Properties

Label 576.5.m.a
Level $576$
Weight $5$
Character orbit 576.m
Analytic conductor $59.541$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 576.m (of order \(4\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(59.5410987363\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Defining polynomial: \(x^{14} - 4 x^{13} + 15 x^{12} - 34 x^{11} + 62 x^{10} - 312 x^{9} + 1432 x^{8} - 4960 x^{7} + 11456 x^{6} - 19968 x^{5} + 31744 x^{4} - 139264 x^{3} + 491520 x^{2} - 1048576 x + 2097152\)
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{42} \)
Twist minimal: no (minimal twist has level 16)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{13}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{3} q^{5} + \beta_{9} q^{7} +O(q^{10})\) \( q -\beta_{3} q^{5} + \beta_{9} q^{7} + ( 7 - 7 \beta_{1} + \beta_{7} + \beta_{8} ) q^{11} + ( -1 + \beta_{1} - \beta_{4} + \beta_{5} - \beta_{7} + \beta_{9} - \beta_{13} ) q^{13} + ( 2 - 2 \beta_{2} - \beta_{3} + 2 \beta_{5} - \beta_{6} + \beta_{7} + \beta_{8} - 3 \beta_{9} + \beta_{10} - \beta_{11} - \beta_{13} ) q^{17} + ( 49 + 49 \beta_{1} + 5 \beta_{3} + 2 \beta_{4} + 2 \beta_{6} + 2 \beta_{9} + 2 \beta_{10} + \beta_{11} + 2 \beta_{12} ) q^{19} + ( 76 - 4 \beta_{2} - 8 \beta_{3} + 4 \beta_{5} + 6 \beta_{6} - 2 \beta_{7} + 8 \beta_{8} + 3 \beta_{9} + \beta_{10} + 2 \beta_{11} - \beta_{13} ) q^{23} + ( 47 \beta_{1} + 13 \beta_{2} - \beta_{3} - 6 \beta_{4} + 13 \beta_{5} + 3 \beta_{7} - \beta_{8} + \beta_{10} + 3 \beta_{11} + 4 \beta_{12} + \beta_{13} ) q^{25} + ( -56 + 56 \beta_{1} - 6 \beta_{4} + 36 \beta_{5} - 2 \beta_{6} - 3 \beta_{8} + 6 \beta_{9} + 2 \beta_{12} + 4 \beta_{13} ) q^{29} + ( -20 \beta_{1} - 4 \beta_{2} - 16 \beta_{3} - 4 \beta_{4} - 4 \beta_{5} + 2 \beta_{7} - 16 \beta_{8} - 3 \beta_{10} + 2 \beta_{11} - 2 \beta_{12} - 3 \beta_{13} ) q^{31} + ( 102 + 102 \beta_{1} - 8 \beta_{2} + 34 \beta_{3} + 6 \beta_{4} + 2 \beta_{6} + 6 \beta_{9} - 6 \beta_{10} - 2 \beta_{11} + 2 \beta_{12} ) q^{35} + ( -115 - 115 \beta_{1} - 59 \beta_{2} - 2 \beta_{3} - 13 \beta_{4} - 8 \beta_{6} - 13 \beta_{9} + 3 \beta_{10} - 5 \beta_{11} - 8 \beta_{12} ) q^{37} + ( -6 \beta_{1} + 67 \beta_{2} + 11 \beta_{3} - 12 \beta_{4} + 67 \beta_{5} - 5 \beta_{7} + 11 \beta_{8} - 3 \beta_{10} - 5 \beta_{11} - 2 \beta_{12} - 3 \beta_{13} ) q^{41} + ( -112 + 112 \beta_{1} + 8 \beta_{4} + 7 \beta_{5} + 4 \beta_{6} - 40 \beta_{8} - 8 \beta_{9} - 4 \beta_{12} + 4 \beta_{13} ) q^{43} + ( 400 \beta_{1} + 18 \beta_{2} - 34 \beta_{3} + 18 \beta_{5} - 4 \beta_{7} - 34 \beta_{8} - \beta_{10} - 4 \beta_{11} + 2 \beta_{12} - \beta_{13} ) q^{47} + ( 15 + 110 \beta_{2} - 16 \beta_{3} - 110 \beta_{5} - 2 \beta_{6} + 4 \beta_{7} + 16 \beta_{8} + 6 \beta_{9} - 4 \beta_{11} ) q^{49} + ( 65 + 65 \beta_{1} - 187 \beta_{2} - 4 \beta_{3} - 3 \beta_{4} - 2 \beta_{6} - 3 \beta_{9} + 3 \beta_{10} - 9 \beta_{11} - 2 \beta_{12} ) q^{53} + ( 844 - 26 \beta_{2} + 38 \beta_{3} + 26 \beta_{5} + 16 \beta_{6} - 6 \beta_{7} - 38 \beta_{8} + 13 \beta_{9} + 4 \beta_{10} + 6 \beta_{11} - 4 \beta_{13} ) q^{55} + ( -194 + 194 \beta_{1} - 6 \beta_{4} + 39 \beta_{5} + 22 \beta_{6} - 6 \beta_{7} - 50 \beta_{8} + 6 \beta_{9} - 22 \beta_{12} + 10 \beta_{13} ) q^{59} + ( -303 + 303 \beta_{1} - 5 \beta_{4} - 261 \beta_{5} - 10 \beta_{6} - 7 \beta_{7} - 14 \beta_{8} + 5 \beta_{9} + 10 \beta_{12} + 13 \beta_{13} ) q^{61} + ( 108 + 177 \beta_{2} - 31 \beta_{3} - 177 \beta_{5} + 10 \beta_{6} + 7 \beta_{7} + 31 \beta_{8} - 36 \beta_{9} - 17 \beta_{10} - 7 \beta_{11} + 17 \beta_{13} ) q^{65} + ( -573 - 573 \beta_{1} - 50 \beta_{2} - 5 \beta_{3} + 44 \beta_{4} + 16 \beta_{6} + 44 \beta_{9} - 24 \beta_{10} - 5 \beta_{11} + 16 \beta_{12} ) q^{67} + ( 1484 - 84 \beta_{2} + 8 \beta_{3} + 84 \beta_{5} - 10 \beta_{6} + 30 \beta_{7} - 8 \beta_{8} + 3 \beta_{9} - 7 \beta_{10} - 30 \beta_{11} + 7 \beta_{13} ) q^{71} + ( -242 \beta_{1} - 243 \beta_{2} + 80 \beta_{3} - 41 \beta_{4} - 243 \beta_{5} - 20 \beta_{7} + 80 \beta_{8} - 16 \beta_{10} - 20 \beta_{11} - 17 \beta_{12} - 16 \beta_{13} ) q^{73} + ( 595 - 595 \beta_{1} - 51 \beta_{4} - 359 \beta_{5} + 38 \beta_{6} - 5 \beta_{7} + 3 \beta_{8} + 51 \beta_{9} - 38 \beta_{12} - 17 \beta_{13} ) q^{77} + ( -2172 \beta_{1} + 174 \beta_{2} - 2 \beta_{3} - 20 \beta_{4} + 174 \beta_{5} - 22 \beta_{7} - 2 \beta_{8} + 10 \beta_{10} - 22 \beta_{11} - 28 \beta_{12} + 10 \beta_{13} ) q^{79} + ( -1236 - 1236 \beta_{1} + 3 \beta_{2} + 16 \beta_{3} - 30 \beta_{4} + 22 \beta_{6} - 30 \beta_{9} + 14 \beta_{10} + 4 \beta_{11} + 22 \beta_{12} ) q^{83} + ( 649 + 649 \beta_{1} + 377 \beta_{2} - 29 \beta_{3} - 37 \beta_{4} + 28 \beta_{6} - 37 \beta_{9} - \beta_{10} + 15 \beta_{11} + 28 \beta_{12} ) q^{85} + ( 534 \beta_{1} - 295 \beta_{2} - 44 \beta_{3} - 81 \beta_{4} - 295 \beta_{5} - 44 \beta_{8} - 4 \beta_{10} + 31 \beta_{12} - 4 \beta_{13} ) q^{89} + ( 2044 - 2044 \beta_{1} + 22 \beta_{4} - 30 \beta_{5} - 14 \beta_{6} + 28 \beta_{7} - 136 \beta_{8} - 22 \beta_{9} + 14 \beta_{12} + 14 \beta_{13} ) q^{91} + ( -3064 \beta_{1} + 20 \beta_{2} - 108 \beta_{3} - 9 \beta_{4} + 20 \beta_{5} - 28 \beta_{7} - 108 \beta_{8} - 16 \beta_{10} - 28 \beta_{11} + 16 \beta_{12} - 16 \beta_{13} ) q^{95} + ( 74 - 248 \beta_{2} - 105 \beta_{3} + 248 \beta_{5} - 15 \beta_{6} + 37 \beta_{7} + 105 \beta_{8} + 23 \beta_{9} - 7 \beta_{10} - 37 \beta_{11} + 7 \beta_{13} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14q + 2q^{5} + 4q^{7} + O(q^{10}) \) \( 14q + 2q^{5} + 4q^{7} + 