Properties

Label 576.3.m.c.559.2
Level $576$
Weight $3$
Character 576.559
Analytic conductor $15.695$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,3,Mod(271,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.271");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 576.m (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.6948632272\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{14} - 4 x^{13} + 10 x^{12} + 56 x^{11} + 88 x^{10} - 128 x^{9} - 496 x^{8} - 512 x^{7} + \cdots + 65536 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{28} \)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 559.2
Root \(0.125358 - 1.99607i\) of defining polynomial
Character \(\chi\) \(=\) 576.559
Dual form 576.3.m.c.271.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.32679 + 3.32679i) q^{5} +4.04088 q^{7} +O(q^{10})\) \(q+(-3.32679 + 3.32679i) q^{5} +4.04088 q^{7} +(6.82458 + 6.82458i) q^{11} +(4.29091 + 4.29091i) q^{13} -30.1192 q^{17} +(19.7548 - 19.7548i) q^{19} -28.2345 q^{23} +2.86488i q^{25} +(21.3607 + 21.3607i) q^{29} +38.0396i q^{31} +(-13.4432 + 13.4432i) q^{35} +(-42.8916 + 42.8916i) q^{37} +48.2343i q^{41} +(-32.6765 - 32.6765i) q^{43} +15.8305i q^{47} -32.6713 q^{49} +(0.476870 - 0.476870i) q^{53} -45.4079 q^{55} +(9.97719 + 9.97719i) q^{59} +(37.9455 + 37.9455i) q^{61} -28.5500 q^{65} +(-20.0705 + 20.0705i) q^{67} +40.0818 q^{71} -30.8095i q^{73} +(27.5773 + 27.5773i) q^{77} +130.125i q^{79} +(-2.26155 + 2.26155i) q^{83} +(100.200 - 100.200i) q^{85} -72.2232i q^{89} +(17.3391 + 17.3391i) q^{91} +131.441i q^{95} -112.343 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 32 q^{11} + 32 q^{19} - 128 q^{23} - 32 q^{29} + 96 q^{35} - 96 q^{37} - 160 q^{43} + 112 q^{49} + 160 q^{53} + 256 q^{55} - 128 q^{59} - 32 q^{61} + 32 q^{65} - 320 q^{67} + 512 q^{71} - 224 q^{77} - 160 q^{83} + 160 q^{85} + 480 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.32679 + 3.32679i −0.665359 + 0.665359i −0.956638 0.291279i \(-0.905919\pi\)
0.291279 + 0.956638i \(0.405919\pi\)
\(6\) 0 0
\(7\) 4.04088 0.577269 0.288635 0.957439i \(-0.406799\pi\)
0.288635 + 0.957439i \(0.406799\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.82458 + 6.82458i 0.620416 + 0.620416i 0.945638 0.325222i \(-0.105439\pi\)
−0.325222 + 0.945638i \(0.605439\pi\)
\(12\) 0 0
\(13\) 4.29091 + 4.29091i 0.330070 + 0.330070i 0.852613 0.522543i \(-0.175017\pi\)
−0.522543 + 0.852613i \(0.675017\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −30.1192 −1.77172 −0.885859 0.463954i \(-0.846430\pi\)
−0.885859 + 0.463954i \(0.846430\pi\)
\(18\) 0 0
\(19\) 19.7548 19.7548i 1.03973 1.03973i 0.0405505 0.999177i \(-0.487089\pi\)
0.999177 0.0405505i \(-0.0129112\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −28.2345 −1.22759 −0.613794 0.789466i \(-0.710358\pi\)
−0.613794 + 0.789466i \(0.710358\pi\)
\(24\) 0 0
\(25\) 2.86488i 0.114595i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 21.3607 + 21.3607i 0.736575 + 0.736575i 0.971914 0.235338i \(-0.0756198\pi\)
−0.235338 + 0.971914i \(0.575620\pi\)
\(30\) 0 0
\(31\) 38.0396i 1.22708i 0.789662 + 0.613541i \(0.210256\pi\)
−0.789662 + 0.613541i \(0.789744\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −13.4432 + 13.4432i −0.384091 + 0.384091i
\(36\) 0 0
\(37\) −42.8916 + 42.8916i −1.15923 + 1.15923i −0.174590 + 0.984641i \(0.555860\pi\)
−0.984641 + 0.174590i \(0.944140\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 48.2343i 1.17645i 0.808699 + 0.588223i \(0.200172\pi\)
−0.808699 + 0.588223i \(0.799828\pi\)
\(42\) 0 0
\(43\) −32.6765 32.6765i −0.759918 0.759918i 0.216389 0.976307i \(-0.430572\pi\)
−0.976307 + 0.216389i \(0.930572\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 15.8305i 0.336818i 0.985717 + 0.168409i \(0.0538630\pi\)
−0.985717 + 0.168409i \(0.946137\pi\)
\(48\) 0 0
\(49\) −32.6713 −0.666760
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.476870 0.476870i 0.00899755 0.00899755i −0.702594 0.711591i \(-0.747975\pi\)
0.711591 + 0.702594i \(0.247975\pi\)
\(54\) 0 0
\(55\) −45.4079 −0.825599
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 9.97719 + 9.97719i 0.169105 + 0.169105i 0.786586 0.617481i \(-0.211847\pi\)
−0.617481 + 0.786586i \(0.711847\pi\)
\(60\) 0 0
\(61\) 37.9455 + 37.9455i 0.622057 + 0.622057i 0.946057 0.324000i \(-0.105028\pi\)
−0.324000 + 0.946057i \(0.605028\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −28.5500 −0.439230
\(66\) 0 0
\(67\) −20.0705 + 20.0705i −0.299559 + 0.299559i −0.840841 0.541282i \(-0.817939\pi\)
0.541282 + 0.840841i \(0.317939\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 40.0818 0.564532 0.282266 0.959336i \(-0.408914\pi\)
