Properties

Label 576.2.y.a.47.10
Level $576$
Weight $2$
Character 576.47
Analytic conductor $4.599$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,2,Mod(47,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 576.y (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.59938315643\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 47.10
Character \(\chi\) \(=\) 576.47
Dual form 576.2.y.a.527.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.517369 - 1.65298i) q^{3} +(-0.521033 + 1.94452i) q^{5} +(0.322227 - 0.558114i) q^{7} +(-2.46466 + 1.71040i) q^{9} +(1.49911 + 5.59477i) q^{11} +(0.530209 - 1.97877i) q^{13} +(3.48381 - 0.144781i) q^{15} +3.05892i q^{17} +(-4.11098 + 4.11098i) q^{19} +(-1.08926 - 0.243883i) q^{21} +(7.05832 - 4.07512i) q^{23} +(0.820436 + 0.473679i) q^{25} +(4.10239 + 3.18911i) q^{27} +(1.20343 + 4.49126i) q^{29} +(0.147988 - 0.0854411i) q^{31} +(8.47242 - 5.37256i) q^{33} +(0.917373 + 0.917373i) q^{35} +(-2.65918 + 2.65918i) q^{37} +(-3.54517 + 0.147331i) q^{39} +(-0.983212 - 1.70297i) q^{41} +(-0.821783 + 0.220196i) q^{43} +(-2.04174 - 5.68376i) q^{45} +(4.02475 - 6.97107i) q^{47} +(3.29234 + 5.70250i) q^{49} +(5.05632 - 1.58259i) q^{51} +(3.25765 + 3.25765i) q^{53} -11.6602 q^{55} +(8.92225 + 4.66846i) q^{57} +(-0.506879 - 0.135818i) q^{59} +(3.00682 - 0.805675i) q^{61} +(0.160417 + 1.92670i) q^{63} +(3.57150 + 2.06201i) q^{65} +(2.17814 + 0.583631i) q^{67} +(-10.3878 - 9.55889i) q^{69} +15.3137i q^{71} -9.33784i q^{73} +(0.358511 - 1.60123i) q^{75} +(3.60557 + 0.966110i) q^{77} +(-9.44301 - 5.45193i) q^{79} +(3.14908 - 8.43109i) q^{81} +(-12.3625 + 3.31253i) q^{83} +(-5.94814 - 1.59380i) q^{85} +(6.80132 - 4.31288i) q^{87} +3.86733 q^{89} +(-0.933529 - 0.933529i) q^{91} +(-0.217797 - 0.200417i) q^{93} +(-5.85194 - 10.1359i) q^{95} +(-7.33044 + 12.6967i) q^{97} +(-13.2641 - 11.2251i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 4 q^{3} - 6 q^{5} + 4 q^{7} + 6 q^{11} - 2 q^{13} + 8 q^{19} + 2 q^{21} + 12 q^{23} + 16 q^{27} - 6 q^{29} - 8 q^{33} - 8 q^{37} + 32 q^{39} + 2 q^{43} + 6 q^{45} - 24 q^{49} + 12 q^{51} + 16 q^{55}+ \cdots - 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.517369 1.65298i −0.298703 0.954346i
\(4\) 0 0
\(5\) −0.521033 + 1.94452i −0.233013 + 0.869617i 0.746021 + 0.665922i \(0.231962\pi\)
−0.979034 + 0.203695i \(0.934705\pi\)
\(6\) 0 0
\(7\) 0.322227 0.558114i 0.121790 0.210947i −0.798683 0.601751i \(-0.794470\pi\)
0.920474 + 0.390804i \(0.127803\pi\)
\(8\) 0 0
