Properties

Label 576.3.m.c.271.8
Level $576$
Weight $3$
Character 576.271
Analytic conductor $15.695$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 576.m (of order \(4\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(15.6948632272\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 6 x^{14} - 4 x^{13} + 10 x^{12} + 56 x^{11} + 88 x^{10} - 128 x^{9} - 496 x^{8} - 512 x^{7} + 1408 x^{6} + 3584 x^{5} + 2560 x^{4} - 4096 x^{3} - 24576 x^{2} + 65536\)
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{28} \)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 271.8
Root \(-1.87459 + 0.697079i\) of defining polynomial
Character \(\chi\) \(=\) 576.271
Dual form 576.3.m.c.559.8

$q$-expansion

\(f(q)\) \(=\) \(q+(5.24354 + 5.24354i) q^{5} +5.32796 q^{7} +O(q^{10})\) \(q+(5.24354 + 5.24354i) q^{5} +5.32796 q^{7} +(12.2863 - 12.2863i) q^{11} +(-5.73657 + 5.73657i) q^{13} +23.3997 q^{17} +(-11.7492 - 11.7492i) q^{19} +5.80841 q^{23} +29.9894i q^{25} +(-18.3914 + 18.3914i) q^{29} -16.9053i q^{31} +(27.9374 + 27.9374i) q^{35} +(15.3391 + 15.3391i) q^{37} -29.2351i q^{41} +(-33.4099 + 33.4099i) q^{43} +18.2125i q^{47} -20.6128 q^{49} +(66.9856 + 66.9856i) q^{53} +128.847 q^{55} +(-27.1523 + 27.1523i) q^{59} +(65.2399 - 65.2399i) q^{61} -60.1599 q^{65} +(37.6951 + 37.6951i) q^{67} +42.6559 q^{71} -106.391i q^{73} +(65.4607 - 65.4607i) q^{77} -21.2821i q^{79} +(24.1638 + 24.1638i) q^{83} +(122.697 + 122.697i) q^{85} +52.8029i q^{89} +(-30.5643 + 30.5643i) q^{91} -123.215i q^{95} -21.0222 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + O(q^{10}) \) \( 16q + 32q^{11} + 32q^{19} - 128q^{23} - 32q^{29} + 96q^{35} - 96q^{37} - 160q^{43} + 112q^{49} + 160q^{53} + 256q^{55} - 128q^{59} - 32q^{61} + 32q^{65} - 320q^{67} + 512q^{71} - 224q^{77} - 160q^{83} + 160q^{85} + 480q^{91} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.24354 + 5.24354i 1.04871 + 1.04871i 0.998751 + 0.0499563i \(0.0159082\pi\)
0.0499563 + 0.998751i \(0.484092\pi\)
\(6\) 0 0
\(7\) 5.32796 0.761138 0.380569 0.924753i \(-0.375728\pi\)
0.380569 + 0.924753i \(0.375728\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 12.2863 12.2863i 1.11693 1.11693i 0.124743 0.992189i \(-0.460189\pi\)
0.992189 0.124743i \(-0.0398107\pi\)
\(12\) 0 0
\(13\) −5.73657 + 5.73657i −0.441275 + 0.441275i −0.892440 0.451165i \(-0.851008\pi\)
0.451165 + 0.892440i \(0.351008\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 23.3997 1.37645 0.688226 0.725496i \(-0.258390\pi\)
0.688226 + 0.725496i \(0.258390\pi\)
\(18\) 0 0
\(19\) −11.7492 11.7492i −0.618380 0.618380i 0.326736 0.945116i \(-0.394051\pi\)
−0.945116 + 0.326736i \(0.894051\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.80841 0.252540 0.126270 0.991996i \(-0.459699\pi\)
0.126270 + 0.991996i \(0.459699\pi\)
\(24\) 0 0
\(25\) 29.9894i 1.19958i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −18.3914 + 18.3914i −0.634185 + 0.634185i −0.949115 0.314930i \(-0.898019\pi\)
0.314930 + 0.949115i \(0.398019\pi\)
\(30\) 0 0
\(31\) 16.9053i 0.545332i −0.962109 0.272666i \(-0.912095\pi\)
0.962109 0.272666i \(-0.0879053\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 27.9374 + 27.9374i 0.798211 + 0.798211i
\(36\) 0 0
\(37\) 15.3391 + 15.3391i 0.414571 + 0.414571i 0.883327 0.468756i \(-0.155298\pi\)
−0.468756 + 0.883327i \(0.655298\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 29.2351i 0.713051i −0.934286 0.356526i \(-0.883961\pi\)
0.934286 0.356526i \(-0.116039\pi\)
\(42\) 0 0
\(43\) −33.4099 + 33.4099i −0.776975 + 0.776975i −0.979315 0.202340i \(-0.935145\pi\)
0.202340 + 0.979315i \(0.435145\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 18.2125i 0.387500i 0.981051 + 0.193750i \(0.0620650\pi\)
