Properties

Label 576.3.m.c.559.3
Level $576$
Weight $3$
Character 576.559
Analytic conductor $15.695$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 576.m (of order \(4\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(15.6948632272\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 6 x^{14} - 4 x^{13} + 10 x^{12} + 56 x^{11} + 88 x^{10} - 128 x^{9} - 496 x^{8} - 512 x^{7} + 1408 x^{6} + 3584 x^{5} + 2560 x^{4} - 4096 x^{3} - 24576 x^{2} + 65536\)
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{28} \)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 559.3
Root \(-1.96679 + 0.362960i\) of defining polynomial
Character \(\chi\) \(=\) 576.559
Dual form 576.3.m.c.271.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.69930 + 1.69930i) q^{5} +5.74280 q^{7} +O(q^{10})\) \(q+(-1.69930 + 1.69930i) q^{5} +5.74280 q^{7} +(-5.59560 - 5.59560i) q^{11} +(-13.5782 - 13.5782i) q^{13} -19.7023 q^{17} +(21.6943 - 21.6943i) q^{19} +24.9257 q^{23} +19.2247i q^{25} +(-1.50581 - 1.50581i) q^{29} +2.20037i q^{31} +(-9.75877 + 9.75877i) q^{35} +(27.6956 - 27.6956i) q^{37} -51.3127i q^{41} +(-21.4400 - 21.4400i) q^{43} -76.5216i q^{47} -16.0202 q^{49} +(56.5145 - 56.5145i) q^{53} +19.0173 q^{55} +(-48.0041 - 48.0041i) q^{59} +(-51.5587 - 51.5587i) q^{61} +46.1469 q^{65} +(-63.4445 + 63.4445i) q^{67} +43.4856 q^{71} +73.9992i q^{73} +(-32.1344 - 32.1344i) q^{77} +4.12659i q^{79} +(38.4428 - 38.4428i) q^{83} +(33.4803 - 33.4803i) q^{85} +52.9839i q^{89} +(-77.9767 - 77.9767i) q^{91} +73.7305i q^{95} +23.1008 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + O(q^{10}) \) \( 16q + 32q^{11} + 32q^{19} - 128q^{23} - 32q^{29} + 96q^{35} - 96q^{37} - 160q^{43} + 112q^{49} + 160q^{53} + 256q^{55} - 128q^{59} - 32q^{61} + 32q^{65} - 320q^{67} + 512q^{71} - 224q^{77} - 160q^{83} + 160q^{85} + 480q^{91} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.69930 + 1.69930i −0.339861 + 0.339861i −0.856315 0.516454i \(-0.827252\pi\)
0.516454 + 0.856315i \(0.327252\pi\)
\(6\) 0 0
\(7\) 5.74280 0.820400 0.410200 0.911996i \(-0.365459\pi\)
0.410200 + 0.911996i \(0.365459\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.59560 5.59560i −0.508691 0.508691i 0.405434 0.914125i \(-0.367121\pi\)
−0.914125 + 0.405434i \(0.867121\pi\)
\(12\) 0 0
\(13\) −13.5782 13.5782i −1.04447 1.04447i −0.998964 0.0455110i \(-0.985508\pi\)
−0.0455110 0.998964i \(-0.514492\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −19.7023 −1.15896 −0.579481 0.814986i \(-0.696745\pi\)
−0.579481 + 0.814986i \(0.696745\pi\)
\(18\) 0 0
\(19\) 21.6943 21.6943i 1.14181 1.14181i 0.153687 0.988120i \(-0.450885\pi\)
0.988120 0.153687i \(-0.0491147\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 24.9257 1.08373 0.541863 0.840467i \(-0.317719\pi\)
0.541863 + 0.840467i \(0.317719\pi\)
\(24\) 0 0
\(25\) 19.2247i 0.768989i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.50581 1.50581i −0.0519245 0.0519245i 0.680668 0.732592i \(-0.261690\pi\)
−0.732592 + 0.680668i \(0.761690\pi\)
\(30\) 0 0
\(31\) 2.20037i 0.0709796i 0.999370 + 0.0354898i \(0.0112991\pi\)
−0.999370 + 0.0354898i \(0.988701\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −9.75877 + 9.75877i −0.278822 + 0.278822i
\(36\) 0 0
\(37\) 27.6956 27.6956i 0.748530 0.748530i −0.225673 0.974203i \(-0.572458\pi\)
0.974203 + 0.225673i \(0.0724580\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 51.3127i 1.25153i −0.780012 0.625764i \(-0.784787\pi\)
0.780012 0.625764i \(-0.215213\pi\)
\(42\) 0 0
\(43\) −21.4400 21.4400i −0.498606 0.498606i 0.412398 0.911004i \(-0.364691\pi\)
