Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [576,5,Mod(127,576)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(576, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 0]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("576.127");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 576 = 2^{6} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 576.g (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(59.5410987363\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\zeta_{6})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2^{3} \) |
Twist minimal: | no (minimal twist has level 48) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 127.1 | ||
Root | \(0.500000 + 0.866025i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 576.127 |
Dual form | 576.5.g.d.127.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).
\(n\) | \(65\) | \(127\) | \(325\) |
\(\chi(n)\) | \(1\) | \(-1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | −42.0000 | −1.68000 | −0.840000 | − | 0.542586i | \(-0.817445\pi\) | ||||
−0.840000 | + | 0.542586i | \(0.817445\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | − 76.2102i | − 1.55531i | −0.628691 | − | 0.777655i | \(-0.716409\pi\) | ||||
0.628691 | − | 0.777655i | \(-0.283591\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 20.7846i | 0.171774i | 0.996305 | + | 0.0858868i | \(0.0273723\pi\) | ||||
−0.996305 | + | 0.0858868i | \(0.972628\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 182.000 | 1.07692 | 0.538462 | − | 0.842650i | \(-0.319006\pi\) | ||||
0.538462 | + | 0.842650i | \(0.319006\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 246.000 | 0.851211 | 0.425606 | − | 0.904909i | \(-0.360061\pi\) | ||||
0.425606 | + | 0.904909i | \(0.360061\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | − 117.779i | − 0.326259i | −0.986605 | − | 0.163129i | \(-0.947841\pi\) | ||||
0.986605 | − | 0.163129i | \(-0.0521588\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | − 748.246i | − 1.41445i | −0.706987 | − | 0.707227i | \(-0.749946\pi\) | ||||
0.706987 | − | 0.707227i | \(-0.250054\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 1139.00 | 1.82240 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 78.0000 | 0.0927467 | 0.0463734 | − | 0.998924i | \(-0.485234\pi\) | ||||
0.0463734 | + | 0.998924i | \(0.485234\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | − 1475.71i | − 1.53560i | −0.640692 | − | 0.767798i | \(-0.721353\pi\) | ||||
0.640692 | − | 0.767798i | \(-0.278647\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 3200.83i | 2.61292i | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −530.000 | −0.387144 | −0.193572 | − | 0.981086i | \(-0.562007\pi\) | ||||
−0.193572 | + | 0.981086i | \(0.562007\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 918.000 | 0.546104 | 0.273052 | − | 0.961999i | \(-0.411967\pi\) | ||||
0.273052 | + | 0.961999i | \(0.411967\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | − 852.169i | − 0.460881i | −0.973086 | − | 0.230441i | \(-0.925983\pi\) | ||||
0.973086 | − | 0.230441i | \(-0.0740167\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 3782.80i | 1.71245i | 0.516604 | + | 0.856224i | \(0.327196\pi\) | ||||
−0.516604 | + | 0.856224i | \(0.672804\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −3407.00 | −1.41899 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −4626.00 | −1.64685 | −0.823425 | − | 0.567426i | \(-0.807939\pi\) | ||||
−0.823425 | + | 0.567426i | \(0.807939\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | − 872.954i | − 0.288580i | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 228.631i | 0.0656796i | 0.999461 | + | 0.0328398i | \(0.0104551\pi\) | ||||
−0.999461 | + | 0.0328398i | \(0.989545\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −1346.00 | −0.361731 | −0.180865 | − | 0.983508i | \(-0.557890\pi\) | ||||
−0.180865 | + | 0.983508i | \(0.557890\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | −7644.00 | −1.80923 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 1087.73i | 0.242310i | 0.992634 | + | 0.121155i | \(0.0386597\pi\) | ||||
−0.992634 | + | 0.121155i | \(0.961340\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | − 1829.05i | − 0.362834i | −0.983406 | − | 0.181417i | \(-0.941932\pi\) | ||||
0.983406 | − | 0.181417i | \(-0.0580684\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −926.000 | −0.173766 | −0.0868831 | − | 0.996219i | \(-0.527691\pi\) | ||||
−0.0868831 | + | 0.996219i | \(0.527691\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 1584.00 | 0.267161 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 4399.41i | 0.704921i | 0.935827 | + | 0.352460i | \(0.114655\pi\) | ||||
−0.935827 | + | 0.352460i | \(0.885345\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | − 11992.7i | − 1.74085i | −0.492301 | − | 0.870425i | \(-0.663844\pi\) | ||||
0.492301 | − | 0.870425i | \(-0.336156\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | −10332.0 | −1.43003 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −11586.0 | −1.46269 | −0.731347 | − | 0.682005i | \(-0.761108\pi\) | ||||
−0.731347 | + | 0.682005i | \(0.761108\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | − 13870.3i | − 1.67495i | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 4946.74i | 0.548115i | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −13118.0 | −1.39420 | −0.697099 | − | 0.716975i | \(-0.745526\pi\) | ||||