−0.981051 + 0.193750i \(0.937935\pi\)
\(48\) 0 0
\(49\) −20.6128 −0.420670
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 66.9856 + 66.9856i 1.26388 + 1.26388i 0.949197 + 0.314681i \(0.101898\pi\)
0.314681 + 0.949197i \(0.398102\pi\)
\(54\) 0 0
\(55\) 128.847 2.34267
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −27.1523 + 27.1523i −0.460209 + 0.460209i −0.898724 0.438515i \(-0.855505\pi\)
0.438515 + 0.898724i \(0.355505\pi\)
\(60\) 0 0
\(61\) 65.2399 65.2399i 1.06951 1.06951i 0.0721103 0.997397i \(-0.477027\pi\)
0.997397 0.0721103i \(-0.0229733\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −60.1599 −0.925537
\(66\) 0 0
\(67\) 37.6951 + 37.6951i 0.562614 + 0.562614i 0.930049 0.367435i \(-0.119764\pi\)
−0.367435 + 0.930049i \(0.619764\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 42.6559 0.600788 0.300394 0.953815i \(-0.402882\pi\)
0.300394 + 0.953815i \(0.402882\pi\)
\(72\) 0 0
\(73\) 106.391i 1.45742i −0.684825 0.728708i \(-0.740121\pi\)
0.684825 0.728708i \(-0.259879\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 65.4607 65.4607i 0.850139 0.850139i
\(78\) 0 0
\(79\) 21.2821i 0.269394i −0.990887 0.134697i \(-0.956994\pi\)
0.990887 0.134697i \(-0.0430061\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 24.1638 + 24.1638i 0.291130 + 0.291130i 0.837527 0.546396i \(-0.184001\pi\)
−0.546396 + 0.837527i \(0.684001\pi\)
\(84\) 0 0
\(85\) 122.697 + 122.697i 1.44350 + 1.44350i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 52.8029i 0.593291i 0.954988 + 0.296645i \(0.0958679\pi\)
−0.954988 + 0.296645i \(0.904132\pi\)
\(90\) 0 0
\(91\) −30.5643 + 30.5643i −0.335871 + 0.335871i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 123.215i 1.29700i
\(96\) 0 0
\(97\) −21.0222 −0.216724 −0.108362 0.994112i \(-0.534560\pi\)
−0.108362 + 0.994112i \(0.534560\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.24960 + 3.24960i 0.0321743 + 0.0321743i 0.723011 0.690837i \(-0.242758\pi\)
−0.690837 + 0.723011i \(0.742758\pi\)
\(102\) 0 0
\(103\) −105.112 −1.02050 −0.510252 0.860025i \(-0.670448\pi\)
−0.510252 + 0.860025i \(0.670448\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −99.6160 + 99.6160i −0.930991 + 0.930991i −0.997768 0.0667770i \(-0.978728\pi\)
0.0667770 + 0.997768i \(0.478728\pi\)
\(108\) 0 0
\(109\) −108.050 + 108.050i −0.991282 + 0.991282i −0.999962 0.00868078i \(-0.997237\pi\)
0.00868078 + 0.999962i \(0.497237\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 23.2835 0.206048 0.103024 0.994679i \(-0.467148\pi\)
0.103024 + 0.994679i \(0.467148\pi\)
\(114\) 0 0
\(115\) 30.4566 + 30.4566i 0.264840 + 0.264840i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 124.673 1.04767
\(120\) 0 0
\(121\) 180.904i 1.49508i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −26.1621 + 26.1621i −0.209297 + 0.209297i
\(126\) 0 0
\(127\) 118.180i 0.930550i −0.885166 0.465275i \(-0.845955\pi\)
0.885166 0.465275i \(-0.154045\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −69.2067 69.2067i −0.528296 0.528296i 0.391768 0.920064i \(-0.371863\pi\)
−0.920064 + 0.391768i \(0.871863\pi\)
\(132\) 0 0
\(133\) −62.5994 62.5994i −0.470672 0.470672i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 124.474i 0.908572i −0.890856 0.454286i \(-0.849894\pi\)
0.890856 0.454286i \(-0.150106\pi\)
\(138\) 0 0
\(139\) −169.014 + 169.014i −1.21593 + 1.21593i −0.246881 + 0.969046i \(0.579406\pi\)
−0.969046 + 0.246881i \(0.920594\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 140.962i 0.985749i
\(144\) 0 0
\(145\) −192.872 −1.33015