94q^{11} - 2q^{13} + 4q^{17} + 706q^{19} + 1148q^{23} - 862q^{29} + 1340q^{35} - 1826q^{37} - 1694q^{43} + 682q^{49} + 482q^{53} + 11780q^{55} - 2786q^{59} - 3778q^{61} + 2020q^{65} - 7998q^{67} + 19964q^{71} + 9508q^{77} - 17282q^{83} + 9948q^{85} + 28036q^{91} - 4q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{14} - 4 x^{13} + 15 x^{12} - 34 x^{11} + 62 x^{10} - 312 x^{9} + 1432 x^{8} - 4960 x^{7} + 11456 x^{6} - 19968 x^{5} + 31744 x^{4} - 139264 x^{3} + 491520 x^{2} - 1048576 x + 2097152\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\(-2875 \nu^{13} + 13444 \nu^{12} - 26581 \nu^{11} + 16062 \nu^{10} - 24954 \nu^{9} + 748984 \nu^{8} - 4619080 \nu^{7} + 10623840 \nu^{6} - 11499840 \nu^{5} + 5960704 \nu^{4} - 51930112 \nu^{3} + 429211648 \nu^{2} - 1316257792 \nu + 1279524864\)\()/ 678952960 \)
\(\beta_{2}\)\(=\)\((\)\(-11609 \nu^{13} + 81068 \nu^{12} - 216535 \nu^{11} + 92170 \nu^{10} - 445086 \nu^{9} + 4629992 \nu^{8} - 22287000 \nu^{7} + 63665440 \nu^{6} - 81223104 \nu^{5} + 58993664 \nu^{4} - 414198784 \nu^{3} + 2235252736 \nu^{2} - 5795840000 \nu + 7904428032\)\()/ 678952960 \)
\(\beta_{3}\)\(=\)\((\)\(23279 \nu^{13} + 167756 \nu^{12} - 482591 \nu^{11} + 959162 \nu^{10} - 197678 \nu^{9} + 877992 \nu^{8} - 35554520 \nu^{7} + 170800160 \nu^{6} - 398883776 \nu^{5} + 133770240 \nu^{4} - 180005888 \nu^{3} + 2196488192 \nu^{2} - 17134354432 \nu + 45595492352\)\()/ 678952960 \)
\(\beta_{4}\)\(=\)\((\)\(-3499 \nu^{13} + 6652 \nu^{12} + 13019 \nu^{11} - 10778 \nu^{10} + 122070 \nu^{9} + 1232776 \nu^{8} - 3340360 \nu^{7} - 34400 \nu^{6} + 24398016 \nu^{5} + 5933568 \nu^{4} - 170023936 \nu^{3} + 637231104 \nu^{2} - 494927872 \nu - 3419275264\)\()/84869120\)
\(\beta_{5}\)\(=\)\((\)\(-30299 \nu^{13} + 175428 \nu^{12} - 396085 \nu^{11} + 537790 \nu^{10} - 1159226 \nu^{9} + 9651512 \nu^{8} - 53625160 \nu^{7} + 150852960 \nu^{6} - 203316544 \nu^{5} + 134759424 \nu^{4} - 982549504 \nu^{3} + 4972855296 \nu^{2} - 16046653440 \nu + 20694433792\)\()/ 678952960 \)
\(\beta_{6}\)\(=\)\((\)\(187 \nu^{13} + 588 \nu^{12} - 3179 \nu^{11} + 8306 \nu^{10} - 18854 \nu^{9} + 936 \nu^{8} - 206648 \nu^{7} + 1252384 \nu^{6} - 3000512 \nu^{5} + 5232640 \nu^{4} - 7527424 \nu^{3} + 7045120 \nu^{2} - 93421568 \nu + 359268352\)\()/2424832\)
\(\beta_{7}\)\(=\)\((\)\(54457 \nu^{13} - 666028 \nu^{12} + 2372471 \nu^{11} - 2827082 \nu^{10} - 5318178 \nu^{9} - 5702120 \nu^{8} + 151698840 \nu^{7} - 675003680 \nu^{6} + 1063292352 \nu^{5} + 531149824 \nu^{4} - 2507641856 \nu^{3} - 7324450816 \nu^{2} + 52640448512 \nu - 123104133120\)\()/ 678952960 \)
\(\beta_{8}\)\(=\)\((\)\(-63941 \nu^{13} + 248956 \nu^{12} - 325931 \nu^{11} + 303682 \nu^{10} - 1485958 \nu^{9} + 16189512 \nu^{8} - 70629560 \nu^{7} + 157086880 \nu^{6} - 67802816 \nu^{5} + 199142400 \nu^{4} - 922754048 \nu^{3} + 7022559232 \nu^{2} - 16313188352 \nu + 4344512512\)\()/ 678952960 \)