−0.697099 | + | 0.716975i | \(0.745526\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −5490.00 | −0.538183 | −0.269091 | − | 0.963115i | \(-0.586723\pi\) | ||||
−0.269091 | + | 0.963115i | \(0.586723\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 5701.91i | 0.537460i | 0.963216 | + | 0.268730i | \(0.0866039\pi\) | ||||
−0.963216 | + | 0.268730i | \(0.913396\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 10080.5i | − 0.880473i | −0.897882 | − | 0.440237i | \(-0.854895\pi\) | ||||
0.897882 | − | 0.440237i | \(-0.145105\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 16166.0 | 1.36066 | 0.680330 | − | 0.732906i | \(-0.261836\pi\) | ||||
0.680330 | + | 0.732906i | \(0.261836\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −1842.00 | −0.144256 | −0.0721278 | − | 0.997395i | \(-0.522979\pi\) | ||||
−0.0721278 | + | 0.997395i | \(0.522979\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 31426.3i | 2.37628i | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | − 18747.7i | − 1.32390i | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 14209.0 | 0.970494 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | −21588.0 | −1.38163 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 394.908i | 0.0244843i | 0.999925 | + | 0.0122422i | \(0.00389690\pi\) | ||||
−0.999925 | + | 0.0122422i | \(0.996103\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 353.338i | 0.0205896i | 0.999947 | + | 0.0102948i | \(0.00327700\pi\) | ||||
−0.999947 | + | 0.0102948i | \(0.996723\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | −8976.00 | −0.507434 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 13254.0 | 0.706164 | 0.353082 | − | 0.935592i | \(-0.385134\pi\) | ||||
0.353082 | + | 0.935592i | \(0.385134\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 13212.1i | 0.683820i | 0.939733 | + | 0.341910i | \(0.111074\pi\) | ||||
−0.939733 | + | 0.341910i | \(0.888926\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 3782.80i | 0.184987i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | −3276.00 | −0.155815 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 438.000 | 0.0197288 | 0.00986442 | − | 0.999951i | \(-0.496860\pi\) | ||||
0.00986442 | + | 0.999951i | \(0.496860\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 28052.3i | 1.23031i | 0.788406 | + | 0.615155i | \(0.210907\pi\) | ||||
−0.788406 | + | 0.615155i | \(0.789093\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 61979.7i | 2.57980i | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −19346.0 | −0.784859 | −0.392430 | − | 0.919782i | \(-0.628365\pi\) | ||||
−0.392430 | + | 0.919782i | \(0.628365\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | −57024.0 | −2.19992 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − 36255.3i | − 1.36457i | −0.731086 | − | 0.682286i | \(-0.760986\pi\) | ||||
0.731086 | − | 0.682286i | \(-0.239014\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | − 18747.7i | − 0.672226i | −0.941822 | − | 0.336113i | \(-0.890888\pi\) | ||||
0.941822 | − | 0.336113i | \(-0.109112\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 4563.00 | 0.159763 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −34410.0 | −1.14972 | −0.574861 | − | 0.818251i | \(-0.694944\pi\) | ||||
−0.574861 | + | 0.818251i | \(0.694944\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | − 86803.5i | − 2.83440i | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | − 16856.3i | − 0.526086i | −0.964784 | − | 0.263043i | \(-0.915274\pi\) | ||||
0.964784 | − | 0.263043i | \(-0.0847261\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −15706.0 | −0.479411 | −0.239706 | − | 0.970846i | \(-0.577051\pi\) | ||||
−0.239706 | + | 0.970846i | \(0.577051\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 22260.0 | 0.650402 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 5113.01i | 0.146216i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 2660.43i | 0.0729265i | 0.999335 | + | 0.0364632i | \(0.0116092\pi\) | ||||
−0.999335 | + | 0.0364632i | \(0.988391\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −26782.0 | −0.718999 | −0.359500 | − | 0.933145i | \(-0.617053\pi\) | ||||
−0.359500 | + | 0.933145i | \(0.617053\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | −52482.0 | −1.35232 | −0.676158 | − | 0.736757i | \(-0.736356\pi\) | ||||
−0.676158 | + | 0.736757i | \(0.736356\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 23077.8i | 0.582759i | 0.956608 | + | 0.291380i | \(0.0941143\pi\) | ||||
−0.956608 | + | 0.291380i | \(0.905886\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | − 5944.40i | − 0.144250i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | −38556.0 | −0.917454 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 2448.00 | 0.0560427 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 23895.4i | 0.536721i | 0.963319 | + | 0.268361i | \(0.0864819\pi\) | ||||
−0.963319 | + | 0.268361i | \(0.913518\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 35791.1i | 0.774280i | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | −112464. | −2.38833 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 44772.0 | 0.916689 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | − 852.169i | − 0.0171363i | −0.999963 | − | 0.00856813i | \(-0.997273\pi\) | ||||
