Properties

Label 576.3.m.c.271.6
Level $576$
Weight $3$
Character 576.271
Analytic conductor $15.695$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 576.m (of order \(4\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(15.6948632272\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 6 x^{14} - 4 x^{13} + 10 x^{12} + 56 x^{11} + 88 x^{10} - 128 x^{9} - 496 x^{8} - 512 x^{7} + 1408 x^{6} + 3584 x^{5} + 2560 x^{4} - 4096 x^{3} - 24576 x^{2} + 65536\)
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{28} \)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 271.6
Root \(-0.455024 - 1.94755i\) of defining polynomial
Character \(\chi\) \(=\) 576.271
Dual form 576.3.m.c.559.6

$q$-expansion

\(f(q)\) \(=\) \(q+(3.40572 + 3.40572i) q^{5} -12.1303 q^{7} +O(q^{10})\) \(q+(3.40572 + 3.40572i) q^{5} -12.1303 q^{7} +(9.81086 - 9.81086i) q^{11} +(-7.76859 + 7.76859i) q^{13} -9.73087 q^{17} +(-11.2823 - 11.2823i) q^{19} -20.2635 q^{23} -1.80207i q^{25} +(16.4069 - 16.4069i) q^{29} -26.3542i q^{31} +(-41.3125 - 41.3125i) q^{35} +(-23.7263 - 23.7263i) q^{37} -24.7452i q^{41} +(-29.8844 + 29.8844i) q^{43} +31.3325i q^{47} +98.1448 q^{49} +(-36.8742 - 36.8742i) q^{53} +66.8262 q^{55} +(-14.1325 + 14.1325i) q^{59} +(-42.5199 + 42.5199i) q^{61} -52.9153 q^{65} +(-48.7789 - 48.7789i) q^{67} +7.73935 q^{71} -85.4163i q^{73} +(-119.009 + 119.009i) q^{77} +105.294i q^{79} +(-62.1229 - 62.1229i) q^{83} +(-33.1407 - 33.1407i) q^{85} -127.172i q^{89} +(94.2355 - 94.2355i) q^{91} -76.8489i q^{95} -147.348 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + O(q^{10}) \) \( 16q + 32q^{11} + 32q^{19} - 128q^{23} - 32q^{29} + 96q^{35} - 96q^{37} - 160q^{43} + 112q^{49} + 160q^{53} + 256q^{55} - 128q^{59} - 32q^{61} + 32q^{65} - 320q^{67} + 512q^{71} - 224q^{77} - 160q^{83} + 160q^{85} + 480q^{91} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.40572 + 3.40572i 0.681145 + 0.681145i 0.960258 0.279113i \(-0.0900405\pi\)
−0.279113 + 0.960258i \(0.590040\pi\)
\(6\) 0 0
\(7\) −12.1303 −1.73290 −0.866452 0.499261i \(-0.833605\pi\)
−0.866452 + 0.499261i \(0.833605\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 9.81086 9.81086i 0.891896 0.891896i −0.102805 0.994702i \(-0.532782\pi\)
0.994702 + 0.102805i \(0.0327818\pi\)
\(12\) 0 0
\(13\) −7.76859 + 7.76859i −0.597584 + 0.597584i −0.939669 0.342085i \(-0.888867\pi\)
0.342085 + 0.939669i \(0.388867\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −9.73087 −0.572404 −0.286202 0.958169i \(-0.592393\pi\)
−0.286202 + 0.958169i \(0.592393\pi\)
\(18\) 0 0
\(19\) −11.2823 11.2823i −0.593806 0.593806i 0.344851 0.938657i \(-0.387929\pi\)
−0.938657 + 0.344851i \(0.887929\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −20.2635 −0.881020 −0.440510 0.897748i \(-0.645202\pi\)
−0.440510 + 0.897748i \(0.645202\pi\)
\(24\) 0 0
\(25\) 1.80207i 0.0720830i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 16.4069 16.4069i 0.565754 0.565754i −0.365182 0.930936i \(-0.618993\pi\)
0.930936 + 0.365182i \(0.118993\pi\)
\(30\) 0 0
\(31\) 26.3542i 0.850134i −0.905162 0.425067i \(-0.860251\pi\)
0.905162 0.425067i \(-0.139749\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −41.3125 41.3125i −1.18036 1.18036i
\(36\) 0 0
\(37\) −23.7263 23.7263i −0.641250 0.641250i 0.309613 0.950863i \(-0.399801\pi\)
−0.950863 + 0.309613i \(0.899801\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 24.7452i 0.603542i −0.953380 0.301771i \(-0.902422\pi\)
0.953380 0.301771i \(-0.0975779\pi\)
\(42\) 0 0
\(43\) −29.8844 + 29.8844i −0.694987 + 0.694987i −0.963325 0.268338i \(-0.913526\pi\)