−0.911004 + 0.412398i \(0.864691\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 76.5216i 1.62812i −0.580781 0.814060i \(-0.697253\pi\)
0.580781 0.814060i \(-0.302747\pi\)
\(48\) 0 0
\(49\) −16.0202 −0.326944
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 56.5145 56.5145i 1.06631 1.06631i 0.0686712 0.997639i \(-0.478124\pi\)
0.997639 0.0686712i \(-0.0218759\pi\)
\(54\) 0 0
\(55\) 19.0173 0.345768
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −48.0041 48.0041i −0.813628 0.813628i 0.171547 0.985176i \(-0.445123\pi\)
−0.985176 + 0.171547i \(0.945123\pi\)
\(60\) 0 0
\(61\) −51.5587 51.5587i −0.845224 0.845224i 0.144308 0.989533i \(-0.453904\pi\)
−0.989533 + 0.144308i \(0.953904\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 46.1469 0.709952
\(66\) 0 0
\(67\) −63.4445 + 63.4445i −0.946934 + 0.946934i −0.998661 0.0517277i \(-0.983527\pi\)
0.0517277 + 0.998661i \(0.483527\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 43.4856 0.612473 0.306237 0.951955i \(-0.400930\pi\)
0.306237 + 0.951955i \(0.400930\pi\)
\(72\) 0 0
\(73\) 73.9992i 1.01369i 0.862038 + 0.506844i \(0.169188\pi\)
−0.862038 + 0.506844i \(0.830812\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −32.1344 32.1344i −0.417330 0.417330i
\(78\) 0 0
\(79\) 4.12659i 0.0522354i 0.999659 + 0.0261177i \(0.00831446\pi\)
−0.999659 + 0.0261177i \(0.991686\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 38.4428 38.4428i 0.463166 0.463166i −0.436526 0.899692i \(-0.643791\pi\)
0.899692 + 0.436526i \(0.143791\pi\)
\(84\) 0 0
\(85\) 33.4803 33.4803i 0.393886 0.393886i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 52.9839i 0.595325i 0.954671 + 0.297662i \(0.0962070\pi\)
−0.954671 + 0.297662i \(0.903793\pi\)
\(90\) 0 0
\(91\) −77.9767 77.9767i −0.856887 0.856887i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 73.7305i 0.776111i
\(96\) 0 0
\(97\) 23.1008 0.238153 0.119077 0.992885i \(-0.462007\pi\)
0.119077 + 0.992885i \(0.462007\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −16.1216 + 16.1216i −0.159619 + 0.159619i −0.782398 0.622779i \(-0.786004\pi\)
0.622779 + 0.782398i \(0.286004\pi\)
\(102\) 0 0
\(103\) 98.8380 0.959592 0.479796 0.877380i \(-0.340711\pi\)
0.479796 + 0.877380i \(0.340711\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 15.6655 + 15.6655i 0.146406 + 0.146406i 0.776511 0.630104i \(-0.216988\pi\)
−0.630104 + 0.776511i \(0.716988\pi\)
\(108\) 0 0
\(109\) 84.6938 + 84.6938i 0.777008 + 0.777008i 0.979321 0.202313i \(-0.0648459\pi\)
−0.202313 + 0.979321i \(0.564846\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −63.8537 −0.565077 −0.282538 0.959256i \(-0.591176\pi\)
−0.282538 + 0.959256i \(0.591176\pi\)
\(114\) 0 0
\(115\) −42.3563 + 42.3563i −0.368316 + 0.368316i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −113.147 −0.950812
\(120\) 0 0
\(121\) 58.3785i 0.482467i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −75.1513 75.1513i −0.601210 0.601210i
\(126\) 0 0
\(127\) 36.8901i 0.290473i −0.989397 0.145237i \(-0.953606\pi\)
0.989397 0.145237i \(-0.0463944\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −40.4136 + 40.4136i −0.308500 + 0.308500i −0.844328 0.535827i \(-0.820000\pi\)
0.535827 + 0.844328i \(0.320000\pi\)
\(132\) 0 0
\(133\) 124.586 124.586i 0.936738 0.936738i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 253.499i 1.85036i 0.379531 + 0.925179i \(0.376085\pi\)
−0.379531 + 0.925179i \(0.623915\pi\)
\(138\) 0 0
\(139\) −67.8065 67.8065i −0.487816 0.487816i 0.419800 0.907617i \(-0.362100\pi\)
−0.907617 + 0.419800i \(0.862100\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 151.956i 1.06263i
\(144\) 0 0
\(145\) 5.11766 0.0352942