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −146.988 146.988i −0.986495 0.986495i 0.0134145 0.999910i \(-0.495730\pi\)
−0.999910 + 0.0134145i \(0.995730\pi\)
\(150\) 0 0
\(151\) −75.5456 −0.500302 −0.250151 0.968207i \(-0.580480\pi\)
−0.250151 + 0.968207i \(0.580480\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 88.6435 88.6435i 0.571893 0.571893i
\(156\) 0 0
\(157\) −81.5356 + 81.5356i −0.519335 + 0.519335i −0.917370 0.398035i \(-0.869692\pi\)
0.398035 + 0.917370i \(0.369692\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 30.9470 0.192217
\(162\) 0 0
\(163\) −55.8065 55.8065i −0.342371 0.342371i 0.514887 0.857258i \(-0.327834\pi\)
−0.857258 + 0.514887i \(0.827834\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −24.6339 −0.147508 −0.0737540 0.997276i \(-0.523498\pi\)
−0.0737540 + 0.997276i \(0.523498\pi\)
\(168\) 0 0
\(169\) 103.183i 0.610553i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.88551 + 4.88551i −0.0282399 + 0.0282399i −0.721086 0.692846i \(-0.756357\pi\)
0.692846 + 0.721086i \(0.256357\pi\)
\(174\) 0 0
\(175\) 159.782i 0.913042i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −229.504 229.504i −1.28215 1.28215i −0.939444 0.342702i \(-0.888658\pi\)
−0.342702 0.939444i \(-0.611342\pi\)
\(180\) 0 0
\(181\) 116.607 + 116.607i 0.644238 + 0.644238i 0.951595 0.307356i \(-0.0994443\pi\)
−0.307356 + 0.951595i \(0.599444\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 160.863i 0.869528i
\(186\) 0 0
\(187\) 287.495 287.495i 1.53740 1.53740i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 94.2316i 0.493359i −0.969097 0.246680i \(-0.920660\pi\)
0.969097 0.246680i \(-0.0793395\pi\)
\(192\) 0 0
\(193\) 84.2667 0.436615 0.218308 0.975880i \(-0.429946\pi\)
0.218308 + 0.975880i \(0.429946\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 56.9578 + 56.9578i 0.289126 + 0.289126i 0.836734 0.547609i \(-0.184462\pi\)
−0.547609 + 0.836734i \(0.684462\pi\)
\(198\) 0 0
\(199\) 196.179 0.985827 0.492913 0.870078i \(-0.335932\pi\)
0.492913 + 0.870078i \(0.335932\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −97.9886 + 97.9886i −0.482702 + 0.482702i
\(204\) 0 0
\(205\) 153.295 153.295i 0.747782 0.747782i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −288.708 −1.38138
\(210\) 0 0
\(211\) −177.340 177.340i −0.840475 0.840475i 0.148445 0.988921i \(-0.452573\pi\)
−0.988921 + 0.148445i \(0.952573\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −350.373 −1.62964
\(216\) 0 0
\(217\) 90.0707i 0.415072i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −134.234 + 134.234i −0.607394 + 0.607394i
\(222\) 0 0
\(223\) 377.924i 1.69473i −0.531012 0.847364i \(-0.678188\pi\)
0.531012 0.847364i \(-0.321812\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 103.909 + 103.909i 0.457750 + 0.457750i 0.897916 0.440166i \(-0.145080\pi\)
−0.440166 + 0.897916i \(0.645080\pi\)
\(228\) 0 0
\(229\) −101.055 101.055i −0.441290 0.441290i 0.451156 0.892445i \(-0.351012\pi\)
−0.892445 + 0.451156i \(0.851012\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 287.259i 1.23287i −0.787405 0.616436i \(-0.788576\pi\)
0.787405 0.616436i \(-0.211424\pi\)
\(234\) 0 0
\(235\) −95.4979 + 95.4979i −0.406374 + 0.406374i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 150.941i 0.631554i −0.948833 0.315777i \(-0.897735\pi\)
0.948833 0.315777i \(-0.102265\pi\)
\(240\) 0 0
\(241\) 37.7817 0.156771 0.0783853 0.996923i \(-0.475024\pi\)
0.0783853 + 0.996923i \(0.475024\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −108.084 108.084i −0.441159 0.441159i
\(246\) 0 0
\(247\) 134.800 0.545751
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 100.915 100.915i 0.402050 0.402050i −0.476905 0.878955i \(-0.658241\pi\)