0.282266 + 0.959336i \(0.408914\pi\)
\(72\) 0 0
\(73\) 30.8095i 0.422049i −0.977481 0.211024i \(-0.932320\pi\)
0.977481 0.211024i \(-0.0676799\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 27.5773 + 27.5773i 0.358147 + 0.358147i
\(78\) 0 0
\(79\) 130.125i 1.64716i 0.567203 + 0.823578i \(0.308025\pi\)
−0.567203 + 0.823578i \(0.691975\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.26155 + 2.26155i −0.0272476 + 0.0272476i −0.720599 0.693352i \(-0.756133\pi\)
0.693352 + 0.720599i \(0.256133\pi\)
\(84\) 0 0
\(85\) 100.200 100.200i 1.17883 1.17883i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 72.2232i 0.811496i −0.913985 0.405748i \(-0.867011\pi\)
0.913985 0.405748i \(-0.132989\pi\)
\(90\) 0 0
\(91\) 17.3391 + 17.3391i 0.190539 + 0.190539i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 131.441i 1.38358i
\(96\) 0 0
\(97\) −112.343 −1.15817 −0.579085 0.815267i \(-0.696590\pi\)
−0.579085 + 0.815267i \(0.696590\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.61933 1.61933i 0.0160330 0.0160330i −0.699045 0.715078i \(-0.746391\pi\)
0.715078 + 0.699045i \(0.246391\pi\)
\(102\) 0 0
\(103\) −27.9974 −0.271819 −0.135910 0.990721i \(-0.543396\pi\)
−0.135910 + 0.990721i \(0.543396\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −40.3835 40.3835i −0.377416 0.377416i 0.492753 0.870169i \(-0.335990\pi\)
−0.870169 + 0.492753i \(0.835990\pi\)
\(108\) 0 0
\(109\) 36.8336 + 36.8336i 0.337923 + 0.337923i 0.855585 0.517662i \(-0.173198\pi\)
−0.517662 + 0.855585i \(0.673198\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 55.5952 0.491993 0.245997 0.969271i \(-0.420885\pi\)
0.245997 + 0.969271i \(0.420885\pi\)
\(114\) 0 0
\(115\) 93.9305 93.9305i 0.816787 0.816787i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −121.708 −1.02276
\(120\) 0 0
\(121\) 27.8503i 0.230167i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −92.7007 92.7007i −0.741606 0.741606i
\(126\) 0 0
\(127\) 109.927i 0.865569i −0.901497 0.432785i \(-0.857531\pi\)
0.901497 0.432785i \(-0.142469\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 75.6795 75.6795i 0.577706 0.577706i −0.356565 0.934271i \(-0.616052\pi\)
0.934271 + 0.356565i \(0.116052\pi\)
\(132\) 0 0
\(133\) 79.8270 79.8270i 0.600203 0.600203i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.14751i 0.0156752i −0.999969 0.00783762i \(-0.997505\pi\)
0.999969 0.00783762i \(-0.00249482\pi\)
\(138\) 0 0
\(139\) 109.246 + 109.246i 0.785941 + 0.785941i 0.980826 0.194885i \(-0.0624334\pi\)
−0.194885 + 0.980826i \(0.562433\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 58.5673i 0.409562i
\(144\) 0 0
\(145\) −142.125 −0.980174
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −79.6950 + 79.6950i −0.534866 + 0.534866i −0.922016 0.387151i \(-0.873459\pi\)
0.387151 + 0.922016i \(0.373459\pi\)
\(150\) 0 0
\(151\) −105.546 −0.698982 −0.349491 0.936940i \(-0.613645\pi\)
−0.349491 + 0.936940i \(0.613645\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −126.550 126.550i −0.816451 0.816451i
\(156\) 0 0
\(157\) 190.060 + 190.060i 1.21057 + 1.21057i 0.970839 + 0.239733i \(0.0770598\pi\)
0.239733 + 0.970839i \(0.422940\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −114.092 −0.708649
\(162\) 0 0
\(163\) 59.4130 59.4130i 0.364497 0.364497i −0.500969 0.865465i \(-0.667023\pi\)
0.865465 + 0.500969i \(0.167023\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 65.3894 0.391553 0.195777 0.980649i \(-0.437277\pi\)
0.195777 + 0.980649i \(0.437277\pi\)
\(168\) 0 0
\(169\) 132.176i 0.782107i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 212.939 + 212.939i 1.23086 + 1.23086i 0.963633 + 0.267228i \(0.0861077\pi\)
0.267228 + 0.963633i \(0.413892\pi\)
\(174\) 0 0
\(175\) 11.5766i 0.0661522i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 196.852 196.852i 1.09973 1.09973i 0.105289 0.994442i \(-0.466423\pi\)
0.994442 0.105289i \(-0.0335768\pi\)
\(180\) 0 0
\(181\) −27.4330 + 27.4330i −0.151564 + 0.151564i −0.778816 0.627252i \(-0.784179\pi\)
0.627252 + 0.778816i \(0.284179\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 285.383i 1.54261i
\(186\) 0 0
\(187\) −205.551 205.551i −1.09920 1.09920i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 244.409i 1.27963i −0.768530 0.639814i \(-0.779011\pi\)
0.768530 0.639814i \(-0.220989\pi\)
\(192\) 0 0
\(193\) 255.040 1.32145 0.660726 0.750627i \(-0.270249\pi\)
0.660726 + 0.750627i \(0.270249\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 194.229 194.229i 0.985936 0.985936i −0.0139666 0.999902i \(-0.504446\pi\)