\(9\) −2.46466 + 1.71040i −0.821553 + 0.570133i
\(10\) 0 0
\(11\) 1.49911 + 5.59477i 0.452000 + 1.68689i 0.696762 + 0.717303i \(0.254623\pi\)
−0.244762 + 0.969583i \(0.578710\pi\)
\(12\) 0 0
\(13\) 0.530209 1.97877i 0.147054 0.548811i −0.852602 0.522561i \(-0.824977\pi\)
0.999655 0.0262502i \(-0.00835665\pi\)
\(14\) 0 0
\(15\) 3.48381 0.144781i 0.899517 0.0373823i
\(16\) 0 0
\(17\) 3.05892i 0.741898i 0.928653 + 0.370949i \(0.120967\pi\)
−0.928653 + 0.370949i \(0.879033\pi\)
\(18\) 0 0
\(19\) −4.11098 + 4.11098i −0.943124 + 0.943124i −0.998467 0.0553434i \(-0.982375\pi\)
0.0553434 + 0.998467i \(0.482375\pi\)
\(20\) 0 0
\(21\) −1.08926 0.243883i −0.237696 0.0532196i
\(22\) 0 0
\(23\) 7.05832 4.07512i 1.47176 0.849722i 0.472266 0.881456i \(-0.343436\pi\)
0.999496 + 0.0317341i \(0.0101030\pi\)
\(24\) 0 0
\(25\) 0.820436 + 0.473679i 0.164087 + 0.0947357i
\(26\) 0 0
\(27\) 4.10239 + 3.18911i 0.789504 + 0.613745i
\(28\) 0 0
\(29\) 1.20343 + 4.49126i 0.223471 + 0.834006i 0.983011 + 0.183545i \(0.0587574\pi\)
−0.759540 + 0.650460i \(0.774576\pi\)
\(30\) 0 0
\(31\) 0.147988 0.0854411i 0.0265795 0.0153457i −0.486651 0.873596i \(-0.661782\pi\)
0.513231 + 0.858251i \(0.328448\pi\)
\(32\) 0 0
\(33\) 8.47242 5.37256i 1.47486 0.935242i
\(34\) 0 0
\(35\) 0.917373 + 0.917373i 0.155064 + 0.155064i
\(36\) 0 0
\(37\) −2.65918 + 2.65918i −0.437167 + 0.437167i −0.891057 0.453891i \(-0.850036\pi\)
0.453891 + 0.891057i \(0.350036\pi\)
\(38\) 0 0
\(39\) −3.54517 + 0.147331i −0.567681 + 0.0235918i
\(40\) 0 0
\(41\) −0.983212 1.70297i −0.153552 0.265960i 0.778979 0.627050i \(-0.215738\pi\)
−0.932531 + 0.361090i \(0.882405\pi\)
\(42\) 0 0
\(43\) −0.821783 + 0.220196i −0.125321 + 0.0335796i −0.320934 0.947101i \(-0.603997\pi\)
0.195614 + 0.980681i \(0.437330\pi\)
\(44\) 0 0
\(45\) −2.04174 5.68376i −0.304364 0.847284i
\(46\) 0 0
\(47\) 4.02475 6.97107i 0.587070 1.01684i −0.407544 0.913186i \(-0.633615\pi\)
0.994614 0.103650i \(-0.0330520\pi\)
\(48\) 0 0
\(49\) 3.29234 + 5.70250i 0.470334 + 0.814643i
\(50\) 0 0
\(51\) 5.05632 1.58259i 0.708027 0.221607i
\(52\) 0 0
\(53\) 3.25765 + 3.25765i 0.447473 + 0.447473i 0.894514 0.447041i \(-0.147522\pi\)
−0.447041 + 0.894514i \(0.647522\pi\)
\(54\) 0 0
\(55\) −11.6602 −1.57227
\(56\) 0 0
\(57\) 8.92225 + 4.66846i 1.18178 + 0.618352i
\(58\) 0 0
\(59\) −0.506879 0.135818i −0.0659900 0.0176820i 0.225673 0.974203i \(-0.427542\pi\)
−0.291663 + 0.956521i \(0.594209\pi\)
\(60\) 0 0
\(61\) 3.00682 0.805675i 0.384984 0.103156i −0.0611358 0.998129i \(-0.519472\pi\)