0.268338 + 0.963325i \(0.413526\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 31.3325i 0.666648i 0.942812 + 0.333324i \(0.108170\pi\)
−0.942812 + 0.333324i \(0.891830\pi\)
\(48\) 0 0
\(49\) 98.1448 2.00295
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −36.8742 36.8742i −0.695739 0.695739i 0.267750 0.963489i \(-0.413720\pi\)
−0.963489 + 0.267750i \(0.913720\pi\)
\(54\) 0 0
\(55\) 66.8262 1.21502
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −14.1325 + 14.1325i −0.239534 + 0.239534i −0.816657 0.577123i \(-0.804175\pi\)
0.577123 + 0.816657i \(0.304175\pi\)
\(60\) 0 0
\(61\) −42.5199 + 42.5199i −0.697048 + 0.697048i −0.963773 0.266725i \(-0.914059\pi\)
0.266725 + 0.963773i \(0.414059\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −52.9153 −0.814082
\(66\) 0 0
\(67\) −48.7789 48.7789i −0.728044 0.728044i 0.242186 0.970230i \(-0.422136\pi\)
−0.970230 + 0.242186i \(0.922136\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.73935 0.109005 0.0545025 0.998514i \(-0.482643\pi\)
0.0545025 + 0.998514i \(0.482643\pi\)
\(72\) 0 0
\(73\) 85.4163i 1.17009i −0.811002 0.585043i \(-0.801077\pi\)
0.811002 0.585043i \(-0.198923\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −119.009 + 119.009i −1.54557 + 1.54557i
\(78\) 0 0
\(79\) 105.294i 1.33283i 0.745581 + 0.666416i \(0.232172\pi\)
−0.745581 + 0.666416i \(0.767828\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −62.1229 62.1229i −0.748469 0.748469i 0.225723 0.974192i \(-0.427526\pi\)
−0.974192 + 0.225723i \(0.927526\pi\)
\(84\) 0 0
\(85\) −33.1407 33.1407i −0.389890 0.389890i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 127.172i 1.42890i −0.699685 0.714451i \(-0.746676\pi\)
0.699685 0.714451i \(-0.253324\pi\)
\(90\) 0 0
\(91\) 94.2355 94.2355i 1.03555 1.03555i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 76.8489i 0.808936i
\(96\) 0 0
\(97\) −147.348 −1.51905 −0.759525 0.650478i \(-0.774569\pi\)
−0.759525 + 0.650478i \(0.774569\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −12.7690 12.7690i −0.126426 0.126426i 0.641063 0.767489i \(-0.278494\pi\)
−0.767489 + 0.641063i \(0.778494\pi\)
\(102\) 0 0
\(103\) 17.7621 0.172448 0.0862240 0.996276i \(-0.472520\pi\)
0.0862240 + 0.996276i \(0.472520\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −15.8889 + 15.8889i −0.148494 + 0.148494i −0.777445 0.628951i \(-0.783485\pi\)
0.628951 + 0.777445i \(0.283485\pi\)
\(108\) 0 0
\(109\) −79.3257 + 79.3257i −0.727758 + 0.727758i −0.970173 0.242414i \(-0.922061\pi\)
0.242414 + 0.970173i \(0.422061\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 167.538 1.48263 0.741317 0.671155i \(-0.234201\pi\)
0.741317 + 0.671155i \(0.234201\pi\)
\(114\) 0 0
\(115\) −69.0118 69.0118i −0.600102 0.600102i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 118.039 0.991921
\(120\) 0 0
\(121\) 71.5059i 0.590958i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 91.2805 91.2805i 0.730244 0.730244i
\(126\) 0 0
\(127\) 198.247i 1.56100i 0.625156 + 0.780500i \(0.285035\pi\)
−0.625156 + 0.780500i \(0.714965\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 134.339 + 134.339i 1.02549 + 1.02549i 0.999667 + 0.0258197i \(0.00821957\pi\)
0.0258197 + 0.999667i \(0.491780\pi\)
\(132\) 0 0
\(133\) 136.858 + 136.858i 1.02901 + 1.02901i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 255.937i 1.86816i 0.357069 + 0.934078i \(0.383776\pi\)
−0.357069 + 0.934078i \(0.616224\pi\)
\(138\) 0 0
\(139\) 21.7231 21.7231i 0.156281 0.156281i −0.624635 0.780917i \(-0.714752\pi\)
0.780917 + 0.624635i \(0.214752\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 152.433i 1.06597i
\(144\) 0 0
\(145\) 111.755 0.770722