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 43.9337 43.9337i 0.294857 0.294857i −0.544138 0.838996i \(-0.683143\pi\)
0.838996 + 0.544138i \(0.183143\pi\)
\(150\) 0 0
\(151\) 223.084 1.47738 0.738688 0.674047i \(-0.235446\pi\)
0.738688 + 0.674047i \(0.235446\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.73909 3.73909i −0.0241232 0.0241232i
\(156\) 0 0
\(157\) −78.8526 78.8526i −0.502246 0.502246i 0.409889 0.912135i \(-0.365567\pi\)
−0.912135 + 0.409889i \(0.865567\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 143.143 0.889089
\(162\) 0 0
\(163\) −52.2425 + 52.2425i −0.320506 + 0.320506i −0.848961 0.528455i \(-0.822772\pi\)
0.528455 + 0.848961i \(0.322772\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 96.5201 0.577965 0.288982 0.957334i \(-0.406683\pi\)
0.288982 + 0.957334i \(0.406683\pi\)
\(168\) 0 0
\(169\) 199.734i 1.18186i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 46.3076 + 46.3076i 0.267674 + 0.267674i 0.828162 0.560488i \(-0.189386\pi\)
−0.560488 + 0.828162i \(0.689386\pi\)
\(174\) 0 0
\(175\) 110.404i 0.630879i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −93.5440 + 93.5440i −0.522592 + 0.522592i −0.918353 0.395761i \(-0.870481\pi\)
0.395761 + 0.918353i \(0.370481\pi\)
\(180\) 0 0
\(181\) −115.810 + 115.810i −0.639836 + 0.639836i −0.950515 0.310679i \(-0.899444\pi\)
0.310679 + 0.950515i \(0.399444\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 94.1266i 0.508792i
\(186\) 0 0
\(187\) 110.246 + 110.246i 0.589553 + 0.589553i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 35.2964i 0.184798i 0.995722 + 0.0923991i \(0.0294535\pi\)
−0.995722 + 0.0923991i \(0.970546\pi\)
\(192\) 0 0
\(193\) −364.339 −1.88777 −0.943884 0.330277i \(-0.892858\pi\)
−0.943884 + 0.330277i \(0.892858\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −130.582 + 130.582i −0.662851 + 0.662851i −0.956051 0.293200i \(-0.905280\pi\)
0.293200 + 0.956051i \(0.405280\pi\)
\(198\) 0 0
\(199\) 12.7493 0.0640670 0.0320335 0.999487i \(-0.489802\pi\)
0.0320335 + 0.999487i \(0.489802\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −8.64756 8.64756i −0.0425988 0.0425988i
\(204\) 0 0
\(205\) 87.1958 + 87.1958i 0.425346 + 0.425346i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −242.786 −1.16165
\(210\) 0 0
\(211\) −8.59499 + 8.59499i −0.0407345 + 0.0407345i −0.727181 0.686446i \(-0.759170\pi\)
0.686446 + 0.727181i \(0.259170\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 72.8663 0.338913
\(216\) 0 0
\(217\) 12.6363i 0.0582317i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 267.522 + 267.522i 1.21051 + 1.21051i
\(222\) 0 0
\(223\) 50.5909i 0.226865i 0.993546 + 0.113433i \(0.0361846\pi\)
−0.993546 + 0.113433i \(0.963815\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 31.7175 31.7175i 0.139725 0.139725i −0.633785 0.773509i \(-0.718499\pi\)
0.773509 + 0.633785i \(0.218499\pi\)
\(228\) 0 0
\(229\) −169.826 + 169.826i −0.741599 + 0.741599i −0.972886 0.231287i \(-0.925706\pi\)
0.231287 + 0.972886i \(0.425706\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 363.082i 1.55829i −0.626844 0.779145i \(-0.715654\pi\)
0.626844 0.779145i \(-0.284346\pi\)
\(234\) 0 0
\(235\) 130.033 + 130.033i 0.553334 + 0.553334i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 27.6282i 0.115599i −0.998328 0.0577996i \(-0.981592\pi\)
0.998328 0.0577996i \(-0.0184084\pi\)
\(240\) 0 0
\(241\) 368.121 1.52747 0.763737 0.645527i \(-0.223362\pi\)
0.763737 + 0.645527i \(0.223362\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 27.2233 27.2233i 0.111115 0.111115i
\(246\) 0 0
\(247\) −589.139 −2.38518
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 329.839 + 329.839i 1.31410 + 1.31410i 0.918365 + 0.395734i \(0.129510\pi\)