0.999963 | − | 0.00856813i | \(-0.00272735\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | − 76175.6i | − 1.47831i | −0.673538 | − | 0.739153i | \(-0.735226\pi\) | ||||
0.673538 | − | 0.739153i | \(-0.264774\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 48470.0 | 0.924277 | 0.462138 | − | 0.886808i | \(-0.347082\pi\) | ||||
0.462138 | + | 0.886808i | \(0.347082\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −48738.0 | −0.897751 | −0.448875 | − | 0.893594i | \(-0.648175\pi\) | ||||
−0.448875 | + | 0.893594i | \(0.648175\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | − 158878.i | − 2.87691i | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 71000.2i | 1.24298i | 0.783422 | + | 0.621490i | \(0.213472\pi\) | ||||
−0.783422 | + | 0.621490i | \(0.786528\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 73138.0 | 1.25924 | 0.629621 | − | 0.776903i | \(-0.283210\pi\) | ||||
0.629621 | + | 0.776903i | \(0.283210\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 143094. | 2.38391 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | − 21435.9i | − 0.351356i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 91888.8i | 1.45853i | 0.684232 | + | 0.729264i | \(0.260138\pi\) | ||||
−0.684232 | + | 0.729264i | \(0.739862\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 15552.0 | 0.242966 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 48894.0 | 0.740269 | 0.370134 | − | 0.928978i | \(-0.379312\pi\) | ||||
0.370134 | + | 0.928978i | \(0.379312\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 40391.4i | 0.602129i | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 78191.7i | 1.13044i | 0.824939 | + | 0.565222i | \(0.191210\pi\) | ||||
−0.824939 | + | 0.565222i | \(0.808790\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 194292. | 2.76671 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −71538.0 | −0.988626 | −0.494313 | − | 0.869284i | \(-0.664580\pi\) | ||||
−0.494313 | + | 0.869284i | \(0.664580\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 108198.i | 1.47326i | 0.676296 | + | 0.736630i | \(0.263584\pi\) | ||||
−0.676296 | + | 0.736630i | \(0.736416\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 23673.7i | 0.313040i | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 120518. | 1.57070 | 0.785348 | − | 0.619054i | \(-0.212484\pi\) | ||||
0.785348 | + | 0.619054i | \(0.212484\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 3054.00 | 0.0386773 | 0.0193387 | − | 0.999813i | \(-0.493844\pi\) | ||||
0.0193387 | + | 0.999813i | \(0.493844\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 132959.i | 1.66014i | 0.557657 | + | 0.830071i | \(0.311700\pi\) | ||||
−0.557657 | + | 0.830071i | \(0.688300\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | − 69961.0i | − 0.849361i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −23005.0 | −0.275440 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 151662. | 1.76661 | 0.883307 | − | 0.468795i | \(-0.155312\pi\) | ||||
0.883307 | + | 0.468795i | \(0.155312\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | − 9602.49i | − 0.110342i | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | − 136181.i | − 1.52326i | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −64944.0 | −0.716813 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 56532.0 | 0.607708 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 5424.78i | − 0.0575580i | −0.999586 | − | 0.0287790i | \(-0.990838\pi\) | ||||
0.999586 | − | 0.0287790i | \(-0.00916190\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | − 141127.i | − 1.45912i | −0.683917 | − | 0.729560i | \(-0.739725\pi\) | ||||
0.683917 | − | 0.729560i | \(-0.260275\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −128686. | −1.31354 | −0.656769 | − | 0.754092i | \(-0.728077\pi\) | ||||
−0.656769 | + | 0.754092i | \(0.728077\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −73986.0 | −0.736260 | −0.368130 | − | 0.929774i | \(-0.620002\pi\) | ||||
−0.368130 | + | 0.929774i | \(0.620002\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 1621.20i | 0.0159314i | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | − 28973.7i | − 0.277715i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 207298. | 1.96258 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 288288. | 2.66339 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 57026.0i | 0.520496i | 0.965542 | + | 0.260248i | \(0.0838043\pi\) | ||||
−0.965542 | + | 0.260248i | \(0.916196\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | − 45684.6i | − 0.407080i | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 98674.0 | 0.868846 | 0.434423 | − | 0.900709i | \(-0.356952\pi\) | ||||
0.434423 | + | 0.900709i | \(0.356952\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 30672.0 | 0.263775 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 76667.5i | 0.651663i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 56929.0i | − 0.472797i | −0.971656 | − | 0.236399i | \(-0.924033\pi\) | ||||
0.971656 | − | 0.236399i | \(-0.0759671\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −181346. | −1.48887 | −0.744436 | − | 0.667694i | \(-0.767281\pi\) | ||||
−0.744436 | + | 0.667694i | \(0.767281\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 4302.00 | 0.0345240 | 0.0172620 | − | 0.999851i | \(-0.494505\pi\) | ||||