0.999902 + 0.0139666i \(0.00444586\pi\)
\(198\) 0 0
\(199\) 169.797 0.853252 0.426626 0.904428i \(-0.359702\pi\)
0.426626 + 0.904428i \(0.359702\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 86.3160 + 86.3160i 0.425202 + 0.425202i
\(204\) 0 0
\(205\) −160.466 160.466i −0.782759 0.782759i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 269.637 1.29013
\(210\) 0 0
\(211\) 132.691 132.691i 0.628868 0.628868i −0.318915 0.947783i \(-0.603319\pi\)
0.947783 + 0.318915i \(0.103319\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 217.416 1.01124
\(216\) 0 0
\(217\) 153.713i 0.708357i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −129.239 129.239i −0.584791 0.584791i
\(222\) 0 0
\(223\) 26.3436i 0.118133i −0.998254 0.0590664i \(-0.981188\pi\)
0.998254 0.0590664i \(-0.0188124\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −70.3362 + 70.3362i −0.309851 + 0.309851i −0.844852 0.535001i \(-0.820311\pi\)
0.535001 + 0.844852i \(0.320311\pi\)
\(228\) 0 0
\(229\) −215.607 + 215.607i −0.941516 + 0.941516i −0.998382 0.0568658i \(-0.981889\pi\)
0.0568658 + 0.998382i \(0.481889\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 183.853i 0.789069i 0.918881 + 0.394534i \(0.129094\pi\)
−0.918881 + 0.394534i \(0.870906\pi\)
\(234\) 0 0
\(235\) −52.6647 52.6647i −0.224105 0.224105i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 315.183i 1.31876i −0.751811 0.659379i \(-0.770819\pi\)
0.751811 0.659379i \(-0.229181\pi\)
\(240\) 0 0
\(241\) −327.804 −1.36018 −0.680090 0.733128i \(-0.738059\pi\)
−0.680090 + 0.733128i \(0.738059\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 108.691 108.691i 0.443635 0.443635i
\(246\) 0 0
\(247\) 169.532 0.686366
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 219.813 + 219.813i 0.875747 + 0.875747i 0.993091 0.117344i \(-0.0374381\pi\)
−0.117344 + 0.993091i \(0.537438\pi\)
\(252\) 0 0
\(253\) −192.689 192.689i −0.761616 0.761616i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −150.042 −0.583823 −0.291911 0.956445i \(-0.594291\pi\)
−0.291911 + 0.956445i \(0.594291\pi\)
\(258\) 0 0
\(259\) −173.320 + 173.320i −0.669188 + 0.669188i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 14.8922 0.0566242 0.0283121 0.999599i \(-0.490987\pi\)
0.0283121 + 0.999599i \(0.490987\pi\)
\(264\) 0 0
\(265\) 3.17290i 0.0119732i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −95.4169 95.4169i −0.354710 0.354710i 0.507149 0.861858i \(-0.330699\pi\)
−0.861858 + 0.507149i \(0.830699\pi\)
\(270\) 0 0
\(271\) 46.4991i 0.171583i −0.996313 0.0857917i \(-0.972658\pi\)
0.996313 0.0857917i \(-0.0273420\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −19.5516 + 19.5516i −0.0710967 + 0.0710967i
\(276\) 0 0
\(277\) 30.5071 30.5071i 0.110134 0.110134i −0.649892 0.760026i \(-0.725186\pi\)
0.760026 + 0.649892i \(0.225186\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 217.239i 0.773093i 0.922270 + 0.386547i \(0.126332\pi\)
−0.922270 + 0.386547i \(0.873668\pi\)
\(282\) 0 0
\(283\) 136.055 + 136.055i 0.480760 + 0.480760i 0.905374 0.424614i \(-0.139590\pi\)
−0.424614 + 0.905374i \(0.639590\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 194.909i 0.679126i
\(288\) 0 0
\(289\) 618.167 2.13898
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 56.8362 56.8362i 0.193980 0.193980i −0.603433 0.797414i \(-0.706201\pi\)
0.797414 + 0.603433i \(0.206201\pi\)
\(294\) 0 0
\(295\) −66.3841 −0.225031
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −121.152 121.152i −0.405190 0.405190i
\(300\) 0 0
\(301\) −132.042 132.042i −0.438677 0.438677i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −252.474 −0.827782
\(306\) 0 0
\(307\) −245.927 + 245.927i −0.801067 + 0.801067i −0.983262 0.182196i \(-0.941680\pi\)
0.182196 + 0.983262i \(0.441680\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −359.964 −1.15744 −0.578721 0.815526i \(-0.696448\pi\)
−0.578721 + 0.815526i \(0.696448\pi\)
\(312\) 0 0
\(313\) 131.023i 0.418605i 0.977851 + 0.209303i \(0.0671194\pi\)
−0.977851 + 0.209303i \(0.932881\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −89.0470 89.0470i −0.280905 0.280905i 0.552565 0.833470i \(-0.313649\pi\)
−0.833470 + 0.552565i \(0.813649\pi\)
\(318\) 0 0
\(319\) 291.555i 0.913966i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −595.000 + 595.000i −1.84210 + 1.84210i
\(324\) 0 0
\(325\) −12.2929 + 12.2929i −0.0378244 + 0.0378244i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 63.9690i 0.194435i
\(330\) 0 0
\(331\) −95.5992 95.5992i −0.288819 0.288819i 0.547794 0.836613i \(-0.315468\pi\)