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 34.2444 + 34.2444i 0.229828 + 0.229828i 0.812621 0.582793i \(-0.198040\pi\)
−0.582793 + 0.812621i \(0.698040\pi\)
\(150\) 0 0
\(151\) 14.4645 0.0957913 0.0478956 0.998852i \(-0.484749\pi\)
0.0478956 + 0.998852i \(0.484749\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 89.7550 89.7550i 0.579064 0.579064i
\(156\) 0 0
\(157\) 31.4652 31.4652i 0.200415 0.200415i −0.599763 0.800178i \(-0.704738\pi\)
0.800178 + 0.599763i \(0.204738\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 245.802 1.52672
\(162\) 0 0
\(163\) −31.4002 31.4002i −0.192640 0.192640i 0.604196 0.796836i \(-0.293494\pi\)
−0.796836 + 0.604196i \(0.793494\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 36.4796 0.218441 0.109220 0.994018i \(-0.465165\pi\)
0.109220 + 0.994018i \(0.465165\pi\)
\(168\) 0 0
\(169\) 48.2981i 0.285788i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −97.6419 + 97.6419i −0.564404 + 0.564404i −0.930555 0.366151i \(-0.880675\pi\)
0.366151 + 0.930555i \(0.380675\pi\)
\(174\) 0 0
\(175\) 21.8598i 0.124913i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 89.7427 + 89.7427i 0.501356 + 0.501356i 0.911859 0.410503i \(-0.134647\pi\)
−0.410503 + 0.911859i \(0.634647\pi\)
\(180\) 0 0
\(181\) −115.497 115.497i −0.638108 0.638108i 0.311981 0.950088i \(-0.399008\pi\)
−0.950088 + 0.311981i \(0.899008\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 161.610i 0.873569i
\(186\) 0 0
\(187\) −95.4682 + 95.4682i −0.510525 + 0.510525i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 62.6278i 0.327894i −0.986469 0.163947i \(-0.947577\pi\)
0.986469 0.163947i \(-0.0524227\pi\)
\(192\) 0 0
\(193\) 223.342 1.15721 0.578607 0.815607i \(-0.303597\pi\)
0.578607 + 0.815607i \(0.303597\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −29.0959 29.0959i −0.147695 0.147695i 0.629393 0.777087i \(-0.283304\pi\)
−0.777087 + 0.629393i \(0.783304\pi\)
\(198\) 0 0
\(199\) −11.6967 −0.0587776 −0.0293888 0.999568i \(-0.509356\pi\)
−0.0293888 + 0.999568i \(0.509356\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −199.021 + 199.021i −0.980398 + 0.980398i
\(204\) 0 0
\(205\) 84.2755 84.2755i 0.411100 0.411100i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −221.378 −1.05923
\(210\) 0 0
\(211\) 0.215765 + 0.215765i 0.00102258 + 0.00102258i 0.707618 0.706595i \(-0.249770\pi\)
−0.706595 + 0.707618i \(0.749770\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −203.556 −0.946773
\(216\) 0 0
\(217\) 319.684i 1.47320i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 75.5951 75.5951i 0.342059 0.342059i
\(222\) 0 0
\(223\) 371.347i 1.66523i −0.553850 0.832617i \(-0.686842\pi\)
0.553850 0.832617i \(-0.313158\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −209.823 209.823i −0.924330 0.924330i 0.0730018 0.997332i \(-0.476742\pi\)
−0.997332 + 0.0730018i \(0.976742\pi\)
\(228\) 0 0
\(229\) 152.751 + 152.751i 0.667037 + 0.667037i 0.957029 0.289992i \(-0.0936527\pi\)
−0.289992 + 0.957029i \(0.593653\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 272.899i 1.17124i 0.810586 + 0.585619i \(0.199149\pi\)
−0.810586 + 0.585619i \(0.800851\pi\)
\(234\) 0 0
\(235\) −106.710 + 106.710i −0.454084 + 0.454084i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 104.650i 0.437866i 0.975740 + 0.218933i \(0.0702576\pi\)
−0.975740 + 0.218933i \(0.929742\pi\)
\(240\) 0 0
\(241\) 148.875 0.617737 0.308869 0.951105i \(-0.400050\pi\)
0.308869 + 0.951105i \(0.400050\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 334.254 + 334.254i 1.36430 + 1.36430i
\(246\) 0 0
\(247\) 175.295 0.709698
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 143.712 143.712i 0.572558 0.572558i −0.360284 0.932843i \(-0.617320\pi\)
