Properties

Label 576.6.a.bn
Level $576$
Weight $6$
Character orbit 576.a
Self dual yes
Analytic conductor $92.381$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,6,Mod(1,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 576.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,36,0,120,0,0,0,200] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(92.3810802123\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{31}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 31 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 96)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 16\sqrt{31}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 18) q^{5} + (\beta + 60) q^{7} + ( - 6 \beta + 100) q^{11} + (6 \beta - 142) q^{13} + (6 \beta - 1338) q^{17} + ( - 10 \beta + 36) q^{19} + (30 \beta + 1920) q^{23} + (36 \beta + 5135) q^{25}+ \cdots + (60 \beta + 34546) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 36 q^{5} + 120 q^{7} + 200 q^{11} - 284 q^{13} - 2676 q^{17} + 72 q^{19} + 3840 q^{23} + 10270 q^{25} + 10212 q^{29} - 10488 q^{31} + 18032 q^{35} - 13148 q^{37} - 4164 q^{41} - 5832 q^{43} + 1520 q^{47}+ \cdots + 69092 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.56776
5.56776
0 0 0 −71.0842 0 −29.0842 0 0 0
1.2 0 0 0 107.084 0 149.084 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 576.6.a.bn 2
3.b odd 2 1 192.6.a.q 2
4.b odd 2 1 576.6.a.bm 2
8.b even 2 1 288.6.a.o 2
8.d odd 2 1 288.6.a.n 2
12.b even 2 1 192.6.a.r 2
24.f even 2 1 96.6.a.g 2
24.h odd 2 1 96.6.a.h yes 2
48.i odd 4 2 768.6.d.s 4
48.k even 4 2 768.6.d.z 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
96.6.a.g 2 24.f even 2 1
96.6.a.h yes 2 24.h odd 2 1
192.6.a.q 2 3.b odd 2 1
192.6.a.r 2 12.b even 2 1
288.6.a.n 2 8.d odd 2 1
288.6.a.o 2 8.b even 2 1
576.6.a.bm 2 4.b odd 2 1
576.6.a.bn 2 1.a even 1 1 trivial
768.6.d.s 4 48.i odd 4 2
768.6.d.z 4 48.k even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(576))\):

\( T_{5}^{2} - 36T_{5} - 7612 \) Copy content Toggle raw display
\( T_{7}^{2} - 120T_{7} - 4336 \) Copy content Toggle raw display
\( T_{11}^{2} - 200T_{11} - 275696 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 36T - 7612 \) Copy content Toggle raw display
$7$ \( T^{2} - 120T - 4336 \) Copy content Toggle raw display
$11$ \( T^{2} - 200T - 275696 \) Copy content Toggle raw display
$13$ \( T^{2} + 284T - 265532 \) Copy content Toggle raw display
$17$ \( T^{2} + 2676 T + 1504548 \) Copy content Toggle raw display
$19$ \( T^{2} - 72T - 792304 \) Copy content Toggle raw display
$23$ \( T^{2} - 3840 T - 3456000 \) Copy content Toggle raw display
$29$ \( T^{2} - 10212 T + 23206340 \) Copy content Toggle raw display
$31$ \( T^{2} + 10488 T + 27301136 \) Copy content Toggle raw display
$37$ \( T^{2} + 13148 T - 12778940 \) Copy content Toggle raw display
$41$ \( T^{2} + 4164 T - 15505276 \) Copy content Toggle raw display
$43$ \( T^{2} + 5832 T - 125615344 \) Copy content Toggle raw display
$47$ \( T^{2} - 1520 T - 310545344 \) Copy content Toggle raw display
$53$ \( T^{2} - 9012 T - 19701340 \) Copy content Toggle raw display
$59$ \( T^{2} - 55096 T + 388630288 \) Copy content Toggle raw display
$61$ \( T^{2} - 63444 T + 988000740 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 1551497968 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 1167829760 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 2060240220 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 4557502736 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 2593974672 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 2331558940 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 1164856516 \) Copy content Toggle raw display
show more
show less