0.395734 + 0.918365i \(0.370490\pi\)
\(252\) 0 0
\(253\) −139.474 139.474i −0.551281 0.551281i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −23.6762 −0.0921252 −0.0460626 0.998939i \(-0.514667\pi\)
−0.0460626 + 0.998939i \(0.514667\pi\)
\(258\) 0 0
\(259\) 159.050 159.050i 0.614094 0.614094i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 243.854 0.927202 0.463601 0.886044i \(-0.346557\pi\)
0.463601 + 0.886044i \(0.346557\pi\)
\(264\) 0 0
\(265\) 192.071i 0.724794i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −234.293 234.293i −0.870976 0.870976i 0.121603 0.992579i \(-0.461197\pi\)
−0.992579 + 0.121603i \(0.961197\pi\)
\(270\) 0 0
\(271\) 30.9533i 0.114219i 0.998368 + 0.0571094i \(0.0181884\pi\)
−0.998368 + 0.0571094i \(0.981812\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 107.574 107.574i 0.391178 0.391178i
\(276\) 0 0
\(277\) −41.4479 + 41.4479i −0.149631 + 0.149631i −0.777953 0.628322i \(-0.783742\pi\)
0.628322 + 0.777953i \(0.283742\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 93.3971i 0.332374i 0.986094 + 0.166187i \(0.0531455\pi\)
−0.986094 + 0.166187i \(0.946854\pi\)
\(282\) 0 0
\(283\) −40.0982 40.0982i −0.141690 0.141690i 0.632704 0.774394i \(-0.281945\pi\)
−0.774394 + 0.632704i \(0.781945\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 294.678i 1.02675i
\(288\) 0 0
\(289\) 99.1824 0.343192
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −141.326 + 141.326i −0.482340 + 0.482340i −0.905878 0.423538i \(-0.860788\pi\)
0.423538 + 0.905878i \(0.360788\pi\)
\(294\) 0 0
\(295\) 163.147 0.553041
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −338.445 338.445i −1.13192 1.13192i
\(300\) 0 0
\(301\) −123.126 123.126i −0.409056 0.409056i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 175.228 0.574517
\(306\) 0 0
\(307\) 285.548 285.548i 0.930125 0.930125i −0.0675885 0.997713i \(-0.521530\pi\)
0.997713 + 0.0675885i \(0.0215305\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −365.454 −1.17509 −0.587547 0.809190i \(-0.699906\pi\)
−0.587547 + 0.809190i \(0.699906\pi\)
\(312\) 0 0
\(313\) 461.508i 1.47447i −0.675638 0.737234i \(-0.736132\pi\)
0.675638 0.737234i \(-0.263868\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 319.216 + 319.216i 1.00699 + 1.00699i 0.999975 + 0.00701388i \(0.00223261\pi\)
0.00701388 + 0.999975i \(0.497767\pi\)
\(318\) 0 0
\(319\) 16.8518i 0.0528270i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −427.429 + 427.429i −1.32331 + 1.32331i
\(324\) 0 0
\(325\) 261.037 261.037i 0.803190 0.803190i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 439.448i 1.33571i
\(330\) 0 0
\(331\) 85.7864 + 85.7864i 0.259173 + 0.259173i 0.824718 0.565544i \(-0.191334\pi\)
−0.565544 + 0.824718i \(0.691334\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 215.623i 0.643651i
\(336\) 0 0
\(337\) 258.256 0.766339 0.383170 0.923678i \(-0.374832\pi\)
0.383170 + 0.923678i \(0.374832\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12.3124 12.3124i 0.0361067 0.0361067i
\(342\) 0 0
\(343\) −373.398 −1.08862
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 27.7237 + 27.7237i 0.0798953 + 0.0798953i 0.745925 0.666030i \(-0.232008\pi\)
−0.666030 + 0.745925i \(0.732008\pi\)
\(348\) 0 0
\(349\) 321.089 + 321.089i 0.920027 + 0.920027i 0.997031 0.0770037i \(-0.0245353\pi\)
−0.0770037 + 0.997031i \(0.524535\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 241.363 0.683748 0.341874 0.939746i \(-0.388938\pi\)
0.341874 + 0.939746i \(0.388938\pi\)
\(354\) 0 0