0.0172620 | + | 0.999851i | \(0.494505\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 76819.9i | 0.609561i | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | − 185232.i | − 1.43724i | −0.695405 | − | 0.718618i | \(-0.744775\pi\) | ||||
0.695405 | − | 0.718618i | \(-0.255225\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 116449. | 0.893555 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 38892.0 | 0.291927 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | − 182690.i | − 1.35638i | −0.734885 | − | 0.678191i | \(-0.762764\pi\) | ||||
0.734885 | − | 0.678191i | \(-0.237236\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 352549.i | 2.56136i | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −151778. | −1.09092 | −0.545458 | − | 0.838138i | \(-0.683644\pi\) | ||||
−0.545458 | + | 0.838138i | \(0.683644\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 14196.0 | 0.0998811 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 36005.9i | 0.250666i | 0.992115 | + | 0.125333i | \(0.0399999\pi\) | ||||
−0.992115 | + | 0.125333i | \(0.960000\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | − 65346.8i | − 0.445479i | −0.974878 | − | 0.222739i | \(-0.928500\pi\) | ||||
0.974878 | − | 0.222739i | \(-0.0714999\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | −66528.0 | −0.448831 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 105750. | 0.698846 | 0.349423 | − | 0.936965i | \(-0.386378\pi\) | ||||
0.349423 | + | 0.936965i | \(0.386378\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | − 184069.i | − 1.20400i | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | − 184775.i | − 1.18427i | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 27934.0 | 0.177236 | 0.0886180 | − | 0.996066i | \(-0.471755\pi\) | ||||
0.0886180 | + | 0.996066i | \(0.471755\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −237882. | −1.47936 | −0.739678 | − | 0.672961i | \(-0.765022\pi\) | ||||
−0.739678 | + | 0.672961i | \(0.765022\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | − 268579.i | − 1.65372i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | − 11015.8i | − 0.0665011i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −20270.0 | −0.121173 | −0.0605867 | − | 0.998163i | \(-0.519297\pi\) | ||||
−0.0605867 | + | 0.998163i | \(0.519297\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 17424.0 | 0.102152 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 503694.i | 2.92463i | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 24089.4i | 0.137214i | 0.997644 | + | 0.0686068i | \(0.0218554\pi\) | ||||
−0.997644 | + | 0.0686068i | \(0.978145\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −116698. | −0.658414 | −0.329207 | − | 0.944258i | \(-0.606781\pi\) | ||||
−0.329207 | + | 0.944258i | \(0.606781\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 280194. | 1.55125 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 102579.i | 0.562604i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 355542.i | 1.91397i | 0.290132 | + | 0.956986i | \(0.406301\pi\) | ||||
−0.290132 | + | 0.956986i | \(0.593699\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −199726. | −1.06527 | −0.532634 | − | 0.846346i | \(-0.678798\pi\) | ||||
−0.532634 | + | 0.846346i | \(0.678798\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | −88128.0 | −0.461478 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | − 146469.i | − 0.760006i | −0.924985 | − | 0.380003i | \(-0.875923\pi\) | ||||
0.924985 | − | 0.380003i | \(-0.124077\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | − 50444.2i | − 0.257042i | −0.991707 | − | 0.128521i | \(-0.958977\pi\) | ||||
0.991707 | − | 0.128521i | \(-0.0410230\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 486612. | 2.45733 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −149994. | −0.744014 | −0.372007 | − | 0.928230i | \(-0.621330\pi\) | ||||
−0.372007 | + | 0.928230i | \(0.621330\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 19080.3i | 0.0938062i | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 582551.i | 2.81392i | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 284338. | 1.36145 | 0.680726 | − | 0.732538i | \(-0.261664\pi\) | ||||
0.680726 | + | 0.732538i | \(0.261664\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −183402. | −0.862983 | −0.431491 | − | 0.902117i | \(-0.642013\pi\) | ||||
−0.431491 | + | 0.902117i | \(0.642013\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | − 172422.i | − 0.804324i | −0.915568 | − | 0.402162i | \(-0.868259\pi\) | ||||
0.915568 | − | 0.402162i | \(-0.131741\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 68734.7i | 0.315168i | 0.987506 | + | 0.157584i | \(0.0503705\pi\) | ||||
−0.987506 | + | 0.157584i | \(0.949629\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 82896.0 | 0.376867 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 17712.0 | 0.0791672 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | − 134151.i | − 0.594574i | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | − 249956.i | − 1.08941i | −0.838627 | − | 0.544706i | \(-0.816641\pi\) | ||||
0.838627 | − | 0.544706i | \(-0.183359\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −96460.0 | −0.416924 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 550956. | 2.34225 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | − 271108.i | − 1.14310i | −0.820568 | − | 0.571549i | \(-0.806343\pi\) | ||||