−0.836613 + 0.547794i \(0.815468\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 133.541i 0.398629i
\(336\) 0 0
\(337\) 583.717 1.73210 0.866050 0.499958i \(-0.166651\pi\)
0.866050 + 0.499958i \(0.166651\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −259.604 + 259.604i −0.761302 + 0.761302i
\(342\) 0 0
\(343\) −330.024 −0.962169
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 191.655 + 191.655i 0.552320 + 0.552320i 0.927110 0.374790i \(-0.122285\pi\)
−0.374790 + 0.927110i \(0.622285\pi\)
\(348\) 0 0
\(349\) −19.4781 19.4781i −0.0558112 0.0558112i 0.678650 0.734462i \(-0.262565\pi\)
−0.734462 + 0.678650i \(0.762565\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 82.9610 0.235017 0.117509 0.993072i \(-0.462509\pi\)
0.117509 + 0.993072i \(0.462509\pi\)
\(354\) 0 0
\(355\) −133.344 + 133.344i −0.375616 + 0.375616i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 357.792 0.996634 0.498317 0.866995i \(-0.333952\pi\)
0.498317 + 0.866995i \(0.333952\pi\)
\(360\) 0 0
\(361\) 419.507i 1.16207i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 102.497 + 102.497i 0.280814 + 0.280814i
\(366\) 0 0
\(367\) 651.729i 1.77583i −0.460010 0.887914i \(-0.652154\pi\)
0.460010 0.887914i \(-0.347846\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.92698 1.92698i 0.00519401 0.00519401i
\(372\) 0 0
\(373\) 199.720 199.720i 0.535442 0.535442i −0.386745 0.922187i \(-0.626401\pi\)
0.922187 + 0.386745i \(0.126401\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 183.314i 0.486243i
\(378\) 0 0
\(379\) 330.204 + 330.204i 0.871251 + 0.871251i 0.992609 0.121358i \(-0.0387248\pi\)
−0.121358 + 0.992609i \(0.538725\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 174.284i 0.455049i 0.973772 + 0.227524i \(0.0730631\pi\)
−0.973772 + 0.227524i \(0.926937\pi\)
\(384\) 0 0
\(385\) −183.488 −0.476593
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −207.835 + 207.835i −0.534279 + 0.534279i −0.921843 0.387564i \(-0.873317\pi\)
0.387564 + 0.921843i \(0.373317\pi\)
\(390\) 0 0
\(391\) 850.402 2.17494
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −432.900 432.900i −1.09595 1.09595i
\(396\) 0 0
\(397\) −37.2994 37.2994i −0.0939533 0.0939533i 0.658568 0.752521i \(-0.271162\pi\)
−0.752521 + 0.658568i \(0.771162\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 524.704 1.30849 0.654244 0.756284i \(-0.272987\pi\)
0.654244 + 0.756284i \(0.272987\pi\)
\(402\) 0 0
\(403\) −163.224 + 163.224i −0.405023 + 0.405023i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −585.434 −1.43841
\(408\) 0 0
\(409\) 787.357i 1.92508i 0.271141 + 0.962540i \(0.412599\pi\)
−0.271141 + 0.962540i \(0.587401\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 40.3166 + 40.3166i 0.0976190 + 0.0976190i
\(414\) 0 0
\(415\) 15.0475i 0.0362589i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 30.1767 30.1767i 0.0720209 0.0720209i −0.670179 0.742200i \(-0.733783\pi\)
0.742200 + 0.670179i \(0.233783\pi\)
\(420\) 0 0
\(421\) −261.021 + 261.021i −0.620003 + 0.620003i −0.945532 0.325529i \(-0.894458\pi\)
0.325529 + 0.945532i \(0.394458\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 86.2878i 0.203030i
\(426\) 0 0
\(427\) 153.333 + 153.333i 0.359094 + 0.359094i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 459.989i 1.06726i 0.845718 + 0.533630i \(0.179172\pi\)
−0.845718 + 0.533630i \(0.820828\pi\)
\(432\) 0 0
\(433\) −445.246 −1.02828 −0.514140 0.857706i \(-0.671889\pi\)
−0.514140 + 0.857706i \(0.671889\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −557.768 + 557.768i −1.27636 + 1.27636i
\(438\) 0 0
\(439\) −356.467 −0.811998 −0.405999 0.913874i \(-0.633076\pi\)
−0.405999 + 0.913874i \(0.633076\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 358.752 + 358.752i 0.809824 + 0.809824i 0.984607 0.174783i \(-0.0559224\pi\)
−0.174783 + 0.984607i \(0.555922\pi\)
\(444\) 0 0
\(445\) 240.272 + 240.272i 0.539936 + 0.539936i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 44.6564 0.0994576 0.0497288 0.998763i \(-0.484164\pi\)
0.0497288 + 0.998763i \(0.484164\pi\)
\(450\) 0 0
\(451\) −329.179 + 329.179i −0.729886 + 0.729886i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −115.367 −0.253554
\(456\) 0 0
\(457\) 84.2332i 0.184318i 0.995744 + 0.0921589i \(0.0293768\pi\)
−0.995744 + 0.0921589i \(0.970623\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −205.347 205.347i −0.445438 0.445438i 0.448397 0.893835i \(-0.351995\pi\)
−0.893835 + 0.448397i \(0.851995\pi\)
\(462\) 0 0
\(463\) 270.647i 0.584550i −0.956334 0.292275i \(-0.905588\pi\)