0.932843 + 0.360284i \(0.117320\pi\)
\(252\) 0 0
\(253\) −198.802 + 198.802i −0.785778 + 0.785778i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −134.023 −0.521489 −0.260745 0.965408i \(-0.583968\pi\)
−0.260745 + 0.965408i \(0.583968\pi\)
\(258\) 0 0
\(259\) 287.807 + 287.807i 1.11122 + 1.11122i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 290.386 1.10413 0.552066 0.833801i \(-0.313840\pi\)
0.552066 + 0.833801i \(0.313840\pi\)
\(264\) 0 0
\(265\) 251.166i 0.947798i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 74.2628 74.2628i 0.276070 0.276070i −0.555468 0.831538i \(-0.687461\pi\)
0.831538 + 0.555468i \(0.187461\pi\)
\(270\) 0 0
\(271\) 70.8329i 0.261376i 0.991424 + 0.130688i \(0.0417186\pi\)
−0.991424 + 0.130688i \(0.958281\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −17.6799 17.6799i −0.0642906 0.0642906i
\(276\) 0 0
\(277\) −96.6953 96.6953i −0.349081 0.349081i 0.510686 0.859767i \(-0.329391\pi\)
−0.859767 + 0.510686i \(0.829391\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 138.151i 0.491640i −0.969316 0.245820i \(-0.920943\pi\)
0.969316 0.245820i \(-0.0790572\pi\)
\(282\) 0 0
\(283\) 295.011 295.011i 1.04244 1.04244i 0.0433821 0.999059i \(-0.486187\pi\)
0.999059 0.0433821i \(-0.0138133\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 300.168i 1.04588i
\(288\) 0 0
\(289\) −194.310 −0.672353
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 33.4759 + 33.4759i 0.114252 + 0.114252i 0.761922 0.647669i \(-0.224256\pi\)
−0.647669 + 0.761922i \(0.724256\pi\)
\(294\) 0 0
\(295\) −96.2630 −0.326315
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 157.418 157.418i 0.526483 0.526483i
\(300\) 0 0
\(301\) 362.508 362.508i 1.20434 1.20434i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −289.622 −0.949582
\(306\) 0 0
\(307\) 92.6638 + 92.6638i 0.301836 + 0.301836i 0.841732 0.539896i \(-0.181536\pi\)
−0.539896 + 0.841732i \(0.681536\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −18.5610 −0.0596817 −0.0298408 0.999555i \(-0.509500\pi\)
−0.0298408 + 0.999555i \(0.509500\pi\)
\(312\) 0 0
\(313\) 55.1534i 0.176209i 0.996111 + 0.0881045i \(0.0280809\pi\)
−0.996111 + 0.0881045i \(0.971919\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −62.2977 + 62.2977i −0.196523 + 0.196523i −0.798507 0.601985i \(-0.794377\pi\)
0.601985 + 0.798507i \(0.294377\pi\)
\(318\) 0 0
\(319\) 321.931i 1.00919i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 109.787 + 109.787i 0.339897 + 0.339897i
\(324\) 0 0
\(325\) 13.9996 + 13.9996i 0.0430756 + 0.0430756i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 380.073i 1.15524i
\(330\) 0 0
\(331\) −373.767 + 373.767i −1.12921 + 1.12921i −0.138899 + 0.990307i \(0.544356\pi\)
−0.990307 + 0.138899i \(0.955644\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 332.255i 0.991807i
\(336\) 0 0
\(337\) −519.936 −1.54284 −0.771419 0.636328i \(-0.780453\pi\)
−0.771419 + 0.636328i \(0.780453\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −258.557 258.557i −0.758231 0.758231i
\(342\) 0 0
\(343\) −596.142 −1.73802
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 122.160 122.160i 0.352045 0.352045i −0.508825 0.860870i \(-0.669920\pi\)
0.860870 + 0.508825i \(0.169920\pi\)
\(348\) 0 0
\(349\) −279.483 + 279.483i −0.800810 + 0.800810i −0.983222 0.182412i \(-0.941609\pi\)
0.182412 + 0.983222i \(0.441609\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 212.266 0.601320 0.300660 0.953731i \(-0.402793\pi\)
0.300660 + 0.953731i \(0.402793\pi\)
\(354\) 0 0