0.820568 | − | 0.571549i | \(-0.193657\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 227862.i | 0.945166i | 0.881286 | + | 0.472583i | \(0.156678\pi\) | ||||
−0.881286 | + | 0.472583i | \(0.843322\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 19188.0 | 0.0789470 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | −139392. | −0.564320 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | − 248854.i | − 0.999410i | −0.866196 | − | 0.499705i | \(-0.833442\pi\) | ||||
0.866196 | − | 0.499705i | \(-0.166558\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 446537.i | 1.76490i | 0.470403 | + | 0.882452i | \(0.344109\pi\) | ||||
−0.470403 | + | 0.882452i | \(0.655891\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 230580. | 0.904147 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −39330.0 | −0.151806 | −0.0759029 | − | 0.997115i | \(-0.524184\pi\) | ||||
−0.0759029 | + | 0.997115i | \(0.524184\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 70570.7i | 0.270260i | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | − 239480.i | − 0.902933i | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | −78624.0 | −0.294154 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 464598. | 1.71160 | 0.855799 | − | 0.517308i | \(-0.173066\pi\) | ||||
0.855799 | + | 0.517308i | \(0.173066\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | − 135509.i | − 0.495409i | −0.968836 | − | 0.247704i | \(-0.920324\pi\) | ||||
0.968836 | − | 0.247704i | \(-0.0796762\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | − 363024.i | − 1.30712i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −280031. | −1.00068 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 167076. | 0.588111 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 423382.i | 1.47919i | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | − 70813.2i | − 0.243745i | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −360442. | −1.23152 | −0.615759 | − | 0.787934i | \(-0.711151\pi\) | ||||
−0.615759 | + | 0.787934i | \(0.711151\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | −678972. | −2.28591 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | − 261644.i | − 0.874451i | −0.899352 | − | 0.437225i | \(-0.855961\pi\) | ||||
0.899352 | − | 0.437225i | \(-0.144039\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | − 9186.80i | − 0.0302594i | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 335280. | 1.09637 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | −233274. | −0.751893 | −0.375946 | − | 0.926641i | \(-0.622682\pi\) | ||||
−0.375946 | + | 0.926641i | \(0.622682\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | − 155095.i | − 0.496333i | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 419704.i | − 1.32412i | −0.749453 | − | 0.662058i | \(-0.769683\pi\) | ||||
0.749453 | − | 0.662058i | \(-0.230317\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 77364.0 | 0.242349 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −470058. | −1.45187 | −0.725934 | − | 0.687765i | \(-0.758592\pi\) | ||||
−0.725934 | + | 0.687765i | \(0.758592\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 320381.i | 0.982640i | 0.870979 | + | 0.491320i | \(0.163485\pi\) | ||||
−0.870979 | + | 0.491320i | \(0.836515\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | − 852252.i | − 2.57770i | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −341038. | −1.02436 | −0.512178 | − | 0.858879i | \(-0.671161\pi\) | ||||
−0.512178 | + | 0.858879i | \(0.671161\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −913968. | −2.70756 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | − 96149.6i | − 0.282885i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 114128.i | 0.331220i | 0.986191 | + | 0.165610i | \(0.0529594\pi\) | ||||
−0.986191 | + | 0.165610i | \(0.947041\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −173808. | −0.501002 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 96846.0 | 0.275405 | 0.137703 | − | 0.990474i | \(-0.456028\pi\) | ||||
0.137703 | + | 0.990474i | \(0.456028\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 787404.i | 2.22415i | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | − 519782.i | − 1.44866i | −0.689452 | − | 0.724331i | \(-0.742149\pi\) | ||||
0.689452 | − | 0.724331i | \(-0.257851\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −627742. | −1.73793 | −0.868965 | − | 0.494874i | \(-0.835214\pi\) | ||||
−0.868965 | + | 0.494874i | \(0.835214\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | −596778. | −1.63043 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 133195.i | 0.361501i | 0.983529 | + | 0.180751i | \(0.0578527\pi\) | ||||
−0.983529 | + | 0.180751i | \(0.942147\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 688469.i | 1.84418i | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −247202. | −0.657856 | −0.328928 | − | 0.944355i | \(-0.606687\pi\) | ||||
−0.328928 | + | 0.944355i | \(0.606687\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 31758.0 | 0.0834224 | 0.0417112 | − | 0.999130i | \(-0.486719\pi\) | ||||
0.0417112 | + | 0.999130i | \(0.486719\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 656094.i | 1.71232i | 0.516712 | + | 0.856160i | \(0.327156\pi\) | ||||