0.878955 + 0.476905i \(0.158241\pi\)
\(252\) 0 0
\(253\) 71.3637 71.3637i 0.282070 0.282070i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −241.295 −0.938891 −0.469446 0.882961i \(-0.655546\pi\)
−0.469446 + 0.882961i \(0.655546\pi\)
\(258\) 0 0
\(259\) 81.7263 + 81.7263i 0.315546 + 0.315546i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −118.747 −0.451509 −0.225754 0.974184i \(-0.572485\pi\)
−0.225754 + 0.974184i \(0.572485\pi\)
\(264\) 0 0
\(265\) 702.483i 2.65088i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7.74853 + 7.74853i −0.0288050 + 0.0288050i −0.721363 0.692558i \(-0.756484\pi\)
0.692558 + 0.721363i \(0.256484\pi\)
\(270\) 0 0
\(271\) 131.899i 0.486712i 0.969937 + 0.243356i \(0.0782484\pi\)
−0.969937 + 0.243356i \(0.921752\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 368.457 + 368.457i 1.33984 + 1.33984i
\(276\) 0 0
\(277\) −202.352 202.352i −0.730513 0.730513i 0.240208 0.970721i \(-0.422784\pi\)
−0.970721 + 0.240208i \(0.922784\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 68.8493i 0.245015i 0.992468 + 0.122508i \(0.0390936\pi\)
−0.992468 + 0.122508i \(0.960906\pi\)
\(282\) 0 0
\(283\) −206.773 + 206.773i −0.730646 + 0.730646i −0.970748 0.240102i \(-0.922819\pi\)
0.240102 + 0.970748i \(0.422819\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 155.764i 0.542730i
\(288\) 0 0
\(289\) 258.545 0.894620
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 361.237 + 361.237i 1.23289 + 1.23289i 0.962848 + 0.270043i \(0.0870379\pi\)
0.270043 + 0.962848i \(0.412962\pi\)
\(294\) 0 0
\(295\) −284.749 −0.965250
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −33.3204 + 33.3204i −0.111439 + 0.111439i
\(300\) 0 0
\(301\) −178.007 + 178.007i −0.591385 + 0.591385i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 684.176 2.24320
\(306\) 0 0
\(307\) 10.9073 + 10.9073i 0.0355286 + 0.0355286i 0.724648 0.689119i \(-0.242002\pi\)
−0.689119 + 0.724648i \(0.742002\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −160.251 −0.515278 −0.257639 0.966241i \(-0.582945\pi\)
−0.257639 + 0.966241i \(0.582945\pi\)
\(312\) 0 0
\(313\) 355.500i 1.13578i −0.823103 0.567892i \(-0.807759\pi\)
0.823103 0.567892i \(-0.192241\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −72.5192 + 72.5192i −0.228767 + 0.228767i −0.812178 0.583410i \(-0.801718\pi\)
0.583410 + 0.812178i \(0.301718\pi\)
\(318\) 0 0
\(319\) 451.922i 1.41668i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −274.928 274.928i −0.851170 0.851170i
\(324\) 0 0
\(325\) −172.036 172.036i −0.529343 0.529343i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 97.0355i 0.294941i
\(330\) 0 0
\(331\) 248.096 248.096i 0.749536 0.749536i −0.224856 0.974392i \(-0.572191\pi\)
0.974392 + 0.224856i \(0.0721912\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 395.312i 1.18003i
\(336\) 0 0
\(337\) −467.271 −1.38656 −0.693280 0.720668i \(-0.743835\pi\)
−0.693280 + 0.720668i \(0.743835\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −207.703 207.703i −0.609098 0.609098i
\(342\) 0 0
\(343\) −370.894 −1.08133
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 292.821 292.821i 0.843863 0.843863i −0.145496 0.989359i \(-0.546478\pi\)
0.989359 + 0.145496i \(0.0464776\pi\)
\(348\) 0 0
\(349\) 346.260 346.260i 0.992150 0.992150i −0.00781941 0.999969i \(-0.502489\pi\)
0.999969 + 0.00781941i \(0.00248902\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −8.01816 −0.0227143 −0.0113572 0.999936i \(-0.503615\pi\)
−0.0113572 + 0.999936i \(0.503615\pi\)
\(354\) 0 0
\(355\) 223.668 + 223.668i 0.630051 + 0.630051i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 590.403 1.64458 0.822289 0.569071i \(-0.192697\pi\)