\(\beta_{9}\)\(=\)\((\)\(-1373 \nu^{13} - 1028 \nu^{12} + 16237 \nu^{11} - 30894 \nu^{10} + 21354 \nu^{9} + 156488 \nu^{8} + 410632 \nu^{7} - 4973408 \nu^{6} + 13415232 \nu^{5} - 9518080 \nu^{4} - 7715840 \nu^{3} - 46219264 \nu^{2} + 423264256 \nu - 1804861440\)\()/9699328\)
\(\beta_{10}\)\(=\)\((\)\(-60737 \nu^{13} - 163572 \nu^{12} + 819089 \nu^{11} - 871398 \nu^{10} - 2291022 \nu^{9} + 15043880 \nu^{8} + 15561640 \nu^{7} - 288799200 \nu^{6} + 569406528 \nu^{5} + 16526336 \nu^{4} - 1198050304 \nu^{3} + 1135230976 \nu^{2} + 35844947968 \nu - 98412789760\)\()/ 339476480 \)
\(\beta_{11}\)\(=\)\((\)\(191167 \nu^{13} - 198708 \nu^{12} - 780399 \nu^{11} + 1949018 \nu^{10} + 2939442 \nu^{9} - 59111000 \nu^{8} + 130720680 \nu^{7} + 55001120 \nu^{6} - 991562688 \nu^{5} + 198482944 \nu^{4} + 4742575104 \nu^{3} - 12649414656 \nu^{2} + 6744604672 \nu + 139540561920\)\()/ 678952960 \)
\(\beta_{12}\)\(=\)\((\)\(-107577 \nu^{13} + 484524 \nu^{12} - 1270135 \nu^{11} + 2145610 \nu^{10} - 3926878 \nu^{9} + 32206056 \nu^{8} - 152847000 \nu^{7} + 393864480 \nu^{6} - 547344832 \nu^{5} + 682642432 \nu^{4} - 2131233792 \nu^{3} + 12085280768 \nu^{2} - 41333391360 \nu + 33873985536\)\()/ 339476480 \)
\(\beta_{13}\)\(=\)\((\)\(108593 \nu^{13} - 103372 \nu^{12} - 236161 \nu^{11} + 473862 \nu^{10} + 1410158 \nu^{9} - 32112040 \nu^{8} + 64026840 \nu^{7} - 34664480 \nu^{6} - 122103872 \nu^{5} - 344812544 \nu^{4} + 2863123456 \nu^{3} - 10052583424 \nu^{2} + 11285659648 \nu + 31120424960\)\()/ 339476480 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(-\beta_{12} + \beta_{10} + \beta_{8} - \beta_{7} + \beta_{6} + \beta_{5} + 2 \beta_{2} - 9 \beta_{1} + 17\)\()/64\)
\(\nu^{2}\)\(=\)\((\)\(-\beta_{12} + 2 \beta_{11} + \beta_{10} - 4 \beta_{9} + 7 \beta_{8} + \beta_{7} - 3 \beta_{6} + 7 \beta_{5} + 4 \beta_{4} - 2 \beta_{3} - 21 \beta_{1} - 63\)\()/64\)
\(\nu^{3}\)\(=\)\((\)\(3 \beta_{12} - 2 \beta_{11} + \beta_{10} - 12 \beta_{9} + 31 \beta_{8} + \beta_{7} - 7 \beta_{6} - 65 \beta_{5} - 12 \beta_{4} + 10 \beta_{3} - 20 \beta_{2} + 167 \beta_{1} - 67\)\()/64\)
\(\nu^{4}\)\(=\)\((\)\(-6 \beta_{13} + 11 \beta_{12} + 12 \beta_{11} - 5 \beta_{10} + 12 \beta_{9} + 45 \beta_{8} + 3 \beta_{7} + 29 \beta_{6} - 255 \beta_{5} + 28 \beta_{4} - 4 \beta_{3} + 82 \beta_{2} + 967 \beta_{1} + 121\)\()/64\)
\(\nu^{5}\)\(=\)\((\)\(44 \beta_{13} + 15 \beta_{12} - 34 \beta_{11} - 23 \beta_{10} - 36 \beta_{9} + 107 \beta_{8} + 5 \beta_{7} - 3 \beta_{6} - 29 \beta_{5} + 108 \beta_{4} - 118 \beta_{3} - 4 \beta_{2} - 1909 \beta_{1} + 5561\)\()/64\)