\(355\) 26.3581 + 26.3581i 0.0742482 + 0.0742482i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −435.033 −1.21179 −0.605895 0.795545i \(-0.707185\pi\)
−0.605895 + 0.795545i \(0.707185\pi\)
\(360\) 0 0
\(361\) 106.419i 0.294789i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 290.905 290.905i 0.796999 0.796999i
\(366\) 0 0
\(367\) 125.535i 0.342058i 0.985266 + 0.171029i \(0.0547091\pi\)
−0.985266 + 0.171029i \(0.945291\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 447.295 + 447.295i 1.20565 + 1.20565i
\(372\) 0 0
\(373\) −302.389 302.389i −0.810694 0.810694i 0.174044 0.984738i \(-0.444317\pi\)
−0.984738 + 0.174044i \(0.944317\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 254.917i 0.676171i
\(378\) 0 0
\(379\) −189.784 + 189.784i −0.500751 + 0.500751i −0.911671 0.410921i \(-0.865207\pi\)
0.410921 + 0.911671i \(0.365207\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 639.916i 1.67080i −0.549644 0.835399i \(-0.685237\pi\)
0.549644 0.835399i \(-0.314763\pi\)
\(384\) 0 0
\(385\) −810.623 −2.10551
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −499.333 499.333i −1.28363 1.28363i −0.938586 0.345046i \(-0.887863\pi\)
−0.345046 0.938586i \(-0.612137\pi\)
\(390\) 0 0
\(391\) 197.181 0.504300
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −358.601 + 358.601i −0.907851 + 0.907851i
\(396\) 0 0
\(397\) 492.518 492.518i 1.24060 1.24060i 0.280846 0.959753i \(-0.409385\pi\)
0.959753 0.280846i \(-0.0906151\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −705.045 −1.75822 −0.879109 0.476621i \(-0.841862\pi\)
−0.879109 + 0.476621i \(0.841862\pi\)
\(402\) 0 0
\(403\) 204.735 + 204.735i 0.508026 + 0.508026i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −465.550 −1.14386
\(408\) 0 0
\(409\) 279.815i 0.684144i 0.939674 + 0.342072i \(0.111129\pi\)
−0.939674 + 0.342072i \(0.888871\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 171.432 171.432i 0.415090 0.415090i
\(414\) 0 0
\(415\) 423.147i 1.01963i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −573.583 573.583i −1.36893 1.36893i −0.861965 0.506968i \(-0.830766\pi\)
−0.506968 0.861965i \(-0.669234\pi\)
\(420\) 0 0
\(421\) −213.341 213.341i −0.506749 0.506749i 0.406778 0.913527i \(-0.366652\pi\)
−0.913527 + 0.406778i \(0.866652\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 17.5358i 0.0412606i
\(426\) 0 0
\(427\) 515.781 515.781i 1.20792 1.20792i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 166.900i 0.387239i 0.981077 + 0.193619i \(0.0620227\pi\)
−0.981077 + 0.193619i \(0.937977\pi\)
\(432\) 0 0
\(433\) 233.153 0.538459 0.269230 0.963076i \(-0.413231\pi\)
0.269230 + 0.963076i \(0.413231\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 228.619 + 228.619i 0.523155 + 0.523155i
\(438\) 0 0
\(439\) −440.480 −1.00337 −0.501686 0.865050i \(-0.667287\pi\)
−0.501686 + 0.865050i \(0.667287\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −312.524 + 312.524i −0.705473 + 0.705473i −0.965580 0.260107i \(-0.916242\pi\)
0.260107 + 0.965580i \(0.416242\pi\)
\(444\) 0 0
\(445\) 433.114 433.114i 0.973290 0.973290i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 734.338 1.63550 0.817748 0.575576i \(-0.195222\pi\)
0.817748 + 0.575576i \(0.195222\pi\)
\(450\) 0 0
\(451\) −242.772 242.772i −0.538297 0.538297i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 641.880 1.41073
\(456\) 0 0
\(457\) 692.749i 1.51586i 0.652335 + 0.757931i \(0.273789\pi\)
−0.652335 + 0.757931i \(0.726211\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −298.447 + 298.447i −0.647391 + 0.647391i −0.952362 0.304971i \(-0.901353\pi\)
0.304971 + 0.952362i \(0.401353\pi\)
\(462\) 0 0
\(463\) 281.830i 0.608705i −0.952560 0.304352i \(-0.901560\pi\)