0.822289 + 0.569071i \(0.192697\pi\)
\(360\) 0 0
\(361\) 84.9121i 0.235213i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 557.867 557.867i 1.52840 1.52840i
\(366\) 0 0
\(367\) 397.100i 1.08202i 0.841017 + 0.541008i \(0.181957\pi\)
−0.841017 + 0.541008i \(0.818043\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 356.897 + 356.897i 0.961986 + 0.961986i
\(372\) 0 0
\(373\) −165.010 165.010i −0.442387 0.442387i 0.450427 0.892814i \(-0.351272\pi\)
−0.892814 + 0.450427i \(0.851272\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 211.007i 0.559700i
\(378\) 0 0
\(379\) 206.669 206.669i 0.545300 0.545300i −0.379778 0.925078i \(-0.624000\pi\)
0.925078 + 0.379778i \(0.124000\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 598.414i 1.56244i 0.624257 + 0.781219i \(0.285402\pi\)
−0.624257 + 0.781219i \(0.714598\pi\)
\(384\) 0 0
\(385\) 686.492 1.78310
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −186.696 186.696i −0.479939 0.479939i 0.425173 0.905112i \(-0.360213\pi\)
−0.905112 + 0.425173i \(0.860213\pi\)
\(390\) 0 0
\(391\) 135.915 0.347609
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 111.594 111.594i 0.282515 0.282515i
\(396\) 0 0
\(397\) −57.3727 + 57.3727i −0.144516 + 0.144516i −0.775663 0.631147i \(-0.782584\pi\)
0.631147 + 0.775663i \(0.282584\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 466.082 1.16230 0.581149 0.813797i \(-0.302603\pi\)
0.581149 + 0.813797i \(0.302603\pi\)
\(402\) 0 0
\(403\) 96.9784 + 96.9784i 0.240641 + 0.240641i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 376.921 0.926096
\(408\) 0 0
\(409\) 597.952i 1.46198i 0.682386 + 0.730992i \(0.260942\pi\)
−0.682386 + 0.730992i \(0.739058\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −144.667 + 144.667i −0.350282 + 0.350282i
\(414\) 0 0
\(415\) 253.408i 0.610621i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4.65301 4.65301i −0.0111050 0.0111050i 0.701532 0.712638i \(-0.252500\pi\)
−0.712638 + 0.701532i \(0.752500\pi\)
\(420\) 0 0
\(421\) 34.3754 + 34.3754i 0.0816519 + 0.0816519i 0.746753 0.665101i \(-0.231612\pi\)
−0.665101 + 0.746753i \(0.731612\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 701.742i 1.65116i
\(426\) 0 0
\(427\) 347.596 347.596i 0.814042 0.814042i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 423.823i 0.983347i 0.870780 + 0.491674i \(0.163615\pi\)
−0.870780 + 0.491674i \(0.836385\pi\)
\(432\) 0 0
\(433\) 833.377 1.92466 0.962330 0.271885i \(-0.0876472\pi\)
0.962330 + 0.271885i \(0.0876472\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −68.2443 68.2443i −0.156165 0.156165i
\(438\) 0 0
\(439\) −32.3193 −0.0736203 −0.0368102 0.999322i \(-0.511720\pi\)
−0.0368102 + 0.999322i \(0.511720\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 119.527 119.527i 0.269813 0.269813i −0.559212 0.829025i \(-0.688896\pi\)
0.829025 + 0.559212i \(0.188896\pi\)
\(444\) 0 0
\(445\) −276.874 + 276.874i −0.622189 + 0.622189i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 182.359 0.406146 0.203073 0.979164i \(-0.434907\pi\)
0.203073 + 0.979164i \(0.434907\pi\)
\(450\) 0 0
\(451\) −359.190 359.190i −0.796430 0.796430i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −320.530 −0.704461
\(456\) 0 0
\(457\) 272.942i 0.597246i −0.954371 0.298623i \(-0.903473\pi\)
0.954371 0.298623i \(-0.0965274\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −188.323 + 188.323i −0.408510 + 0.408510i −0.881219 0.472709i \(-0.843276\pi\)
0.472709 + 0.881219i \(0.343276\pi\)
\(462\) 0 0
\(463\) 116.023i 0.250590i −0.992120 0.125295i \(-0.960012\pi\)