\(\nu^{6}\)\(=\)\((\)\(-38 \beta_{13} - 189 \beta_{12} - 108 \beta_{11} - 5 \beta_{10} - 132 \beta_{9} + 445 \beta_{8} - 157 \beta_{7} + 133 \beta_{6} + 657 \beta_{5} - 68 \beta_{4} - 316 \beta_{3} - 422 \beta_{2} - 8849 \beta_{1} - 12447\)\()/64\)
\(\nu^{7}\)\(=\)\((\)\(-280 \beta_{13} + 7 \beta_{12} + 242 \beta_{11} - 291 \beta_{10} - 84 \beta_{9} + 1143 \beta_{8} + 89 \beta_{7} - 371 \beta_{6} + 1255 \beta_{5} + 156 \beta_{4} - 266 \beta_{3} + 1616 \beta_{2} - 44397 \beta_{1} - 10215\)\()/64\)
\(\nu^{8}\)\(=\)\((\)\(-858 \beta_{13} + 611 \beta_{12} - 1136 \beta_{11} - 153 \beta_{10} - 1156 \beta_{9} + 409 \beta_{8} - 185 \beta_{7} - 867 \beta_{6} - 8315 \beta_{5} - 1284 \beta_{4} + 3976 \beta_{3} + 5494 \beta_{2} - 59217 \beta_{1} + 66329\)\()/64\)
\(\nu^{9}\)\(=\)\((\)\(-2564 \beta_{13} - 153 \beta_{12} + 1158 \beta_{11} - 127 \beta_{10} + 3660 \beta_{9} - 6677 \beta_{8} - 3323 \beta_{7} + 3381 \beta_{6} - 23677 \beta_{5} + 8796 \beta_{4} + 4802 \beta_{3} + 4708 \beta_{2} + 108659 \beta_{1} + 89825\)\()/64\)
\(\nu^{10}\)\(=\)\((\)\(3434 \beta_{13} + 6691 \beta_{12} + 548 \beta_{11} + 2587 \beta_{10} - 4804 \beta_{9} + 3021 \beta_{8} - 1357 \beta_{7} - 5915 \beta_{6} + 53569 \beta_{5} + 21852 \beta_{4} + 7444 \beta_{3} - 121494 \beta_{2} - 580657 \beta_{1} + 628385\)\()/64\)
\(\nu^{11}\)\(=\)\((\)\(-15088 \beta_{13} - 31849 \beta_{12} - 5174 \beta_{11} + 8437 \beta_{10} + 2892 \beta_{9} + 90719 \beta_{8} - 9359 \beta_{7} + 15405 \beta_{6} + 84255 \beta_{5} - 32196 \beta_{4} + 79198 \beta_{3} - 343064 \beta_{2} - 15805 \beta_{1} - 1111399\)\()/64\)
\(\nu^{12}\)\(=\)\((\)\(9886 \beta_{13} + 1059 \beta_{12} + 65352 \beta_{11} - 12833 \beta_{10} + 144956 \beta_{9} + 270289 \beta_{8} + 38927 \beta_{7} - 10163 \beta_{6} - 170835 \beta_{5} + 47548 \beta_{4} + 313424 \beta_{3} + 396334 \beta_{2} - 2474769 \beta_{1} + 1768521\)\()/64\)
\(\nu^{13}\)\(=\)\((\)\(124644 \beta_{13} + 4807 \beta_{12} - 241810 \beta_{11} + 41769 \beta_{10} - 273012 \beta_{9} + 107123 \beta_{8} + 93757 \beta_{7} - 97819 \beta_{6} - 1479205 \beta_{5} + 169308 \beta_{4} + 1013274 \beta_{3} + 1212684 \beta_{2} + 85715 \beta_{1} - 514479\)\()/64\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(1\) \(-1\) \(\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
271.1
0.336831 2.80830i
2.24452 + 1.72109i
−2.15805 + 1.82834i
0.153862 + 2.82424i
−2.40693 1.48549i
1.03712 2.63142i
2.79265 0.448449i
0.336831 + 2.80830i
2.24452 1.72109i
−2.15805 1.82834i
0.153862 2.82424i
−2.40693 + 1.48549i
1.03712 + 2.63142i
2.79265 + 0.448449i
0 0 0 −27.2309 27.2309i 0 −50.3097 0 0 0
271.2 0 0 0 −21.7374 21.7374i 0 6.62054 0 0 0
271.3 0 0 0 −4.72348 4.72348i 0 −45.3712 0 0 0
271.4 0 0 0 2.84710 + 2.84710i 0 76.7794 0 0 0
271.5 0 0 0 8.04297 + 8.04297i 0 49.8797 0 0 0