0.952560 0.304352i \(-0.0984400\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 198.116 + 198.116i 0.424232 + 0.424232i 0.886658 0.462426i \(-0.153021\pi\)
−0.462426 + 0.886658i \(0.653021\pi\)
\(468\) 0 0
\(469\) 591.704 + 591.704i 1.26163 + 1.26163i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 586.384i 1.23971i
\(474\) 0 0
\(475\) −20.3316 + 20.3316i −0.0428033 + 0.0428033i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 917.713i 1.91589i −0.286945 0.957947i \(-0.592640\pi\)
0.286945 0.957947i \(-0.407360\pi\)
\(480\) 0 0
\(481\) 368.639 0.766401
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −501.826 501.826i −1.03469 1.03469i
\(486\) 0 0
\(487\) 426.183 0.875119 0.437559 0.899190i \(-0.355843\pi\)
0.437559 + 0.899190i \(0.355843\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −266.299 + 266.299i −0.542361 + 0.542361i −0.924220 0.381859i \(-0.875284\pi\)
0.381859 + 0.924220i \(0.375284\pi\)
\(492\) 0 0
\(493\) −159.653 + 159.653i −0.323840 + 0.323840i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −93.8809 −0.188895
\(498\) 0 0
\(499\) 264.104 + 264.104i 0.529266 + 0.529266i 0.920353 0.391088i \(-0.127901\pi\)
−0.391088 + 0.920353i \(0.627901\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −574.766 −1.14268 −0.571338 0.820715i \(-0.693575\pi\)
−0.571338 + 0.820715i \(0.693575\pi\)
\(504\) 0 0
\(505\) 86.9756i 0.172229i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −170.592 + 170.592i −0.335152 + 0.335152i −0.854539 0.519387i \(-0.826160\pi\)
0.519387 + 0.854539i \(0.326160\pi\)
\(510\) 0 0
\(511\) 1036.13i 2.02765i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 60.4930 + 60.4930i 0.117462 + 0.117462i
\(516\) 0 0
\(517\) 307.398 + 307.398i 0.594581 + 0.594581i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 37.1210i 0.0712496i −0.999365 0.0356248i \(-0.988658\pi\)
0.999365 0.0356248i \(-0.0113421\pi\)
\(522\) 0 0
\(523\) 199.555 199.555i 0.381558 0.381558i −0.490105 0.871663i \(-0.663042\pi\)
0.871663 + 0.490105i \(0.163042\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 256.449i 0.486620i
\(528\) 0 0
\(529\) −118.392 −0.223804
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 192.236 + 192.236i 0.360667 + 0.360667i
\(534\) 0 0
\(535\) −108.226 −0.202292
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 962.884 962.884i 1.78643 1.78643i
\(540\) 0 0
\(541\) 278.121 278.121i 0.514086 0.514086i −0.401690 0.915776i \(-0.631577\pi\)
0.915776 + 0.401690i \(0.131577\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −540.323 −0.991418
\(546\) 0 0
\(547\) −724.938 724.938i −1.32530 1.32530i −0.909421 0.415876i \(-0.863475\pi\)
−0.415876 0.909421i \(-0.636525\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −370.215 −0.671897
\(552\) 0 0
\(553\) 1277.25i 2.30967i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −268.298 + 268.298i −0.481685 + 0.481685i −0.905669 0.423985i \(-0.860631\pi\)
0.423985 + 0.905669i \(0.360631\pi\)
\(558\) 0 0
\(559\) 464.320i 0.830625i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −78.4662 78.4662i −0.139372 0.139372i 0.633979 0.773350i \(-0.281421\pi\)
−0.773350 + 0.633979i \(0.781421\pi\)
\(564\) 0 0
\(565\) 570.587 + 570.587i 1.00989 + 1.00989i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 801.999i 1.40949i −0.709461 0.704744i \(-0.751062\pi\)
0.709461 0.704744i \(-0.248938\pi\)
\(570\) 0 0
\(571\) −79.9964 + 79.9964i −0.140099 + 0.140099i −0.773678 0.633579i \(-0.781585\pi\)
0.633579 + 0.773678i \(0.281585\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 36.5163i 0.0635066i
\(576\) 0 0
\(577\) −237.186 −0.411068 −0.205534 0.978650i \(-0.565893\pi\)