−0.516712 | + | 0.856160i | \(0.672844\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 882972.i | 2.27494i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 194821. | 0.498742 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −130380. | −0.329541 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | − 417736.i | − 1.04916i | −0.851360 | − | 0.524582i | \(-0.824222\pi\) | ||||
0.851360 | − | 0.524582i | \(-0.175778\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | − 16586.1i | − 0.0411337i | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −620074. | −1.52815 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 152214. | 0.370458 | 0.185229 | − | 0.982695i | \(-0.440697\pi\) | ||||
0.185229 | + | 0.982695i | \(0.440697\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 714138.i | − 1.72727i | −0.504117 | − | 0.863635i | \(-0.668182\pi\) | ||||
0.504117 | − | 0.863635i | \(-0.331818\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | − 259558.i | − 0.620049i | −0.950729 | − | 0.310025i | \(-0.899663\pi\) | ||||
0.950729 | − | 0.310025i | \(-0.100337\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −4752.00 | −0.0112820 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −330714. | −0.775579 | −0.387790 | − | 0.921748i | \(-0.626761\pi\) | ||||
−0.387790 | + | 0.921748i | \(0.626761\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | − 14840.2i | − 0.0345906i | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | − 253884.i | − 0.584608i | −0.956326 | − | 0.292304i | \(-0.905578\pi\) | ||||
0.956326 | − | 0.292304i | \(-0.0944219\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 722158. | 1.65283 | 0.826417 | − | 0.563058i | \(-0.190375\pi\) | ||||
0.826417 | + | 0.563058i | \(0.190375\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 376992. | 0.852489 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | − 58363.2i | − 0.131186i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | − 27976.1i | − 0.0621358i | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −552910. | −1.22074 | −0.610372 | − | 0.792115i | \(-0.708980\pi\) | ||||
−0.610372 | + | 0.792115i | \(0.708980\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 609030. | 1.32881 | 0.664403 | − | 0.747375i | \(-0.268686\pi\) | ||||
0.664403 | + | 0.747375i | \(0.268686\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 999726.i | 2.16841i | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 23715.2i | 0.0508377i | 0.999677 | + | 0.0254189i | \(0.00809195\pi\) | ||||
−0.999677 | + | 0.0254189i | \(0.991908\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | −556668. | −1.18636 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −841932. | −1.77353 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 431842.i | 0.904417i | 0.891912 | + | 0.452208i | \(0.149364\pi\) | ||||
−0.891912 | + | 0.452208i | \(0.850636\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | − 554908.i | − 1.14882i | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 225828. | 0.464849 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 44958.0 | 0.0914894 | 0.0457447 | − | 0.998953i | \(-0.485434\pi\) | ||||
0.0457447 | + | 0.998953i | \(0.485434\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 62423.1i | 0.126309i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 418394.i | 0.837041i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −533002. | −1.06032 | −0.530159 | − | 0.847898i | \(-0.677868\pi\) | ||||
−0.530159 | + | 0.847898i | \(0.677868\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | −1.10419e6 | −2.17203 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | − 158878.i | − 0.310778i | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 292107.i | 0.565046i | 0.959260 | + | 0.282523i | \(0.0911714\pi\) | ||||
−0.959260 | + | 0.282523i | \(0.908829\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 434544. | 0.835917 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 88842.0 | 0.169022 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 755791.i | 1.42999i | 0.699130 | + | 0.714995i | \(0.253571\pi\) | ||||
−0.699130 | + | 0.714995i | \(0.746429\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | − 209634.i | − 0.392307i | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 832982. | 1.55034 | 0.775171 | − | 0.631751i | \(-0.217664\pi\) | ||||
0.775171 | + | 0.631751i | \(0.217664\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −22608.0 | −0.0416224 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 698093.i | 1.27827i | 0.769093 | + | 0.639137i | \(0.220708\pi\) | ||||
−0.769093 | + | 0.639137i | \(0.779292\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 461044.i | 0.835151i | 0.908642 | + | 0.417575i | \(0.137120\pi\) | ||||
−0.908642 | + | 0.417575i | \(0.862880\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | −18396.0 | −0.0331445 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −768240. | −1.36941 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | − 937060.i | − 1.66145i | −0.556682 | − | 0.830726i | \(-0.687926\pi\) | ||||
0.556682 | − | 0.830726i | \(-0.312074\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | − 1.17820e6i | − 2.06692i | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −295786. | −0.516162 | −0.258081 | − | 0.966123i | \(-0.583090\pi\) | ||||
−0.258081 | + | 0.966123i | \(0.583090\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 1.02615e6 | 1.77191 | 0.885955 | − | 0.463772i | \(-0.153504\pi\) | ||||