271.6 0 0 0 14.6016 + 14.6016i 0 24.0210 0 0 0
271.7 0 0 0 29.2002 + 29.2002i 0 −59.6196 0 0 0
559.1 0 0 0 −27.2309 + 27.2309i 0 −50.3097 0 0 0
559.2 0 0 0 −21.7374 + 21.7374i 0 6.62054 0 0 0
559.3 0 0 0 −4.72348 + 4.72348i 0 −45.3712 0 0 0
559.4 0 0 0 2.84710 2.84710i 0 76.7794 0 0 0
559.5 0 0 0 8.04297 8.04297i 0 49.8797 0 0 0
559.6 0 0 0 14.6016 14.6016i 0 24.0210 0 0 0
559.7 0 0 0 29.2002 29.2002i 0 −59.6196 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 559.7
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
16.f odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 576.5.m.a 14
3.b odd 2 1 64.5.f.a 14
4.b odd 2 1 144.5.m.a 14
12.b even 2 1 16.5.f.a 14
16.e even 4 1 144.5.m.a 14
16.f odd 4 1 inner 576.5.m.a 14
24.f even 2 1 128.5.f.b 14
24.h odd 2 1 128.5.f.a 14
48.i odd 4 1 16.5.f.a 14
48.i odd 4 1 128.5.f.b 14
48.k even 4 1 64.5.f.a 14
48.k even 4 1 128.5.f.a 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
16.5.f.a 14 12.b even 2 1
16.5.f.a 14 48.i odd 4 1
64.5.f.a 14 3.b odd 2 1
64.5.f.a 14 48.k even 4 1
128.5.f.a 14 24.h odd 2 1
128.5.f.a 14 48.k even 4 1
128.5.f.b 14 24.f even 2 1
128.5.f.b 14 48.i odd 4 1
144.5.m.a 14 4.b odd 2 1
144.5.m.a 14 16.e even 4 1
576.5.m.a 14 1.a even 1 1 trivial
576.5.m.a 14 16.f odd 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(13\!\cdots\!64\)\( T_{5}^{6} - \)\(14\!\cdots\!16\)\( T_{5}^{5} + \)\(72\!\cdots\!04\)\( T_{5}^{4} + \)\(20\!\cdots\!68\)\( T_{5}^{3} + \)\(38\!\cdots\!00\)\( T_{5}^{2} - \)\(27\!\cdots\!00\)\( T_{5} + \)\(95\!\cdots\!08\)\( \)">\(T_{5}^{14} - \cdots\) acting on \(S_{5}^{\mathrm{new}}(576, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{14} \)
$3$ \( T^{14} \)
$5$ \( 95385721607700608 - 27076575211548800 T + 3843032860840000 T^{2} + 208330635859968 T^{3} + 72061290078304 T^{4} - 14025915627616 T^{5} + 1305653282864 T^{6} - 19416658944 T^{7} + 3101720 T^{8} - 2850584 T^{9} + 3106060 T^{10} - 2688 T^{11} + 2 T^{12} - 2 T^{13} + T^{14} \)
$7$ \( ( 82884464768 - 13846485056 T + 67418144 T^{2} + 20706288 T^{3} - 35592 T^{4} - 8572 T^{5} - 2 T^{6} + T^{7} )^{2} \)
$11$ \( \)\(47\!\cdots\!12\)\( + \)\(30\!\cdots\!92\)\( T + \)\(95\!\cdots\!36\)\( T^{2} + \)\(65\!\cdots\!84\)\( T^{3} + \)\(20\!\cdots\!48\)\( T^{4} + 2830209232291459680 T^{5} + 219305901738719280 T^{6} + 1162127446795776 T^{7} + 2291939461144 T^{8} - 32065636328 T^{9} + 784133132 T^{10} + 2341824 T^{11} + 4418 T^{12} - 94 T^{13} + T^{14} \)
$13$ \( \)\(24\!\cdots\!52\)\( - \)\(17\!\cdots\!12\)\( T + \)\(62\!\cdots\!36\)\( T^{2} - \)\(78\!\cdots\!80\)\( T^{3} + \)\(49\!\cdots\!08\)\( T^{4} - 13395006265199179680 T^{5} + 938835469167525936 T^{6} - 8456611120356352 T^{7} + 24609579825688 T^{8} + 662386022680 T^{9} + 6547368972 T^{10} + 6826112 T^{11} + 2 T^{12} + 2 T^{13} + T^{14} \)