\(355\) −73.8953 + 73.8953i −0.208156 + 0.208156i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −363.821 −1.01343 −0.506714 0.862114i \(-0.669140\pi\)
−0.506714 + 0.862114i \(0.669140\pi\)
\(360\) 0 0
\(361\) 580.287i 1.60744i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −125.747 125.747i −0.344513 0.344513i
\(366\) 0 0
\(367\) 411.402i 1.12099i −0.828159 0.560493i \(-0.810612\pi\)
0.828159 0.560493i \(-0.189388\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 324.551 324.551i 0.874801 0.874801i
\(372\) 0 0
\(373\) −225.677 + 225.677i −0.605033 + 0.605033i −0.941644 0.336611i \(-0.890719\pi\)
0.336611 + 0.941644i \(0.390719\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 40.8923i 0.108468i
\(378\) 0 0
\(379\) 157.180 + 157.180i 0.414724 + 0.414724i 0.883381 0.468656i \(-0.155262\pi\)
−0.468656 + 0.883381i \(0.655262\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 703.356i 1.83644i 0.396072 + 0.918219i \(0.370373\pi\)
−0.396072 + 0.918219i \(0.629627\pi\)
\(384\) 0 0
\(385\) 109.212 0.283668
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −10.7401 + 10.7401i −0.0276095 + 0.0276095i −0.720777 0.693167i \(-0.756215\pi\)
0.693167 + 0.720777i \(0.256215\pi\)
\(390\) 0 0
\(391\) −491.095 −1.25600
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7.01234 7.01234i −0.0177528 0.0177528i
\(396\) 0 0
\(397\) 365.020 + 365.020i 0.919446 + 0.919446i 0.996989 0.0775433i \(-0.0247076\pi\)
−0.0775433 + 0.996989i \(0.524708\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −341.735 −0.852207 −0.426104 0.904674i \(-0.640114\pi\)
−0.426104 + 0.904674i \(0.640114\pi\)
\(402\) 0 0
\(403\) 29.8770 29.8770i 0.0741364 0.0741364i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −309.947 −0.761541
\(408\) 0 0
\(409\) 368.259i 0.900389i −0.892931 0.450194i \(-0.851355\pi\)
0.892931 0.450194i \(-0.148645\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −275.678 275.678i −0.667501 0.667501i
\(414\) 0 0
\(415\) 130.652i 0.314824i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 407.140 407.140i 0.971694 0.971694i −0.0279165 0.999610i \(-0.508887\pi\)
0.999610 + 0.0279165i \(0.00888725\pi\)
\(420\) 0 0
\(421\) 57.5576 57.5576i 0.136716 0.136716i −0.635437 0.772153i \(-0.719180\pi\)
0.772153 + 0.635437i \(0.219180\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 378.772i 0.891229i
\(426\) 0 0
\(427\) −296.091 296.091i −0.693422 0.693422i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 796.565i 1.84818i −0.382177 0.924089i \(-0.624826\pi\)
0.382177 0.924089i \(-0.375174\pi\)
\(432\) 0 0
\(433\) −335.804 −0.775529 −0.387764 0.921758i \(-0.626753\pi\)
−0.387764 + 0.921758i \(0.626753\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 540.746 540.746i 1.23741 1.23741i
\(438\) 0 0
\(439\) 285.630 0.650638 0.325319 0.945604i \(-0.394528\pi\)
0.325319 + 0.945604i \(0.394528\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 111.596 + 111.596i 0.251909 + 0.251909i 0.821753 0.569844i \(-0.192996\pi\)
−0.569844 + 0.821753i \(0.692996\pi\)
\(444\) 0 0
\(445\) −90.0358 90.0358i −0.202328 0.202328i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 99.6741 0.221991 0.110996 0.993821i \(-0.464596\pi\)
0.110996 + 0.993821i \(0.464596\pi\)
\(450\) 0 0
\(451\) −287.125 + 287.125i −0.636641 + 0.636641i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 265.012 0.582445
\(456\) 0 0
\(457\) 32.1643i 0.0703813i 0.999381 + 0.0351907i \(0.0112039\pi\)
−0.999381 + 0.0351907i \(0.988796\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −165.361 165.361i −0.358701 0.358701i 0.504633 0.863334i \(-0.331628\pi\)
−0.863334 + 0.504633i \(0.831628\pi\)
\(462\) 0 0
\(463\) 923.215i 1.99398i −0.0774991 0.996992i \(-0.524693\pi\)