0.992120 0.125295i \(-0.0399877\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −271.914 271.914i −0.582257 0.582257i 0.353266 0.935523i \(-0.385071\pi\)
−0.935523 + 0.353266i \(0.885071\pi\)
\(468\) 0 0
\(469\) 200.838 + 200.838i 0.428227 + 0.428227i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 820.966i 1.73566i
\(474\) 0 0
\(475\) 352.352 352.352i 0.741793 0.741793i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 775.808i 1.61964i −0.586678 0.809820i \(-0.699565\pi\)
0.586678 0.809820i \(-0.300435\pi\)
\(480\) 0 0
\(481\) −175.988 −0.365880
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −110.231 110.231i −0.227280 0.227280i
\(486\) 0 0
\(487\) −174.891 −0.359118 −0.179559 0.983747i \(-0.557467\pi\)
−0.179559 + 0.983747i \(0.557467\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −348.578 + 348.578i −0.709934 + 0.709934i −0.966521 0.256587i \(-0.917402\pi\)
0.256587 + 0.966521i \(0.417402\pi\)
\(492\) 0 0
\(493\) −430.352 + 430.352i −0.872926 + 0.872926i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 227.269 0.457282
\(498\) 0 0
\(499\) 607.544 + 607.544i 1.21752 + 1.21752i 0.968496 + 0.249027i \(0.0801109\pi\)
0.249027 + 0.968496i \(0.419889\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −130.935 −0.260309 −0.130154 0.991494i \(-0.541547\pi\)
−0.130154 + 0.991494i \(0.541547\pi\)
\(504\) 0 0
\(505\) 34.0789i 0.0674829i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 61.5539 61.5539i 0.120931 0.120931i −0.644051 0.764982i \(-0.722748\pi\)
0.764982 + 0.644051i \(0.222748\pi\)
\(510\) 0 0
\(511\) 566.849i 1.10929i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −551.159 551.159i −1.07021 1.07021i
\(516\) 0 0
\(517\) 223.763 + 223.763i 0.432811 + 0.432811i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 32.5929i 0.0625584i 0.999511 + 0.0312792i \(0.00995810\pi\)
−0.999511 + 0.0312792i \(0.990042\pi\)
\(522\) 0 0
\(523\) 226.407 226.407i 0.432900 0.432900i −0.456713 0.889614i \(-0.650974\pi\)
0.889614 + 0.456713i \(0.150974\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 395.578i 0.750623i
\(528\) 0 0
\(529\) −495.262 −0.936224
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 167.709 + 167.709i 0.314652 + 0.314652i
\(534\) 0 0
\(535\) −1044.68 −1.95267
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −253.254 + 253.254i −0.469859 + 0.469859i
\(540\) 0 0
\(541\) 510.912 510.912i 0.944385 0.944385i −0.0541480 0.998533i \(-0.517244\pi\)
0.998533 + 0.0541480i \(0.0172443\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1133.13 −2.07913
\(546\) 0 0
\(547\) −512.889 512.889i −0.937639 0.937639i 0.0605271 0.998167i \(-0.480722\pi\)
−0.998167 + 0.0605271i \(0.980722\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 432.168 0.784334
\(552\) 0 0
\(553\) 113.390i 0.205046i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −566.691 + 566.691i −1.01740 + 1.01740i −0.0175529 + 0.999846i \(0.505588\pi\)
−0.999846 + 0.0175529i \(0.994412\pi\)
\(558\) 0 0
\(559\) 383.317i 0.685720i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 548.653 + 548.653i 0.974517 + 0.974517i 0.999683 0.0251665i \(-0.00801159\pi\)
−0.0251665 + 0.999683i \(0.508012\pi\)
\(564\) 0 0
\(565\) 122.088 + 122.088i 0.216085 + 0.216085i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 551.224i 0.968760i −0.874858 0.484380i \(-0.839045\pi\)
0.874858 0.484380i \(-0.160955\pi\)
\(570\) 0 0
\(571\) −458.387 + 458.387i −0.802780 + 0.802780i −0.983529 0.180749i \(-0.942148\pi\)
0.180749 + 0.983529i \(0.442148\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 174.191i 0.302941i
\(576\) 0 0
\(577\) −718.488 −1.24521 −0.622607 0.782535i \(-0.713926\pi\)
