Properties

Label 576.7.e.a
Level $576$
Weight $7$
Character orbit 576.e
Analytic conductor $132.511$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,7,Mod(449,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.449"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 576.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,-1048,0,0,0,0,0,-688] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(132.511152165\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 9\sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 5 \beta q^{5} - 524 q^{7} + 68 \beta q^{11} - 344 q^{13} + 561 \beta q^{17} - 2320 q^{19} + 452 \beta q^{23} + 11575 q^{25} + 1819 \beta q^{29} + 10564 q^{31} - 2620 \beta q^{35} + 24082 q^{37} + 8551 \beta q^{41} + \cdots - 37168 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 1048 q^{7} - 688 q^{13} - 4640 q^{19} + 23150 q^{25} + 21128 q^{31} + 48164 q^{37} - 181904 q^{43} + 313854 q^{49} - 110160 q^{55} - 502276 q^{61} - 432176 q^{67} - 616352 q^{73} + 1080248 q^{79}+ \cdots - 74336 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
449.1
1.41421i
1.41421i
0 0 0 63.6396i 0 −524.000 0 0 0
449.2 0 0 0 63.6396i 0 −524.000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 576.7.e.a 2
3.b odd 2 1 inner 576.7.e.a 2
4.b odd 2 1 576.7.e.l 2
8.b even 2 1 144.7.e.a 2
8.d odd 2 1 9.7.b.a 2
12.b even 2 1 576.7.e.l 2
24.f even 2 1 9.7.b.a 2
24.h odd 2 1 144.7.e.a 2
40.e odd 2 1 225.7.c.a 2
40.k even 4 2 225.7.d.a 4
56.e even 2 1 441.7.b.a 2
72.l even 6 2 81.7.d.d 4
72.p odd 6 2 81.7.d.d 4
120.m even 2 1 225.7.c.a 2
120.q odd 4 2 225.7.d.a 4
168.e odd 2 1 441.7.b.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9.7.b.a 2 8.d odd 2 1
9.7.b.a 2 24.f even 2 1
81.7.d.d 4 72.l even 6 2
81.7.d.d 4 72.p odd 6 2
144.7.e.a 2 8.b even 2 1
144.7.e.a 2 24.h odd 2 1
225.7.c.a 2 40.e odd 2 1
225.7.c.a 2 120.m even 2 1
225.7.d.a 4 40.k even 4 2
225.7.d.a 4 120.q odd 4 2
441.7.b.a 2 56.e even 2 1
441.7.b.a 2 168.e odd 2 1
576.7.e.a 2 1.a even 1 1 trivial
576.7.e.a 2 3.b odd 2 1 inner
576.7.e.l 2 4.b odd 2 1
576.7.e.l 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{7}^{\mathrm{new}}(576, [\chi])\):

\( T_{5}^{2} + 4050 \) Copy content Toggle raw display
\( T_{7} + 524 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 4050 \) Copy content Toggle raw display
$7$ \( (T + 524)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 749088 \) Copy content Toggle raw display
$13$ \( (T + 344)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 50984802 \) Copy content Toggle raw display
$19$ \( (T + 2320)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 33097248 \) Copy content Toggle raw display
$29$ \( T^{2} + 536019282 \) Copy content Toggle raw display
$31$ \( (T - 10564)^{2} \) Copy content Toggle raw display
$37$ \( (T - 24082)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 11845375362 \) Copy content Toggle raw display
$43$ \( (T + 90952)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 16630502688 \) Copy content Toggle raw display
$53$ \( T^{2} + 38684823858 \) Copy content Toggle raw display
$59$ \( T^{2} + 1585070208 \) Copy content Toggle raw display
$61$ \( (T + 251138)^{2} \) Copy content Toggle raw display
$67$ \( (T + 216088)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 2906878752 \) Copy content Toggle raw display
$73$ \( (T + 308176)^{2} \) Copy content Toggle raw display
$79$ \( (T - 540124)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 869268591648 \) Copy content Toggle raw display
$89$ \( T^{2} + 49913465058 \) Copy content Toggle raw display
$97$ \( (T + 37168)^{2} \) Copy content Toggle raw display
show more
show less