0.0774991 0.996992i \(-0.475307\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 507.842 507.842i 1.08746 1.08746i 0.0916660 0.995790i \(-0.470781\pi\)
0.995790 0.0916660i \(-0.0292192\pi\)
\(468\) 0 0
\(469\) −364.349 + 364.349i −0.776864 + 0.776864i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 239.940i 0.507272i
\(474\) 0 0
\(475\) 417.068 + 417.068i 0.878037 + 0.878037i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 52.3866i 0.109367i −0.998504 0.0546833i \(-0.982585\pi\)
0.998504 0.0546833i \(-0.0174149\pi\)
\(480\) 0 0
\(481\) −752.112 −1.56364
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −39.2554 + 39.2554i −0.0809389 + 0.0809389i
\(486\) 0 0
\(487\) 715.733 1.46968 0.734839 0.678241i \(-0.237258\pi\)
0.734839 + 0.678241i \(0.237258\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −22.3258 22.3258i −0.0454701 0.0454701i 0.684006 0.729476i \(-0.260236\pi\)
−0.729476 + 0.684006i \(0.760236\pi\)
\(492\) 0 0
\(493\) 29.6680 + 29.6680i 0.0601784 + 0.0601784i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 249.729 0.502473
\(498\) 0 0
\(499\) −84.0984 + 84.0984i −0.168534 + 0.168534i −0.786335 0.617801i \(-0.788024\pi\)
0.617801 + 0.786335i \(0.288024\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 327.870 0.651829 0.325914 0.945399i \(-0.394328\pi\)
0.325914 + 0.945399i \(0.394328\pi\)
\(504\) 0 0
\(505\) 54.7909i 0.108497i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −34.6224 34.6224i −0.0680205 0.0680205i 0.672278 0.740299i \(-0.265316\pi\)
−0.740299 + 0.672278i \(0.765316\pi\)
\(510\) 0 0
\(511\) 424.963i 0.831630i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −167.956 + 167.956i −0.326128 + 0.326128i
\(516\) 0 0
\(517\) −428.184 + 428.184i −0.828210 + 0.828210i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 235.719i 0.452436i 0.974077 + 0.226218i \(0.0726362\pi\)
−0.974077 + 0.226218i \(0.927364\pi\)
\(522\) 0 0
\(523\) 185.851 + 185.851i 0.355356 + 0.355356i 0.862098 0.506742i \(-0.169150\pi\)
−0.506742 + 0.862098i \(0.669150\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 43.3524i 0.0822626i
\(528\) 0 0
\(529\) 92.2900 0.174461
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −696.732 + 696.732i −1.30719 + 1.30719i
\(534\) 0 0
\(535\) −53.2408 −0.0995155
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 89.6428 + 89.6428i 0.166313 + 0.166313i
\(540\) 0 0
\(541\) −315.952 315.952i −0.584015 0.584015i 0.351989 0.936004i \(-0.385506\pi\)
−0.936004 + 0.351989i \(0.885506\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −287.841 −0.528149
\(546\) 0 0
\(547\) 550.957 550.957i 1.00723 1.00723i 0.00725954 0.999974i \(-0.497689\pi\)
0.999974 0.00725954i \(-0.00231080\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −65.3350 −0.118575
\(552\) 0 0
\(553\) 23.6982i 0.0428539i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.35545 2.35545i −0.00422882 0.00422882i 0.704989 0.709218i \(-0.250952\pi\)
−0.709218 + 0.704989i \(0.750952\pi\)
\(558\) 0 0
\(559\) 582.233i 1.04156i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 269.210 269.210i 0.478170 0.478170i −0.426376 0.904546i \(-0.640210\pi\)
0.904546 + 0.426376i \(0.140210\pi\)
\(564\) 0 0
\(565\) 108.507 108.507i 0.192047 0.192047i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 342.558i 0.602035i −0.953619 0.301018i \(-0.902674\pi\)
0.953619 0.301018i \(-0.0973263\pi\)
\(570\) 0 0
\(571\) −153.948 153.948i −0.269610 0.269610i 0.559333 0.828943i \(-0.311057\pi\)
−0.828943 + 0.559333i \(0.811057\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 479.190i 0.833373i
\(576\) 0 0
\(577\) 563.693 0.976938 0.488469 0.872581i \(-0.337556\pi\)
