.a.c 1 680.h even 2 1
1600.2.a.w 1 680.k odd 2 1
1600.2.c.d 2 680.bi odd 4 2
1600.2.c.e 2 680.u even 4 2
1620.2.i.b 2 153.i odd 6 2
1620.2.i.h 2 153.h even 6 2
2420.2.a.a 1 187.b odd 2 1
2880.2.a.f 1 408.h even 2 1
2880.2.a.m 1 408.b odd 2 1
3380.2.a.c 1 221.b even 2 1
3380.2.f.b 2 221.g odd 4 2
3600.2.a.be 1 1020.b even 2 1
3600.2.f.j 2 1020.x odd 4 2
3920.2.a.h 1 476.e even 2 1
4900.2.a.e 1 595.b odd 2 1
4900.2.e.f 2 595.p even 4 2
5780.2.a.f 1 1.a even 1 1 trivial
5780.2.c.a 2 17.c even 4 2
7220.2.a.f 1 323.c odd 2 1
8820.2.a.g 1 357.c even 2 1
9680.2.a.ba 1 748.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5780))\):

\( T_{3} - 2 \) Copy content Toggle raw display
\( T_{7} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 2 \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T + 2 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 2 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T + 4 \) Copy content Toggle raw display
$23$ \( T + 6 \) Copy content Toggle raw display
$29$ \( T + 6 \) Copy content Toggle raw display
$31$ \( T - 4 \) Copy content Toggle raw display
$37$ \( T + 2 \) Copy content Toggle raw display
$41$ \( T + 6 \) Copy content Toggle raw display
$43$ \( T + 10 \) Copy content Toggle raw display
$47$ \( T + 6 \) Copy content Toggle raw display
$53$ \( T + 6 \) Copy content Toggle raw display
$59$ \( T - 12 \) Copy content Toggle raw display
$61$ \( T + 2 \) Copy content Toggle raw display
$67$ \( T - 2 \) Copy content Toggle raw display
$71$ \( T - 12 \) Copy content Toggle raw display
$73$ \( T + 2 \) Copy content Toggle raw display
$79$ \( T + 8 \) Copy content Toggle raw display
$83$ \( T - 6 \) Copy content Toggle raw display
$89$ \( T + 6 \) Copy content Toggle raw display
$97$ \( T + 2 \) Copy content Toggle raw display
show more
show less