−0.622607 + 0.782535i \(0.713926\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 128.744 + 128.744i 0.221590 + 0.221590i
\(582\) 0 0
\(583\) 1646.00 2.82333
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.02450 3.02450i 0.00515247 0.00515247i −0.704526 0.709678i \(-0.748840\pi\)
0.709678 + 0.704526i \(0.248840\pi\)
\(588\) 0 0
\(589\) −198.624 + 198.624i −0.337222 + 0.337222i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −576.193 −0.971657 −0.485829 0.874054i \(-0.661482\pi\)
−0.485829 + 0.874054i \(0.661482\pi\)
\(594\) 0 0
\(595\) 653.726 + 653.726i 1.09870 + 1.09870i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1101.40 −1.83873 −0.919365 0.393406i \(-0.871297\pi\)
−0.919365 + 0.393406i \(0.871297\pi\)
\(600\) 0 0
\(601\) 7.11053i 0.0118312i 0.999983 + 0.00591558i \(0.00188300\pi\)
−0.999983 + 0.00591558i \(0.998117\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 948.578 948.578i 1.56790 1.56790i
\(606\) 0 0
\(607\) 528.384i 0.870485i 0.900313 + 0.435242i \(0.143337\pi\)
−0.900313 + 0.435242i \(0.856663\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −104.477 104.477i −0.170994 0.170994i
\(612\) 0 0
\(613\) −642.364 642.364i −1.04790 1.04790i −0.998793 0.0491093i \(-0.984362\pi\)
−0.0491093 0.998793i \(-0.515638\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1068.16i 1.73122i −0.500717 0.865611i \(-0.666930\pi\)
0.500717 0.865611i \(-0.333070\pi\)
\(618\) 0 0
\(619\) −691.136 + 691.136i −1.11654 + 1.11654i −0.124290 + 0.992246i \(0.539665\pi\)
−0.992246 + 0.124290i \(0.960335\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 281.332i 0.451576i
\(624\) 0 0
\(625\) 475.371 0.760594
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 358.931 + 358.931i 0.570637 + 0.570637i
\(630\) 0 0
\(631\) −486.622 −0.771191 −0.385596 0.922668i \(-0.626004\pi\)
−0.385596 + 0.922668i \(0.626004\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 619.681 619.681i 0.975875 0.975875i
\(636\) 0 0
\(637\) 118.247 118.247i 0.185631 0.185631i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 691.017 1.07803 0.539015 0.842296i \(-0.318797\pi\)
0.539015 + 0.842296i \(0.318797\pi\)
\(642\) 0 0
\(643\) −652.605 652.605i −1.01494 1.01494i −0.999887 0.0150512i \(-0.995209\pi\)
−0.0150512 0.999887i \(-0.504791\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1156.72 1.78782 0.893911 0.448245i \(-0.147951\pi\)
0.893911 + 0.448245i \(0.147951\pi\)
\(648\) 0 0
\(649\) 667.201i 1.02804i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 209.105 209.105i 0.320222 0.320222i −0.528630 0.848852i \(-0.677294\pi\)
0.848852 + 0.528630i \(0.177294\pi\)
\(654\) 0 0
\(655\) 725.776i 1.10806i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 533.902 + 533.902i 0.810170 + 0.810170i 0.984659 0.174489i \(-0.0558274\pi\)
−0.174489 + 0.984659i \(0.555827\pi\)
\(660\) 0 0
\(661\) 283.120 + 283.120i 0.428320 + 0.428320i 0.888056 0.459736i \(-0.152056\pi\)
−0.459736 + 0.888056i \(0.652056\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 656.484i 0.987195i
\(666\) 0 0
\(667\) −106.825 + 106.825i −0.160157 + 0.160157i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1603.11i 2.38913i
\(672\) 0 0
\(673\) −397.854 −0.591164 −0.295582 0.955317i \(-0.595514\pi\)
−0.295582 + 0.955317i \(0.595514\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −289.959 289.959i −0.428299 0.428299i 0.459749 0.888049i \(-0.347939\pi\)
−0.888049 + 0.459749i \(0.847939\pi\)
\(678\) 0 0
\(679\) −112.005 −0.164956
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −150.197 + 150.197i −0.219908 + 0.219908i −0.808460 0.588551i \(-0.799698\pi\)