0.956334 0.292275i \(-0.0944123\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 230.389 230.389i 0.493338 0.493338i −0.416018 0.909356i \(-0.636575\pi\)
0.909356 + 0.416018i \(0.136575\pi\)
\(468\) 0 0
\(469\) −81.1024 + 81.1024i −0.172926 + 0.172926i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 446.006i 0.942931i
\(474\) 0 0
\(475\) 56.5952 + 56.5952i 0.119148 + 0.119148i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 575.911i 1.20232i 0.799129 + 0.601159i \(0.205294\pi\)
−0.799129 + 0.601159i \(0.794706\pi\)
\(480\) 0 0
\(481\) −368.088 −0.765255
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 373.740 373.740i 0.770599 0.770599i
\(486\) 0 0
\(487\) −600.355 −1.23276 −0.616381 0.787448i \(-0.711402\pi\)
−0.616381 + 0.787448i \(0.711402\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 79.7182 + 79.7182i 0.162359 + 0.162359i 0.783611 0.621252i \(-0.213376\pi\)
−0.621252 + 0.783611i \(0.713376\pi\)
\(492\) 0 0
\(493\) −643.367 643.367i −1.30500 1.30500i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 161.966 0.325887
\(498\) 0 0
\(499\) 13.4912 13.4912i 0.0270365 0.0270365i −0.693459 0.720496i \(-0.743914\pi\)
0.720496 + 0.693459i \(0.243914\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 892.196 1.77375 0.886875 0.462009i \(-0.152871\pi\)
0.886875 + 0.462009i \(0.152871\pi\)
\(504\) 0 0
\(505\) 10.7744i 0.0213354i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 44.9128 + 44.9128i 0.0882374 + 0.0882374i 0.749848 0.661610i \(-0.230127\pi\)
−0.661610 + 0.749848i \(0.730127\pi\)
\(510\) 0 0
\(511\) 124.498i 0.243636i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 93.1416 93.1416i 0.180857 0.180857i
\(516\) 0 0
\(517\) −108.036 + 108.036i −0.208967 + 0.208967i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 866.038i 1.66226i 0.556078 + 0.831130i \(0.312306\pi\)
−0.556078 + 0.831130i \(0.687694\pi\)
\(522\) 0 0
\(523\) −359.579 359.579i −0.687531 0.687531i 0.274155 0.961686i \(-0.411602\pi\)
−0.961686 + 0.274155i \(0.911602\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1145.72i 2.17405i
\(528\) 0 0
\(529\) 268.189 0.506973
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −206.969 + 206.969i −0.388310 + 0.388310i
\(534\) 0 0
\(535\) 268.695 0.502234
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −222.968 222.968i −0.413669 0.413669i
\(540\) 0 0
\(541\) −9.41176 9.41176i −0.0173970 0.0173970i 0.698355 0.715752i \(-0.253916\pi\)
−0.715752 + 0.698355i \(0.753916\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −245.076 −0.449680
\(546\) 0 0
\(547\) 37.6377 37.6377i 0.0688075 0.0688075i −0.671866 0.740673i \(-0.734507\pi\)
0.740673 + 0.671866i \(0.234507\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 843.953 1.53168
\(552\) 0 0
\(553\) 525.821i 0.950852i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −369.172 369.172i −0.662786 0.662786i 0.293250 0.956036i \(-0.405263\pi\)
−0.956036 + 0.293250i \(0.905263\pi\)
\(558\) 0 0
\(559\) 280.424i 0.501652i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −141.210 + 141.210i −0.250817 + 0.250817i −0.821306 0.570489i \(-0.806754\pi\)
0.570489 + 0.821306i \(0.306754\pi\)
\(564\) 0 0
\(565\) −184.954 + 184.954i −0.327352 + 0.327352i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 134.928i 0.237131i −0.992946 0.118566i \(-0.962170\pi\)
0.992946 0.118566i \(-0.0378296\pi\)
\(570\) 0 0
\(571\) 486.485 + 486.485i 0.851988 + 0.851988i 0.990378 0.138390i \(-0.0441926\pi\)
−0.138390 + 0.990378i \(0.544193\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 80.8885i 0.140676i
\(576\) 0 0
\(577\) −310.050 −0.537349 −0.268674 0.963231i \(-0.586586\pi\)
−0.268674 + 0.963231i \(0.586586\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −9.13868 + 9.13868i −0.0157292 + 0.0157292i
\(582\) 0 0
\(583\) 6.50888 0.0111645
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −301.021 301.021i −0.512812 0.512812i 0.402575 0.915387i \(-0.368115\pi\)
−0.915387 + 0.402575i \(0.868115\pi\)
\(588\) 0 0
\(589\) 751.465 + 751.465i 1.27583 + 1.27583i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −6.08782 −0.0102661 −0.00513307 0.999987i \(-0.501634\pi\)
−0.00513307 + 0.999987i \(0.501634\pi\)
\(594\) 0 0
\(595\) 404.898 404.898i 0.680501 0.680501i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −756.472 −1.26289 −0.631446 0.775420i \(-0.717538\pi\)
−0.631446 + 0.775420i \(0.717538\pi\)
\(600\) 0 0
\(601\) 753.072i 1.25303i −0.779409 0.626516i \(-0.784480\pi\)
0.779409 0.626516i \(-0.215520\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 92.6521 + 92.6521i 0.153144 + 0.153144i
\(606\) 0 0
\(607\) 47.1200i 0.0776277i −0.999246 0.0388139i \(-0.987642\pi\)