0.885955 | + | 0.463772i | \(0.153504\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | − 1.23201e6i | − 2.11625i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 41610.8i | 0.0707319i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 362306. | 0.612665 | 0.306332 | − | 0.951925i | \(-0.400898\pi\) | ||||
0.306332 | + | 0.951925i | \(0.400898\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 1.02608e6 | 1.71720 | 0.858601 | − | 0.512644i | \(-0.171334\pi\) | ||||
0.858601 | + | 0.512644i | \(0.171334\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | − 1.68083e6i | − 2.79847i | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | − 108122.i | − 0.178171i | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 38016.0 | 0.0623253 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 812532. | 1.31856 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 850042.i | − 1.37243i | −0.727398 | − | 0.686216i | \(-0.759270\pi\) | ||||
0.727398 | − | 0.686216i | \(-0.240730\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 140379.i | 0.224362i | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −244972. | −0.389556 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 761478. | 1.19878 | 0.599392 | − | 0.800456i | \(-0.295409\pi\) | ||||
0.599392 | + | 0.800456i | \(0.295409\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 930569.i | 1.45766i | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | − 19246.5i | − 0.0298484i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 2.39501e6 | 3.69586 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −247674. | −0.378428 | −0.189214 | − | 0.981936i | \(-0.560594\pi\) | ||||
−0.189214 | + | 0.981936i | \(0.560594\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | − 920197.i | − 1.39907i | −0.714599 | − | 0.699534i | \(-0.753391\pi\) | ||||
0.714599 | − | 0.699534i | \(-0.246609\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 1.52272e6i | 2.29248i | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −100368. | −0.150367 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −250242. | −0.371256 | −0.185628 | − | 0.982620i | \(-0.559432\pi\) | ||||
−0.185628 | + | 0.982620i | \(0.559432\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 400762.i | 0.591680i | 0.955238 | + | 0.295840i | \(0.0955995\pi\) | ||||
−0.955238 | + | 0.295840i | \(0.904401\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 17272.0i | 0.0252541i | 0.999920 | + | 0.0126270i | \(0.00401942\pi\) | ||||
−0.999920 | + | 0.0126270i | \(0.995981\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 15686.0 | 0.0228246 | 0.0114123 | − | 0.999935i | \(-0.496367\pi\) | ||||
0.0114123 | + | 0.999935i | \(0.496367\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −838122. | −1.20786 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 787404.i | 1.12934i | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | − 115479.i | − 0.164051i | −0.996630 | − | 0.0820257i | \(-0.973861\pi\) | ||||
0.996630 | − | 0.0820257i | \(-0.0261390\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −701197. | −0.991398 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | −191646. | −0.268402 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | − 1.08287e6i | − 1.50942i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 396570.i | 0.547597i | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | −345938. | −0.475445 | −0.237722 | − | 0.971333i | \(-0.576401\pi\) | ||||
−0.237722 | + | 0.971333i | \(0.576401\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 267990. | 0.364886 | 0.182443 | − | 0.983216i | \(-0.441600\pi\) | ||||
0.182443 | + | 0.983216i | \(0.441600\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | − 522407.i | − 0.707983i | −0.935249 | − | 0.353992i | \(-0.884824\pi\) | ||||
0.935249 | − | 0.353992i | \(-0.115176\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 826895.i | 1.11027i | 0.831760 | + | 0.555135i | \(0.187333\pi\) | ||||
−0.831760 | + | 0.555135i | \(0.812667\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 1.44522e6 | 1.93153 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | −91440.0 | −0.121087 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 197966.i | 0.260949i | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 1.64523e6i | 2.14887i | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −1.11629e6 | −1.45137 | −0.725685 | − | 0.688028i | \(-0.758477\pi\) | ||||
−0.725685 | + | 0.688028i | \(0.758477\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −19170.0 | −0.0246985 | −0.0123492 | − | 0.999924i | \(-0.503931\pi\) | ||||
−0.0123492 | + | 0.999924i | \(0.503931\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 568909.i | 0.729662i | 0.931074 | + | 0.364831i | \(0.118873\pi\) | ||||
−0.931074 | + | 0.364831i | \(0.881127\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | − 1.09015e6i | − 1.38561i | −0.721126 | − | 0.692804i | \(-0.756375\pi\) | ||||
0.721126 | − | 0.692804i | \(-0.243625\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 30096.0 | 0.0380807 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 445536. | 0.558702 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 707965.i | 0.883824i | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | − 115105.i | − 0.142421i | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −1.13800e6 | −1.40182 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 659652. | 0.805411 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 916193.i | 1.11371i | 0.830610 | + | 0.556855i | \(0.187992\pi\) | ||||