0.588551 + 0.808460i \(0.299698\pi\)
\(684\) 0 0
\(685\) 652.686 652.686i 0.952826 0.952826i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −768.535 −1.11544
\(690\) 0 0
\(691\) −791.212 791.212i −1.14502 1.14502i −0.987518 0.157506i \(-0.949655\pi\)
−0.157506 0.987518i \(-0.550345\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1772.46 −2.55030
\(696\) 0 0
\(697\) 684.092i 0.981481i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −900.201 + 900.201i −1.28417 + 1.28417i −0.345893 + 0.938274i \(0.612424\pi\)
−0.938274 + 0.345893i \(0.887576\pi\)
\(702\) 0 0
\(703\) 360.445i 0.512724i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 17.3138 + 17.3138i 0.0244891 + 0.0244891i
\(708\) 0 0
\(709\) 128.490 + 128.490i 0.181227 + 0.181227i 0.791891 0.610663i \(-0.209097\pi\)
−0.610663 + 0.791891i \(0.709097\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 98.1928i 0.137718i
\(714\) 0 0
\(715\) −739.140 + 739.140i −1.03376 + 1.03376i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1246.14i 1.73315i 0.499045 + 0.866576i \(0.333684\pi\)
−0.499045 + 0.866576i \(0.666316\pi\)
\(720\) 0 0
\(721\) −560.033 −0.776745
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −551.546 551.546i −0.760753 0.760753i
\(726\) 0 0
\(727\) 1130.07 1.55443 0.777216 0.629234i \(-0.216631\pi\)
0.777216 + 0.629234i \(0.216631\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −781.782 + 781.782i −1.06947 + 1.06947i
\(732\) 0 0
\(733\) −708.087 + 708.087i −0.966012 + 0.966012i −0.999441 0.0334292i \(-0.989357\pi\)
0.0334292 + 0.999441i \(0.489357\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 926.264 1.25680
\(738\) 0 0
\(739\) 32.7516 + 32.7516i 0.0443188 + 0.0443188i 0.728919 0.684600i \(-0.240023\pi\)
−0.684600 + 0.728919i \(0.740023\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 708.128 0.953066 0.476533 0.879157i \(-0.341893\pi\)
0.476533 + 0.879157i \(0.341893\pi\)
\(744\) 0 0
\(745\) 1541.47i 2.06909i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −530.751 + 530.751i −0.708612 + 0.708612i
\(750\) 0 0
\(751\) 1242.37i 1.65429i 0.561990 + 0.827144i \(0.310036\pi\)
−0.561990 + 0.827144i \(0.689964\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −396.127 396.127i −0.524671 0.524671i
\(756\) 0 0
\(757\) −311.304 311.304i −0.411233 0.411233i 0.470935 0.882168i \(-0.343917\pi\)
−0.882168 + 0.470935i \(0.843917\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 179.137i 0.235397i 0.993049 + 0.117699i \(0.0375517\pi\)
−0.993049 + 0.117699i \(0.962448\pi\)
\(762\) 0 0
\(763\) −575.685 + 575.685i −0.754502 + 0.754502i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 311.523i 0.406158i
\(768\) 0 0
\(769\) −967.409 −1.25801 −0.629005 0.777402i \(-0.716537\pi\)
−0.629005 + 0.777402i \(0.716537\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 96.7342 + 96.7342i 0.125141 + 0.125141i 0.766904 0.641762i \(-0.221796\pi\)
−0.641762 + 0.766904i \(0.721796\pi\)
\(774\) 0 0
\(775\) 506.979 0.654166
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −343.489 + 343.489i −0.440936 + 0.440936i
\(780\) 0 0
\(781\) 524.082 524.082i 0.671039 0.671039i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −855.070 −1.08926
\(786\) 0 0
\(787\) 381.038 + 381.038i 0.484166 + 0.484166i 0.906459 0.422293i \(-0.138775\pi\)
−0.422293 + 0.906459i \(0.638775\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 124.054 0.156831
\(792\) 0 0
\(793\) 748.507i 0.943893i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 371.148 371.148i 0.465681 0.465681i −0.434831 0.900512i \(-0.643192\pi\)
0.900512 + 0.434831i \(0.143192\pi\)
\(798\) 0 0
\(799\) 426.167i 0.533375i
\(800\) 0 0 </