Properties

Label 5776.2.a.l
Level $5776$
Weight $2$
Character orbit 5776.a
Self dual yes
Analytic conductor $46.122$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5776 = 2^{4} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5776.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(46.1215922075\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 152)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{3} - 3 q^{7} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{3} - 3 q^{7} - 2 q^{9} - 2 q^{11} - q^{13} - 5 q^{17} - 3 q^{21} + q^{23} - 5 q^{25} - 5 q^{27} + 3 q^{29} + 4 q^{31} - 2 q^{33} - 2 q^{37} - q^{39} + 8 q^{41} + 8 q^{43} + 8 q^{47} + 2 q^{49} - 5 q^{51} - 9 q^{53} + q^{59} + 14 q^{61} + 6 q^{63} + 13 q^{67} + q^{69} + 10 q^{71} + 9 q^{73} - 5 q^{75} + 6 q^{77} - 10 q^{79} + q^{81} - 10 q^{83} + 3 q^{87} + 12 q^{89} + 3 q^{91} + 4 q^{93} - 14 q^{97} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 1.00000 0 0 0 −3.00000 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(19\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5776.2.a.l 1
4.b odd 2 1 2888.2.a.b 1
19.b odd 2 1 304.2.a.b 1
57.d even 2 1 2736.2.a.k 1
76.d even 2 1 152.2.a.b 1
95.d odd 2 1 7600.2.a.o 1
152.b even 2 1 1216.2.a.f 1
152.g odd 2 1 1216.2.a.l 1
228.b odd 2 1 1368.2.a.g 1
380.d even 2 1 3800.2.a.d 1
380.j odd 4 2 3800.2.d.f 2
532.b odd 2 1 7448.2.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
152.2.a.b 1 76.d even 2 1
304.2.a.b 1 19.b odd 2 1
1216.2.a.f 1 152.b even 2 1
1216.2.a.l 1 152.g odd 2 1
1368.2.a.g 1 228.b odd 2 1
2736.2.a.k 1 57.d even 2 1
2888.2.a.b 1 4.b odd 2 1
3800.2.a.d 1 380.d even 2 1
3800.2.d.f 2 380.j odd 4 2
5776.2.a.l 1 1.a even 1 1 trivial
7448.2.a.g 1 532.b odd 2 1
7600.2.a.o 1 95.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5776))\):

\( T_{3} - 1 \) Copy content Toggle raw display
\( T_{5} \) Copy content Toggle raw display
\( T_{7} + 3 \) Copy content Toggle raw display
\( T_{11} + 2 \) Copy content Toggle raw display
\( T_{13} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 3 \) Copy content Toggle raw display
$11$ \( T + 2 \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T + 5 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T - 1 \) Copy content Toggle raw display
$29$ \( T - 3 \) Copy content Toggle raw display
$31$ \( T - 4 \) Copy content Toggle raw display
$37$ \( T + 2 \) Copy content Toggle raw display
$41$ \( T - 8 \) Copy content Toggle raw display
$43$ \( T - 8 \) Copy content Toggle raw display
$47$ \( T - 8 \) Copy content Toggle raw display
$53$ \( T + 9 \) Copy content Toggle raw display
$59$ \( T - 1 \) Copy content Toggle raw display
$61$ \( T - 14 \) Copy content Toggle raw display
$67$ \( T - 13 \) Copy content Toggle raw display
$71$ \( T - 10 \) Copy content Toggle raw display
$73$ \( T - 9 \) Copy content Toggle raw display
$79$ \( T + 10 \) Copy content Toggle raw display
$83$ \( T + 10 \) Copy content Toggle raw display
$89$ \( T - 12 \) Copy content Toggle raw display
$97$ \( T + 14 \) Copy content Toggle raw display
show more
show less