−0.205534 + 0.978650i \(0.565893\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 753.571 + 753.571i 1.29702 + 1.29702i
\(582\) 0 0
\(583\) −723.534 −1.24105
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −267.958 + 267.958i −0.456487 + 0.456487i −0.897500 0.441014i \(-0.854619\pi\)
0.441014 + 0.897500i \(0.354619\pi\)
\(588\) 0 0
\(589\) −297.336 + 297.336i −0.504815 + 0.504815i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 607.086 1.02375 0.511877 0.859059i \(-0.328950\pi\)
0.511877 + 0.859059i \(0.328950\pi\)
\(594\) 0 0
\(595\) 402.007 + 402.007i 0.675642 + 0.675642i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 575.392 0.960587 0.480294 0.877108i \(-0.340530\pi\)
0.480294 + 0.877108i \(0.340530\pi\)
\(600\) 0 0
\(601\) 310.094i 0.515963i 0.966150 + 0.257981i \(0.0830573\pi\)
−0.966150 + 0.257981i \(0.916943\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 243.529 243.529i 0.402528 0.402528i
\(606\) 0 0
\(607\) 556.510i 0.916820i −0.888741 0.458410i \(-0.848419\pi\)
0.888741 0.458410i \(-0.151581\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −243.409 243.409i −0.398378 0.398378i
\(612\) 0 0
\(613\) −326.241 326.241i −0.532204 0.532204i 0.389024 0.921228i \(-0.372812\pi\)
−0.921228 + 0.389024i \(0.872812\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 502.068i 0.813725i −0.913490 0.406862i \(-0.866623\pi\)
0.913490 0.406862i \(-0.133377\pi\)
\(618\) 0 0
\(619\) −304.429 + 304.429i −0.491808 + 0.491808i −0.908876 0.417067i \(-0.863058\pi\)
0.417067 + 0.908876i \(0.363058\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1542.64i 2.47615i
\(624\) 0 0
\(625\) 576.701 0.922721
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 230.877 + 230.877i 0.367054 + 0.367054i
\(630\) 0 0
\(631\) −8.60592 −0.0136385 −0.00681927 0.999977i \(-0.502171\pi\)
−0.00681927 + 0.999977i \(0.502171\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −675.174 + 675.174i −1.06327 + 1.06327i
\(636\) 0 0
\(637\) −762.446 + 762.446i −1.19693 + 1.19693i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 445.780 0.695445 0.347722 0.937598i \(-0.386955\pi\)
0.347722 + 0.937598i \(0.386955\pi\)
\(642\) 0 0
\(643\) 118.001 + 118.001i 0.183517 + 0.183517i 0.792886 0.609369i \(-0.208577\pi\)
−0.609369 + 0.792886i \(0.708577\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1081.35 1.67132 0.835662 0.549243i \(-0.185084\pi\)
0.835662 + 0.549243i \(0.185084\pi\)
\(648\) 0 0
\(649\) 277.305i 0.427280i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 586.227 586.227i 0.897744 0.897744i −0.0974927 0.995236i \(-0.531082\pi\)
0.995236 + 0.0974927i \(0.0310823\pi\)
\(654\) 0 0
\(655\) 915.041i 1.39701i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 469.999 + 469.999i 0.713201 + 0.713201i 0.967204 0.254003i \(-0.0817472\pi\)
−0.254003 + 0.967204i \(0.581747\pi\)
\(660\) 0 0
\(661\) −884.745 884.745i −1.33849 1.33849i −0.897519 0.440976i \(-0.854632\pi\)
−0.440976 0.897519i \(-0.645368\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 932.202i 1.40181i
\(666\) 0 0
\(667\) −332.460 + 332.460i −0.498441 + 0.498441i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 834.314i 1.24339i
\(672\) 0 0
\(673\) 684.329 1.01683 0.508417 0.861111i \(-0.330231\pi\)
0.508417 + 0.861111i \(0.330231\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 383.762 + 383.762i 0.566857 + 0.566857i 0.931246 0.364390i \(-0.118722\pi\)
−0.364390 + 0.931246i \(0.618722\pi\)
\(678\) 0 0
\(679\) 1787.38 2.63237
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 903.626 903.626i 1.32302 1.32302i 0.411709 0.911315i \(-0.364932\pi\)