0.488469 + 0.872581i \(0.337556\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 220.769 220.769i 0.379981 0.379981i
\(582\) 0 0
\(583\) −632.465 −1.08484
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 176.603 + 176.603i 0.300857 + 0.300857i 0.841349 0.540492i \(-0.181762\pi\)
−0.540492 + 0.841349i \(0.681762\pi\)
\(588\) 0 0
\(589\) 47.7355 + 47.7355i 0.0810450 + 0.0810450i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 996.597 1.68060 0.840301 0.542120i \(-0.182378\pi\)
0.840301 + 0.542120i \(0.182378\pi\)
\(594\) 0 0
\(595\) 192.271 192.271i 0.323144 0.323144i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −854.031 −1.42576 −0.712880 0.701286i \(-0.752610\pi\)
−0.712880 + 0.701286i \(0.752610\pi\)
\(600\) 0 0
\(601\) 345.733i 0.575263i 0.957741 + 0.287631i \(0.0928678\pi\)
−0.957741 + 0.287631i \(0.907132\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 99.2029 + 99.2029i 0.163972 + 0.163972i
\(606\) 0 0
\(607\) 526.354i 0.867141i 0.901120 + 0.433570i \(0.142746\pi\)
−0.901120 + 0.433570i \(0.857254\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1039.02 + 1039.02i −1.70053 + 1.70053i
\(612\) 0 0
\(613\) 410.567 410.567i 0.669767 0.669767i −0.287895 0.957662i \(-0.592955\pi\)
0.957662 + 0.287895i \(0.0929554\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 514.755i 0.834287i 0.908841 + 0.417144i \(0.136969\pi\)
−0.908841 + 0.417144i \(0.863031\pi\)
\(618\) 0 0
\(619\) −314.214 314.214i −0.507615 0.507615i 0.406179 0.913794i \(-0.366861\pi\)
−0.913794 + 0.406179i \(0.866861\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 304.276i 0.488404i
\(624\) 0 0
\(625\) −225.209 −0.360334
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −545.669 + 545.669i −0.867518 + 0.867518i
\(630\) 0 0
\(631\) 230.081 0.364629 0.182315 0.983240i \(-0.441641\pi\)
0.182315 + 0.983240i \(0.441641\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 62.6875 + 62.6875i 0.0987205 + 0.0987205i
\(636\) 0 0
\(637\) 217.526 + 217.526i 0.341484 + 0.341484i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −746.825 −1.16509 −0.582547 0.812797i \(-0.697944\pi\)
−0.582547 + 0.812797i \(0.697944\pi\)
\(642\) 0 0
\(643\) −548.092 + 548.092i −0.852398 + 0.852398i −0.990428 0.138030i \(-0.955923\pi\)
0.138030 + 0.990428i \(0.455923\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1055.00 1.63060 0.815302 0.579036i \(-0.196571\pi\)
0.815302 + 0.579036i \(0.196571\pi\)
\(648\) 0 0
\(649\) 537.223i 0.827771i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 854.888 + 854.888i 1.30917 + 1.30917i 0.922015 + 0.387155i \(0.126542\pi\)
0.387155 + 0.922015i \(0.373458\pi\)
\(654\) 0 0
\(655\) 137.350i 0.209694i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −768.766 + 768.766i −1.16656 + 1.16656i −0.183556 + 0.983009i \(0.558761\pi\)
−0.983009 + 0.183556i \(0.941239\pi\)
\(660\) 0 0
\(661\) 312.323 312.323i 0.472500 0.472500i −0.430223 0.902723i \(-0.641565\pi\)
0.902723 + 0.430223i \(0.141565\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 423.420i 0.636721i
\(666\) 0 0
\(667\) −37.5333 37.5333i −0.0562719 0.0562719i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 577.004i 0.859916i
\(672\) 0 0
\(673\) 740.565 1.10039 0.550197 0.835035i \(-0.314553\pi\)
0.550197 + 0.835035i \(0.314553\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 547.118 547.118i 0.808151 0.808151i −0.176203 0.984354i \(-0.556381\pi\)
0.984354 + 0.176203i \(0.0563814\pi\)
\(678\) 0 0
\(679\) 132.664 0.195381
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −407.623 407.623i −0.596813 0.596813i 0.342650 0.939463i \(-0.388676\pi\)