0.999246 0.0388139i \(-0.0123579\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −67.9271 + 67.9271i −0.111174 + 0.111174i
\(612\) 0 0
\(613\) 637.192 637.192i 1.03947 1.03947i 0.0402769 0.999189i \(-0.487176\pi\)
0.999189 0.0402769i \(-0.0128240\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 514.635i 0.834092i −0.908885 0.417046i \(-0.863065\pi\)
0.908885 0.417046i \(-0.136935\pi\)
\(618\) 0 0
\(619\) −313.704 313.704i −0.506791 0.506791i 0.406749 0.913540i \(-0.366662\pi\)
−0.913540 + 0.406749i \(0.866662\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 291.845i 0.468452i
\(624\) 0 0
\(625\) 545.171 0.872273
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1291.86 1291.86i 2.05383 2.05383i
\(630\) 0 0
\(631\) 1226.20 1.94326 0.971631 0.236502i \(-0.0760009\pi\)
0.971631 + 0.236502i \(0.0760009\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 365.706 + 365.706i 0.575914 + 0.575914i
\(636\) 0 0
\(637\) −140.189 140.189i −0.220078 0.220078i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −241.218 −0.376314 −0.188157 0.982139i \(-0.560251\pi\)
−0.188157 + 0.982139i \(0.560251\pi\)
\(642\) 0 0
\(643\) 736.141 736.141i 1.14485 1.14485i 0.157304 0.987550i \(-0.449720\pi\)
0.987550 0.157304i \(-0.0502803\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −680.082 −1.05113 −0.525565 0.850753i \(-0.676146\pi\)
−0.525565 + 0.850753i \(0.676146\pi\)
\(648\) 0 0
\(649\) 136.180i 0.209831i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 716.929 + 716.929i 1.09790 + 1.09790i 0.994656 + 0.103244i \(0.0329224\pi\)
0.103244 + 0.994656i \(0.467078\pi\)
\(654\) 0 0
\(655\) 503.540i 0.768763i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 276.868 276.868i 0.420133 0.420133i −0.465116 0.885250i \(-0.653988\pi\)
0.885250 + 0.465116i \(0.153988\pi\)
\(660\) 0 0
\(661\) 251.780 251.780i 0.380907 0.380907i −0.490522 0.871429i \(-0.663194\pi\)
0.871429 + 0.490522i \(0.163194\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 531.136i 0.798700i
\(666\) 0 0
\(667\) −603.109 603.109i −0.904211 0.904211i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 517.924i 0.771869i
\(672\) 0 0
\(673\) 674.332 1.00198 0.500990 0.865453i \(-0.332969\pi\)
0.500990 + 0.865453i \(0.332969\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −109.048 + 109.048i −0.161075 + 0.161075i −0.783043 0.621968i \(-0.786334\pi\)
0.621968 + 0.783043i \(0.286334\pi\)
\(678\) 0 0
\(679\) −453.963 −0.668576
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −784.278 784.278i −1.14828 1.14828i −0.986890 0.161394i \(-0.948401\pi\)
−0.161394 0.986890i \(-0.551599\pi\)
\(684\) 0 0
\(685\) 7.14432 + 7.14432i 0.0104297 + 0.0104297i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 4.09241 0.00593964
\(690\) 0 0
\(691\) 99.4915 99.4915i 0.143982 0.143982i −0.631442 0.775423i \(-0.717536\pi\)
0.775423 + 0.631442i \(0.217536\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −726.877 −1.04587
\(696\) 0 0
\(697\) 1452.78i 2.08433i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −177.909 177.909i −0.253794 0.253794i 0.568730 0.822524i \(-0.307435\pi\)
−0.822524 + 0.568730i \(0.807435\pi\)
\(702\) 0 0
\(703\) 1694.63i 2.41057i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 6.54353 6.54353i 0.00925535 0.00925535i
\(708\) 0 0
\(709\) −208.080 + 208.080i −0.293484 + 0.293484i −0.838455 0.544971i \(-0.816541\pi\)
0.544971 + 0.838455i \(0.316541\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1074.03i 1.50635i
\(714\) 0 0
\(715\) −194.841 194.841i −0.272506 0.272506i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1013.84i 1.41007i −0.709171 0.705036i \(-0.750931\pi\)
0.709171 0.705036i \(-0.249069\pi\)
\(720\) 0 0
\(721\) −113.134 −0.156913
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −61.1957 + 61.1957i −0.0844079 + 0.0844079i
\(726\) 0 0
\(727\) −697.156 −0.958949 −0.479474 0.877556i \(-0.659173\pi\)
−0.479474 + 0.877556i \(0.659173\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 984.189 + 984.189i 1.34636 + 1.34636i
\(732\) 0 0
\(733\) −39.9608 39.9608i −0.0545168 0.0545168i 0.679323 0.733840i \(-0.262274\pi\)
−0.733840 + 0.679323i \(0.762274\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −273.945 −0.371703
\(738\) 0 0
\(739\) 236.377 236.377i 0.319860 0.319860i −0.528853 0.848713i \(-0.677378\pi\)
0.848713 + 0.528853i \(0.177378\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 804.248 1.08243 0.541217 0.840883i \(-0.317964\pi\)
0.541217 + 0.840883i \(0.317964\pi\)
\(744\) 0 0
\(745\) 530.258i 0.711755i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −163.185 163.185i −0.217870 0.217870i