$17$ \( ( 12009518203797632 - 119000879480896 T - 1432677679200 T^{2} + 14701879344 T^{3} + 13778968 T^{4} - 250892 T^{5} - 2 T^{6} + T^{7} )^{2} \)
$19$ \( \)\(37\!\cdots\!48\)\( + \)\(19\!\cdots\!84\)\( T + \)\(52\!\cdots\!36\)\( T^{2} - \)\(10\!\cdots\!20\)\( T^{3} + \)\(87\!\cdots\!60\)\( T^{4} - \)\(29\!\cdots\!48\)\( T^{5} + \)\(54\!\cdots\!96\)\( T^{6} - 1364277329112460800 T^{7} + 15308192398571800 T^{8} - 46983788219800 T^{9} + 71849973004 T^{10} - 9374912 T^{11} + 249218 T^{12} - 706 T^{13} + T^{14} \)
$23$ \( ( 54911897542109056 - 1959672332215360 T - 7489328380960 T^{2} + 215281147888 T^{3} + 327850376 T^{4} - 934844 T^{5} - 574 T^{6} + T^{7} )^{2} \)
$29$ \( \)\(27\!\cdots\!28\)\( + \)\(58\!\cdots\!72\)\( T + \)\(63\!\cdots\!64\)\( T^{2} + \)\(36\!\cdots\!92\)\( T^{3} + \)\(12\!\cdots\!92\)\( T^{4} + \)\(25\!\cdots\!48\)\( T^{5} + \)\(35\!\cdots\!00\)\( T^{6} + \)\(63\!\cdots\!52\)\( T^{7} + 2138874201321723160 T^{8} + 4180270176993128 T^{9} + 4196992328204 T^{10} + 435330432 T^{11} + 371522 T^{12} + 862 T^{13} + T^{14} \)
$31$ \( \)\(71\!\cdots\!96\)\( + \)\(40\!\cdots\!52\)\( T^{2} + \)\(76\!\cdots\!80\)\( T^{4} + \)\(57\!\cdots\!84\)\( T^{6} + 13297300404014415872 T^{8} + 13339923865600 T^{10} + 6024960 T^{12} + T^{14} \)
$37$ \( \)\(51\!\cdots\!68\)\( - \)\(19\!\cdots\!88\)\( T + \)\(35\!\cdots\!04\)\( T^{2} + \)\(35\!\cdots\!92\)\( T^{3} + \)\(15\!\cdots\!28\)\( T^{4} + \)\(12\!\cdots\!88\)\( T^{5} + \)\(64\!\cdots\!32\)\( T^{6} + \)\(10\!\cdots\!64\)\( T^{7} + 37374659035443657496 T^{8} + 35578094339272856 T^{9} + 17274822237964 T^{10} + 1554716288 T^{11} + 1667138 T^{12} + 1826 T^{13} + T^{14} \)
$41$ \( \)\(24\!\cdots\!04\)\( + \)\(51\!\cdots\!76\)\( T^{2} + \)\(20\!\cdots\!12\)\( T^{4} + \)\(31\!\cdots\!48\)\( T^{6} + \)\(23\!\cdots\!56\)\( T^{8} + 85694612004864 T^{10} + 15036672 T^{12} + T^{14} \)
$43$ \( \)\(11\!\cdots\!68\)\( + \)\(68\!\cdots\!60\)\( T + \)\(20\!\cdots\!00\)\( T^{2} + \)\(88\!\cdots\!68\)\( T^{3} + \)\(18\!\cdots\!68\)\( T^{4} + \)\(15\!\cdots\!16\)\( T^{5} + \)\(42\!\cdots\!04\)\( T^{6} + \)\(13\!\cdots\!48\)\( T^{7} + \)\(19\!\cdots\!00\)\( T^{8} + 142596531803367912 T^{9} + 57605028643980 T^{10} + 8486946368 T^{11} + 1434818 T^{12} + 1694 T^{13} + T^{14} \)
$47$ \( \)\(12\!\cdots\!76\)\( + \)\(10\!\cdots\!80\)\( T^{2} + \)\(38\!\cdots\!80\)\( T^{4} + \)\(52\!\cdots\!84\)\( T^{6} + \)\(32\!\cdots\!52\)\( T^{8} + 104964818558976 T^{10} + 16427776 T^{12} + T^{14} \)
$53$ \( \)\(29\!\cdots\!88\)\( + \)\(53\!\cdots\!48\)\( T + \)\(48\!\cdots\!04\)\( T^{2} + \)\(13\!\cdots\!72\)\( T^{3} + \)\(16\!\cdots\!92\)\( T^{4} + \)\(29\!\cdots\!76\)\( T^{5} + \)\(28\!\cdots\!44\)\( T^{6} + \)\(75\!\cdots\!52\)\( T^{7} + 30136282404129217816 T^{8} - 411910984078744 T^{9} + 119500824744716 T^{10} + 9361537920 T^{11} + 116162 T^{12} - 482 T^{13} + T^{14} \)