−0.939463 + 0.342650i \(0.888676\pi\)
\(684\) 0 0
\(685\) −430.772 430.772i −0.628864 0.628864i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1534.73 −2.22747
\(690\) 0 0
\(691\) −17.6037 + 17.6037i −0.0254757 + 0.0254757i −0.719730 0.694254i \(-0.755734\pi\)
0.694254 + 0.719730i \(0.255734\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 230.448 0.331579
\(696\) 0 0
\(697\) 1010.98i 1.45047i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −164.273 164.273i −0.234341 0.234341i 0.580161 0.814502i \(-0.302990\pi\)
−0.814502 + 0.580161i \(0.802990\pi\)
\(702\) 0 0
\(703\) 1201.68i 1.70935i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −92.5829 + 92.5829i −0.130952 + 0.130952i
\(708\) 0 0
\(709\) 422.796 422.796i 0.596327 0.596327i −0.343006 0.939333i \(-0.611445\pi\)
0.939333 + 0.343006i \(0.111445\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 54.8457i 0.0769224i
\(714\) 0 0
\(715\) −258.220 258.220i −0.361146 0.361146i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1029.00i 1.43115i −0.698534 0.715577i \(-0.746164\pi\)
0.698534 0.715577i \(-0.253836\pi\)
\(720\) 0 0
\(721\) 567.607 0.787250
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 28.9488 28.9488i 0.0399293 0.0399293i
\(726\) 0 0
\(727\) 475.001 0.653372 0.326686 0.945133i \(-0.394068\pi\)
0.326686 + 0.945133i \(0.394068\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 422.419 + 422.419i 0.577865 + 0.577865i
\(732\) 0 0
\(733\) −344.939 344.939i −0.470586 0.470586i 0.431519 0.902104i \(-0.357978\pi\)
−0.902104 + 0.431519i \(0.857978\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 710.021 0.963393
\(738\) 0 0
\(739\) −363.340 + 363.340i −0.491665 + 0.491665i −0.908831 0.417166i \(-0.863024\pi\)
0.417166 + 0.908831i \(0.363024\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 271.667 0.365636 0.182818 0.983147i \(-0.441478\pi\)
0.182818 + 0.983147i \(0.441478\pi\)
\(744\) 0 0
\(745\) 149.314i 0.200421i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 89.9637 + 89.9637i 0.120112 + 0.120112i
\(750\) 0 0
\(751\) 1105.27i 1.47173i 0.677128 + 0.735866i \(0.263224\pi\)
−0.677128 + 0.735866i \(0.736776\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −379.087 + 379.087i −0.502102 + 0.502102i
\(756\) 0 0
\(757\) 554.565 554.565i 0.732583 0.732583i −0.238548 0.971131i \(-0.576671\pi\)
0.971131 + 0.238548i \(0.0766713\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 188.496i 0.247695i −0.992301 0.123847i \(-0.960477\pi\)
0.992301 0.123847i \(-0.0395234\pi\)
\(762\) 0 0
\(763\) 486.380 + 486.380i 0.637457 + 0.637457i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1303.62i 1.69963i
\(768\) 0 0
\(769\) −593.354 −0.771592 −0.385796 0.922584i \(-0.626073\pi\)
−0.385796 + 0.922584i \(0.626073\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −514.720 + 514.720i −0.665873 + 0.665873i −0.956758 0.290885i \(-0.906050\pi\)
0.290885 + 0.956758i \(0.406050\pi\)
\(774\) 0 0
\(775\) −42.3015 −0.0545826
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1113.19 1113.19i −1.42900 1.42900i
\(780\) 0 0
\(781\) −243.328 243.328i −0.311560 0.311560i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 267.989 0.341387
\(786\) 0 0
\(787\) −96.1835 + 96.1835i −0.122215 + 0.122215i −0.765569 0.643354i \(-0.777542\pi\)
0.643354 + 0.765569i \(0.277542\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −366.699 −0.463589
\(792\) 0 0
\(793\) 1400.15i 1.76563i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 664.410 + 664.410i 0.833639 + 0.833639i 0.988013 0.154374i \(-0.0493359\pi\)
−0.154374 + 0.988013i \(0.549336\pi\)
\(798\) 0 0
\(799\) 1507.66i 1.88693i
\(800\) 0 0