\(750\) 0 0
\(751\) 607.492i 0.808911i 0.914558 + 0.404456i \(0.132539\pi\)
−0.914558 + 0.404456i \(0.867461\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 351.131 351.131i 0.465074 0.465074i
\(756\) 0 0
\(757\) −11.6797 + 11.6797i −0.0154289 + 0.0154289i −0.714779 0.699350i \(-0.753473\pi\)
0.699350 + 0.714779i \(0.253473\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 659.125i 0.866130i −0.901363 0.433065i \(-0.857432\pi\)
0.901363 0.433065i \(-0.142568\pi\)
\(762\) 0 0
\(763\) 148.840 + 148.840i 0.195073 + 0.195073i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 85.6224i 0.111633i
\(768\) 0 0
\(769\) −178.802 −0.232512 −0.116256 0.993219i \(-0.537089\pi\)
−0.116256 + 0.993219i \(0.537089\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 91.8171 91.8171i 0.118780 0.118780i −0.645218 0.763998i \(-0.723234\pi\)
0.763998 + 0.645218i \(0.223234\pi\)
\(774\) 0 0
\(775\) −108.979 −0.140618
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 952.860 + 952.860i 1.22318 + 1.22318i
\(780\) 0 0
\(781\) 273.541 + 273.541i 0.350245 + 0.350245i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1264.58 −1.61093
\(786\) 0 0
\(787\) −214.856 + 214.856i −0.273006 + 0.273006i −0.830309 0.557303i \(-0.811836\pi\)
0.557303 + 0.830309i \(0.311836\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 224.654 0.284012
\(792\) 0 0
\(793\) 325.641i 0.410645i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 332.028 + 332.028i 0.416598 + 0.416598i 0.884029 0.467432i \(-0.154821\pi\)
−0.467432 + 0.884029i \(0.654821\pi\)
\(798\) 0 0
\(799\) 476.801i 0.596747i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 210.262 210.262i 0.261846 0.261846i
\(804\) 0 0
\(805\) 379.562 379.562i 0.471506 0.471506i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 421.989i 0.521618i −0.965390 0.260809i \(-0.916011\pi\)
0.965390 0.260809i \(-0.0839893\pi\)
\(810\) 0 0
\(811\) −532.822 532.822i −0.656994 0.656994i 0.297674 0.954668i \(-0.403789\pi\)
−0.954668 + 0.297674i \(0.903789\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 395.310i 0.485042i
\(816\) 0 0
\(817\) −1291.04 −1.58022
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 797.754 797.754i 0.971686 0.971686i −0.0279241 0.999610i \(-0.508890\pi\)
0.999610 + 0.0279241i \(0.00888968\pi\)
\(822\) 0 0
\(823\) −863.777 −1.04955 −0.524773 0.851242i \(-0.675850\pi\)
−0.524773 + 0.851242i \(0.675850\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1154.08 1154.08i −1.39550 1.39550i −0.812402 0.583098i \(-0.801840\pi\)
−0.583098 0.812402i \(-0.698160\pi\)
\(828\) 0 0
\(829\) 473.183 + 473.183i 0.570788 + 0.570788i 0.932349 0.361561i \(-0.117756\pi\)
−0.361561 + 0.932349i \(0.617756\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 984.033 1.18131
\(834\) 0 0
\(835\) −217.537 + 217.537i −0.260523 + 0.260523i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 561.776 0.669578 0.334789 0.942293i \(-0.391335\pi\)
0.334789 + 0.942293i \(0.391335\pi\)
\(840\) 0 0
\(841\) 71.5574i 0.0850861i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 439.723 + 439.723i 0.520382 + 0.520382i
\(846\) 0 0
\(847\) 112.540i 0.132869i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1211.02 1211.02i 1.42306 1.42306i
\(852\) 0 0
\(853\) −431.517 + 431.517i −0.505881 + 0.505881i −0.913259 0.407378i \(-0.866443\pi\)
0.407378 + 0.913259i \(0.366443\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 448.237i 0.523030i 0.965199 + 0.261515i \(0.0842221\pi\)
−0.965199 + 0.261515i \(0.915778\pi\)
\(858\) 0 0
\(859\) 617.299 + 617.299i 0.718625 + 0.718625i 0.968324 0.249699i \(-0.0803316\pi\)
−0.249699 + 0.968324i \(0.580332\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1588.33i 1.84047i 0.391363 + 0.920236i \(0.372004\pi\)
−0.391363 + 0.920236i \(0.627996\pi\)
\(864\) 0 0
\(865\) −1416.81 −1.63793
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −888.050 + 888.050i −1.02192 + 1.02192i
\(870\) 0 0
\(871\) −172.241 −0.197751
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −374.593 374.593i −0.428106 0.428106i
\(876\) 0 0
\(877\) 535.285 + 535.285i 0.610359 + 0.610359i 0.943040 0.332680i \(-0.107953\pi\)
−0.332680 + 0.943040i \(0.607953\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −517.437 −0.587330 −0.293665 0.955908i \(-0.594875\pi\)
−0.293665 + 0.955908i \(0.594875\pi\)
\(882\) 0 0
\(883\) 1192.91 1192.91i 1.35097 1.35097i 0.466399 0.884574i \(-0.345551\pi\)
0.884574 0.466399i \(-0.154449\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1750.36 −1.97335 −0.986675 0.162704i \(-0.947978\pi\)
