Properties

Label 576.7
Level 576
Weight 7
Dimension 24525
Nonzero newspaces 16
Sturm bound 129024
Trace bound 25

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) = \( 7 \)
Nonzero newspaces: \( 16 \)
Sturm bound: \(129024\)
Trace bound: \(25\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(\Gamma_1(576))\).

Total New Old
Modular forms 55872 24723 31149
Cusp forms 54720 24525 30195
Eisenstein series 1152 198 954

Trace form

\( 24525 q - 24 q^{2} - 24 q^{3} - 24 q^{4} - 24 q^{5} - 32 q^{6} - 16 q^{7} - 24 q^{8} - 40 q^{9} - 72 q^{10} - 1378 q^{11} - 32 q^{12} + 5016 q^{13} - 24 q^{14} - 24 q^{15} - 24 q^{16} - 9818 q^{17} - 32 q^{18}+ \cdots - 5970712 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(\Gamma_1(576))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
576.7.b \(\chi_{576}(415, \cdot)\) 576.7.b.a 4 1
576.7.b.b 4
576.7.b.c 4
576.7.b.d 8
576.7.b.e 8
576.7.b.f 8
576.7.b.g 8
576.7.b.h 16
576.7.e \(\chi_{576}(449, \cdot)\) 576.7.e.a 2 1
576.7.e.b 2
576.7.e.c 2
576.7.e.d 2
576.7.e.e 2
576.7.e.f 2
576.7.e.g 2
576.7.e.h 2
576.7.e.i 2
576.7.e.j 2
576.7.e.k 2
576.7.e.l 2
576.7.e.m 4
576.7.e.n 4
576.7.e.o 4
576.7.e.p 4
576.7.e.q 4
576.7.e.r 4
576.7.g \(\chi_{576}(127, \cdot)\) 576.7.g.a 1 1
576.7.g.b 1
576.7.g.c 1
576.7.g.d 2
576.7.g.e 2
576.7.g.f 2
576.7.g.g 2
576.7.g.h 2
576.7.g.i 2
576.7.g.j 2
576.7.g.k 4
576.7.g.l 4
576.7.g.m 4
576.7.g.n 4
576.7.g.o 6
576.7.g.p 6
576.7.g.q 6
576.7.g.r 8
576.7.h \(\chi_{576}(161, \cdot)\) 576.7.h.a 16 1
576.7.h.b 32
576.7.j \(\chi_{576}(17, \cdot)\) 576.7.j.a 96 2
576.7.m \(\chi_{576}(271, \cdot)\) n/a 118 2
576.7.n \(\chi_{576}(353, \cdot)\) n/a 288 2
576.7.o \(\chi_{576}(319, \cdot)\) n/a 284 2
576.7.q \(\chi_{576}(65, \cdot)\) n/a 284 2
576.7.t \(\chi_{576}(31, \cdot)\) n/a 288 2
576.7.u \(\chi_{576}(55, \cdot)\) None 0 4
576.7.x \(\chi_{576}(89, \cdot)\) None 0 4
576.7.z \(\chi_{576}(79, \cdot)\) n/a 568 4
576.7.ba \(\chi_{576}(113, \cdot)\) n/a 568 4
576.7.bc \(\chi_{576}(53, \cdot)\) n/a 1536 8
576.7.bf \(\chi_{576}(19, \cdot)\) n/a 1912 8
576.7.bh \(\chi_{576}(7, \cdot)\) None 0 8
576.7.bi \(\chi_{576}(41, \cdot)\) None 0 8
576.7.bk \(\chi_{576}(43, \cdot)\) n/a 9184 16
576.7.bn \(\chi_{576}(5, \cdot)\) n/a 9184 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{7}^{\mathrm{old}}(\Gamma_1(576))\) into lower level spaces

\( S_{7}^{\mathrm{old}}(\Gamma_1(576)) \cong \) \(S_{7}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 21}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 18}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 14}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 15}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 12}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 12}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 7}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 10}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 9}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 6}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 5}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 6}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(144))\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(192))\)\(^{\oplus 2}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(288))\)\(^{\oplus 2}\)