0.911315 0.411709i \(-0.135068\pi\)
\(684\) 0 0
\(685\) −871.652 + 871.652i −1.27248 + 1.27248i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 572.920 0.831524
\(690\) 0 0
\(691\) 63.6870 + 63.6870i 0.0921665 + 0.0921665i 0.751687 0.659520i \(-0.229241\pi\)
−0.659520 + 0.751687i \(0.729241\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 147.966 0.212901
\(696\) 0 0
\(697\) 240.793i 0.345470i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −218.312 + 218.312i −0.311430 + 0.311430i −0.845463 0.534033i \(-0.820676\pi\)
0.534033 + 0.845463i \(0.320676\pi\)
\(702\) 0 0
\(703\) 535.374i 0.761557i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 154.893 + 154.893i 0.219084 + 0.219084i
\(708\) 0 0
\(709\) −822.199 822.199i −1.15966 1.15966i −0.984548 0.175112i \(-0.943971\pi\)
−0.175112 0.984548i \(-0.556029\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 534.026i 0.748985i
\(714\) 0 0
\(715\) −519.145 + 519.145i −0.726077 + 0.726077i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 340.913i 0.474149i −0.971491 0.237074i \(-0.923811\pi\)
0.971491 0.237074i \(-0.0761885\pi\)
\(720\) 0 0
\(721\) −215.461 −0.298836
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −29.5664 29.5664i −0.0407813 0.0407813i
\(726\) 0 0
\(727\) 803.090 1.10466 0.552331 0.833625i \(-0.313738\pi\)
0.552331 + 0.833625i \(0.313738\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 290.802 290.802i 0.397813 0.397813i
\(732\) 0 0
\(733\) 481.592 481.592i 0.657015 0.657015i −0.297658 0.954673i \(-0.596205\pi\)
0.954673 + 0.297658i \(0.0962054\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −957.127 −1.29868
\(738\) 0 0
\(739\) −173.622 173.622i −0.234941 0.234941i 0.579810 0.814752i \(-0.303127\pi\)
−0.814752 + 0.579810i \(0.803127\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1316.22 1.77149 0.885744 0.464173i \(-0.153649\pi\)
0.885744 + 0.464173i \(0.153649\pi\)
\(744\) 0 0
\(745\) 233.254i 0.313093i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 192.737 192.737i 0.257326 0.257326i
\(750\) 0 0
\(751\) 322.977i 0.430062i −0.976607 0.215031i \(-0.931015\pi\)
0.976607 0.215031i \(-0.0689853\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 49.2621 + 49.2621i 0.0652478 + 0.0652478i
\(756\) 0 0
\(757\) −80.2744 80.2744i −0.106043 0.106043i 0.652095 0.758138i \(-0.273890\pi\)
−0.758138 + 0.652095i \(0.773890\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 596.664i 0.784053i −0.919954 0.392027i \(-0.871774\pi\)
0.919954 0.392027i \(-0.128226\pi\)
\(762\) 0 0
\(763\) 962.246 962.246i 1.26113 1.26113i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 219.580i 0.286284i
\(768\) 0 0
\(769\) 1515.31 1.97050 0.985249 0.171129i \(-0.0547416\pi\)
0.985249 + 0.171129i \(0.0547416\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −607.901 607.901i −0.786418 0.786418i 0.194487 0.980905i \(-0.437696\pi\)
−0.980905 + 0.194487i \(0.937696\pi\)
\(774\) 0 0
\(775\) −47.4922 −0.0612802
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −279.184 + 279.184i −0.358387 + 0.358387i
\(780\) 0 0
\(781\) 75.9297 75.9297i 0.0972211 0.0972211i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 214.324 0.273024
\(786\) 0 0
\(787\) −356.009 356.009i −0.452362 0.452362i 0.443776 0.896138i \(-0.353639\pi\)
−0.896138 + 0.443776i \(0.853639\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2032.29 −2.56926
\(792\) 0 0
\(793\) 660.640i 0.833089i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −971.380 + 971.380i −1.21880 + 1.21880i −0.250742 + 0.968054i \(0.580674\pi\)
−0.968054 + 0.250742i \(0.919326\pi\)
\(798\) 0 0
\(799\) 304.892i 0.381592i
\(800\) 0 0