−0.986675 + 0.162704i \(0.947978\pi\)
\(888\) 0 0
\(889\) 444.203i 0.499666i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 312.728 + 312.728i 0.350199 + 0.350199i
\(894\) 0 0
\(895\) 1309.77i 1.46343i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −812.551 + 812.551i −0.903839 + 0.903839i
\(900\) 0 0
\(901\) −14.3630 + 14.3630i −0.0159411 + 0.0159411i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 182.528i 0.201689i
\(906\) 0 0
\(907\) −86.0833 86.0833i −0.0949099 0.0949099i 0.658058 0.752968i \(-0.271378\pi\)
−0.752968 + 0.658058i \(0.771378\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 44.7701i 0.0491439i 0.999698 + 0.0245719i \(0.00782228\pi\)
−0.999698 + 0.0245719i \(0.992178\pi\)
\(912\) 0 0
\(913\) −30.8683 −0.0338098
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 305.812 305.812i 0.333492 0.333492i
\(918\) 0 0
\(919\) −498.982 −0.542962 −0.271481 0.962444i \(-0.587513\pi\)
−0.271481 + 0.962444i \(0.587513\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 171.987 + 171.987i 0.186335 + 0.186335i
\(924\) 0 0
\(925\) −122.879 122.879i −0.132842 0.132842i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1460.97 1.57262 0.786311 0.617831i \(-0.211988\pi\)
0.786311 + 0.617831i \(0.211988\pi\)
\(930\) 0 0
\(931\) −645.415 + 645.415i −0.693250 + 0.693250i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1367.65 1.46273
\(936\) 0 0
\(937\) 594.005i 0.633943i 0.948435 + 0.316972i \(0.102666\pi\)
−0.948435 + 0.316972i \(0.897334\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −767.764 767.764i −0.815902 0.815902i 0.169610 0.985511i \(-0.445749\pi\)
−0.985511 + 0.169610i \(0.945749\pi\)
\(942\) 0 0
\(943\) 1361.87i 1.44419i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −205.644 + 205.644i −0.217153 + 0.217153i −0.807297 0.590145i \(-0.799071\pi\)
0.590145 + 0.807297i \(0.299071\pi\)
\(948\) 0 0
\(949\) 132.201 132.201i 0.139306 0.139306i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1714.17i 1.79871i 0.437215 + 0.899357i \(0.355965\pi\)
−0.437215 + 0.899357i \(0.644035\pi\)
\(954\) 0 0
\(955\) 813.098 + 813.098i 0.851412 + 0.851412i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 8.67783i 0.00904883i
\(960\) 0 0
\(961\) −486.009 −0.505733
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −848.466 + 848.466i −0.879240 + 0.879240i
\(966\) 0 0
\(967\) 1375.76 1.42271 0.711356 0.702832i \(-0.248081\pi\)
0.711356 + 0.702832i \(0.248081\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1081.41 1081.41i −1.11371 1.11371i −0.992645 0.121062i \(-0.961370\pi\)
−0.121062 0.992645i \(-0.538630\pi\)
\(972\) 0 0
\(973\) 441.449 + 441.449i 0.453699 + 0.453699i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 18.0081 0.0184320 0.00921601 0.999958i \(-0.497066\pi\)
0.00921601 + 0.999958i \(0.497066\pi\)
\(978\) 0 0
\(979\) 492.893 492.893i 0.503465 0.503465i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 579.164 0.589180 0.294590 0.955624i \(-0.404817\pi\)
0.294590 + 0.955624i \(0.404817\pi\)
\(984\) 0 0
\(985\) 1292.32i 1.31200i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 922.605 + 922.605i 0.932866 + 0.932866i
\(990\) 0 0
\(991\) 1389.22i 1.40184i −0.713242 0.700918i \(-0.752774\pi\)
0.713242 0.700918i \(-0.247226\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −564.880 + 564.880i −0.567719 + 0.567719i
\(996\) 0 0
\(997\) 867.073 867.073i 0.869682 0.869682i −0.122755 0.992437i \(-0.539173\pi\)
0.992437 + 0.122755i \(0.0391730\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.3.m.c.559.2 16
3.2 odd 2 192.3.l.a.175.4 16
4.3 odd 2 144.3.m.c.19.5 16
8.3 odd 2 1152.3.m.f.991.7 16
8.5 even 2 1152.3.m.c.991.7 16
12.11 even 2 48.3.l.a.19.4 16
16.3 odd 4 1152.3.m.c.415.7 16
16.5 even 4 144.3.m.c.91.5 16
16.11 odd 4 inner 576.3.m.c.271.2 16
16.13 even 4 1152.3.m.f.415.7 16
24.5 odd 2 384.3.l.b.223.5 16
24.11 even 2 384.3.l.a.223.1 16
48.5 odd 4 48.3.l.a.43.4 yes 16
48.11 even 4 192.3.l.a.79.4 16
48.29 odd 4 384.3.l.a.31.1 16
48.35 even 4 384.3.l.b.31.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.3.l.a.19.4 16 12.11 even 2
48.3.l.a.43.4 yes 16 48.5 odd 4
144.3.m.c.19.5 16 4.3 odd 2
144.3.m.c.91.5 16 16.5 even 4
192.3.l.a.79.4 16 48.11 even 4
192.3.l.a.175.4 16 3.2 odd 2
384.3.l.a.31.1 16 48.29 odd 4
384.3.l.a.223.1 16 24.11 even 2
384.3.l.b.31.5 16 48.35 even 4
384.3.l.b.223.5 16 24.5 odd 2
576.3.m.c.271.2 16 16.11 odd 4 inner
576.3.m.c.559.2 16 1.1 even 1 trivial
1152.3.m.c.415.7 16 16.3 odd 4
1152.3.m.c.991.7 16 8.5 even 2
1152.3.m.f.415.7 16 16.13 even 4
1152.3.m.f.991.7 16 8.3 odd 2