−0.830610 | + | 0.556855i | \(0.812008\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | − 995500.i | − 1.19951i | −0.800183 | − | 0.599756i | \(-0.795264\pi\) | ||||
0.800183 | − | 0.599756i | \(-0.204736\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 249264. | 0.299032 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 26928.0 | 0.0320233 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 97084.9i | 0.114953i | 0.998347 | + | 0.0574766i | \(0.0183054\pi\) | ||||
−0.998347 | + | 0.0574766i | \(0.981695\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | − 332886.i | − 0.390744i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | −603670. | −0.705531 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 1.27882e6 | 1.48176 | 0.740881 | − | 0.671636i | \(-0.234408\pi\) | ||||
0.740881 | + | 0.671636i | \(0.234408\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 401275.i | 0.462959i | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | − 214747.i | − 0.245642i | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −981262. | −1.11765 | −0.558825 | − | 0.829286i | \(-0.688748\pi\) | ||||
−0.558825 | + | 0.829286i | \(0.688748\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 284406. | 0.321188 | 0.160594 | − | 0.987021i | \(-0.448659\pi\) | ||||
0.160594 | + | 0.987021i | \(0.448659\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | − 686890.i | − 0.772438i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 993109.i | 1.10738i | 0.832722 | + | 0.553691i | \(0.186781\pi\) | ||||
−0.832722 | + | 0.553691i | \(0.813219\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −168532. | −0.187133 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −602922. | −0.663858 | −0.331929 | − | 0.943304i | \(-0.607699\pi\) | ||||
−0.331929 | + | 0.943304i | \(0.607699\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | − 111738.i | − 0.122516i | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | − 1.01009e6i | − 1.09831i | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −1.25419e6 | −1.35805 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 1.12484e6 | 1.20792 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 575810.i | 0.615781i | 0.951422 | + | 0.307890i | \(0.0996230\pi\) | ||||
−0.951422 | + | 0.307890i | \(0.900377\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 1.23920e6i | 1.31432i | 0.753749 | + | 0.657162i | \(0.228243\pi\) | ||||
−0.753749 | + | 0.657162i | \(0.771757\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 1.00690e6 | 1.06355 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 1.04074e6 | 1.09032 | 0.545160 | − | 0.838332i | \(-0.316469\pi\) | ||||
0.545160 | + | 0.838332i | \(0.316469\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | − 240810.i | − 0.251252i | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 948734.i | 0.981833i | 0.871207 | + | 0.490916i | \(0.163338\pi\) | ||||
−0.871207 | + | 0.490916i | \(0.836662\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 2.20424e6 | 2.27189 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −637632. | −0.651895 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | − 616007.i | − 0.627247i | −0.949547 | − | 0.313623i | \(-0.898457\pi\) | ||||
0.949547 | − | 0.313623i | \(-0.101543\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | − 969269.i | − 0.979035i | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 535870. | 0.539100 | 0.269550 | − | 0.962986i | \(-0.413125\pi\) | ||||
0.269550 | + | 0.962986i | \(0.413125\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 576.5.g.d.127.1 | 2 | ||
3.2 | odd | 2 | 192.5.g.b.127.1 | 2 | |||
4.3 | odd | 2 | inner | 576.5.g.d.127.2 | 2 | ||
8.3 | odd | 2 | 144.5.g.f.127.2 | 2 | |||
8.5 | even | 2 | 144.5.g.f.127.1 | 2 | |||
12.11 | even | 2 | 192.5.g.b.127.2 | 2 | |||
24.5 | odd | 2 | 48.5.g.a.31.2 | yes | 2 | ||
24.11 | even | 2 | 48.5.g.a.31.1 | ✓ | 2 | ||
48.5 | odd | 4 | 768.5.b.c.127.2 | 4 | |||
48.11 | even | 4 | 768.5.b.c.127.4 | 4 | |||
48.29 | odd | 4 | 768.5.b.c.127.3 | 4 | |||
48.35 | even | 4 | 768.5.b.c.127.1 | 4 | |||
120.29 | odd | 2 | 1200.5.e.b.751.1 | 2 | |||
120.53 | even | 4 | 1200.5.j.b.799.2 | 4 | |||
120.59 | even | 2 | 1200.5.e.b.751.2 | 2 | |||
120.77 | even | 4 | 1200.5.j.b.799.4 | 4 | |||
120.83 | odd | 4 | 1200.5.j.b.799.3 | 4 | |||
120.107 | odd | 4 | 1200.5.j.b.799.1 | 4 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
48.5.g.a.31.1 | ✓ | 2 | 24.11 | even | 2 | ||
48.5.g.a.31.2 | yes | 2 | 24.5 | odd | 2 | ||
144.5.g.f.127.1 | 2 | 8.5 | even | 2 | |||
144.5.g.f.127.2 | 2 | 8.3 | odd | 2 | |||
192.5.g.b.127.1 | 2 | 3.2 | odd | 2 | |||
192.5.g.b.127.2 | 2 | 12.11 | even | 2 | |||
576.5.g.d.127.1 | 2 | 1.1 | even | 1 | trivial | ||
576.5.g.d.127.2 | 2 | 4.3 | odd | 2 | inner | ||
768.5.b.c.127.1 | 4 | 48.35 | even | 4 | |||
768.5.b.c.127.2 | 4 | 48.5 | odd | 4 | |||
768.5.b.c.127.3 | 4 | 48.29 | odd | 4 | |||
768.5.b.c.127.4 | 4 | 48.11 | even | 4 | |||
1200.5.e.b.751.1 | 2 | 120.29 | odd | 2 | |||
1200.5.e.b.751.2 | 2 | 120.59 | even | 2 | |||
1200.5.j.b.799.1 | 4 | 120.107 | odd | 4 | |||
1200.5.j.b.799.2 | 4 | 120.53 | even | 4 | |||
1200.5.j.b.799.3 | 4 | 120.83 | odd | 4 | |||
1200.5.j.b.799.4 | 4 | 120.77 | even | 4 |