$59$ \( \)\(35\!\cdots\!72\)\( + \)\(10\!\cdots\!16\)\( T + \)\(15\!\cdots\!24\)\( T^{2} + \)\(13\!\cdots\!56\)\( T^{3} + \)\(80\!\cdots\!12\)\( T^{4} + \)\(31\!\cdots\!96\)\( T^{5} + \)\(82\!\cdots\!28\)\( T^{6} + \)\(18\!\cdots\!16\)\( T^{7} + \)\(70\!\cdots\!88\)\( T^{8} + 2819291680457879576 T^{9} + 687445565640076 T^{10} + 61476408000 T^{11} + 3880898 T^{12} + 2786 T^{13} + T^{14} \)
$61$ \( \)\(12\!\cdots\!92\)\( + \)\(21\!\cdots\!00\)\( T + \)\(19\!\cdots\!00\)\( T^{2} - \)\(29\!\cdots\!64\)\( T^{3} + \)\(57\!\cdots\!88\)\( T^{4} + \)\(39\!\cdots\!88\)\( T^{5} + \)\(13\!\cdots\!44\)\( T^{6} - \)\(24\!\cdots\!80\)\( T^{7} + \)\(39\!\cdots\!76\)\( T^{8} + 2978236711893026328 T^{9} + 1123719102824460 T^{10} - 38724599168 T^{11} + 7136642 T^{12} + 3778 T^{13} + T^{14} \)
$67$ \( \)\(40\!\cdots\!08\)\( - \)\(14\!\cdots\!84\)\( T + \)\(26\!\cdots\!16\)\( T^{2} - \)\(13\!\cdots\!68\)\( T^{3} + \)\(29\!\cdots\!56\)\( T^{4} + \)\(34\!\cdots\!52\)\( T^{5} + \)\(31\!\cdots\!56\)\( T^{6} - \)\(15\!\cdots\!00\)\( T^{7} + \)\(38\!\cdots\!48\)\( T^{8} + 8669080375183272552 T^{9} + 1177758166491660 T^{10} - 113497816512 T^{11} + 31984002 T^{12} + 7998 T^{13} + T^{14} \)
$71$ \( ( -\)\(38\!\cdots\!80\)\( - \)\(73\!\cdots\!68\)\( T - 3205242620439887904 T^{2} + 628961169111024 T^{3} + 356646354056 T^{4} - 32864444 T^{5} - 9982 T^{6} + T^{7} )^{2} \)
$73$ \( \)\(67\!\cdots\!16\)\( + \)\(23\!\cdots\!48\)\( T^{2} + \)\(23\!\cdots\!60\)\( T^{4} + \)\(59\!\cdots\!72\)\( T^{6} + \)\(55\!\cdots\!72\)\( T^{8} + 18004735458743808 T^{10} + 229001536 T^{12} + T^{14} \)
$79$ \( \)\(80\!\cdots\!76\)\( + \)\(17\!\cdots\!96\)\( T^{2} + \)\(52\!\cdots\!92\)\( T^{4} + \)\(64\!\cdots\!36\)\( T^{6} + \)\(39\!\cdots\!92\)\( T^{8} + 12122330541457408 T^{10} + 181267456 T^{12} + T^{14} \)
$83$ \( \)\(30\!\cdots\!48\)\( + \)\(32\!\cdots\!96\)\( T + \)\(17\!\cdots\!96\)\( T^{2} + \)\(46\!\cdots\!44\)\( T^{3} + \)\(61\!\cdots\!28\)\( T^{4} + \)\(60\!\cdots\!12\)\( T^{5} + \)\(87\!\cdots\!84\)\( T^{6} + \)\(41\!\cdots\!36\)\( T^{7} + \)\(88\!\cdots\!24\)\( T^{8} - 461127974893871208 T^{9} + 129090565299084 T^{10} + 268544938176 T^{11} + 149333762 T^{12} + 17282 T^{13} + T^{14} \)
$89$ \( \)\(10\!\cdots\!96\)\( + \)\(14\!\cdots\!80\)\( T^{2} + \)\(54\!\cdots\!80\)\( T^{4} + \)\(52\!\cdots\!20\)\( T^{6} + \)\(20\!\cdots\!84\)\( T^{8} + 39327084461872640 T^{10} + 329862464 T^{12} + T^{14} \)
$97$ \( ( -\)\(50\!\cdots\!96\)\( - \)\(13\!\cdots\!60\)\( T - 15741851025018318752 T^{2} + 13158120305248304 T^{3} + 250697829864 T^{4} - 231854348 T^{5} + 2 T^{6} + T^{7} )^{2} \)
show more
show less