0.446120 + 0.894973i \(0.352806\pi\)
\(62\) 0 0
\(63\) 0.160417 + 1.92670i 0.0202106 + 0.242741i
\(64\) 0 0
\(65\) 3.57150 + 2.06201i 0.442990 + 0.255760i
\(66\) 0 0
\(67\) 2.17814 + 0.583631i 0.266102 + 0.0713019i 0.389403 0.921067i \(-0.372681\pi\)
−0.123301 + 0.992369i \(0.539348\pi\)
\(68\) 0 0
\(69\) −10.3878 9.55889i −1.25055 1.15076i
\(70\) 0 0
\(71\) 15.3137i 1.81741i 0.417442 + 0.908704i \(0.362927\pi\)
−0.417442 + 0.908704i \(0.637073\pi\)
\(72\) 0 0
\(73\) 9.33784i 1.09291i −0.837488 0.546456i \(-0.815977\pi\)
0.837488 0.546456i \(-0.184023\pi\)
\(74\) 0 0
\(75\) 0.358511 1.60123i 0.0413973 0.184894i
\(76\) 0 0
\(77\) 3.60557 + 0.966110i 0.410893 + 0.110098i
\(78\) 0 0
\(79\) −9.44301 5.45193i −1.06242 0.613390i −0.136321 0.990665i \(-0.543528\pi\)
−0.926101 + 0.377275i \(0.876861\pi\)
\(80\) 0 0
\(81\) 3.14908 8.43109i 0.349897 0.936788i
\(82\) 0 0
\(83\) −12.3625 + 3.31253i −1.35697 + 0.363598i −0.862701 0.505714i \(-0.831229\pi\)
−0.494264 + 0.869312i \(0.664563\pi\)
\(84\) 0 0
\(85\) −5.94814 1.59380i −0.645167 0.172872i
\(86\) 0 0
\(87\) 6.80132 4.31288i 0.729178 0.462389i
\(88\) 0 0
\(89\) 3.86733 0.409936 0.204968 0.978769i \(-0.434291\pi\)
0.204968 + 0.978769i \(0.434291\pi\)
\(90\) 0 0
\(91\) −0.933529 0.933529i −0.0978604 0.0978604i
\(92\) 0 0
\(93\) −0.217797 0.200417i −0.0225845 0.0207822i
\(94\) 0 0
\(95\) −5.85194 10.1359i −0.600396 1.03992i
\(96\) 0 0
\(97\) −7.33044 + 12.6967i −0.744293 + 1.28915i 0.206231 + 0.978503i \(0.433880\pi\)
−0.950524 + 0.310650i \(0.899453\pi\)
\(98\) 0 0
\(99\) −13.2641 11.2251i −1.33309 1.12817i
\(100\) 0 0
\(101\) −2.35695 + 0.631544i −0.234526 + 0.0628410i −0.374168 0.927361i \(-0.622072\pi\)
0.139642 + 0.990202i \(0.455405\pi\)
\(102\) 0 0
\(103\) −2.00255 3.46852i −0.197317 0.341763i 0.750341 0.661051i \(-0.229890\pi\)
−0.947658 + 0.319288i \(0.896556\pi\)
\(104\) 0 0
\(105\) 1.04178 1.99102i 0.101667 0.194303i
\(106\) 0 0
\(107\) −1.96059 + 1.96059i −0.189537 + 0.189537i −0.795496 0.605959i \(-0.792790\pi\)
0.605959 + 0.795496i \(0.292790\pi\)
\(108\) 0 0
\(109\) −10.8066 10.8066i −1.03509 1.03509i −0.999362 0.0357265i \(-0.988625\pi\)
−0.0357265 0.999362i \(-0.511375\pi\)
\(110\) 0 0
\(111\) 5.77134 + 3.01978i 0.547791 + 0.286625i
\(112\) 0 0
\(113\) −5.23197 + 3.02068i −0.492183 + 0.284162i −0.725479 0.688244i \(-0.758382\pi\)
0.233297 + 0.972406i \(0.425049\pi\)
\(114\) 0 0
\(115\) 4.24655 + 15.8483i 0.395993 + 1.47787i
\(116\) 0 0
\(117\) 2.07770 + 5.78385i 0.192083 + 0.534717i
\(118\) 0 0
\(119\) 1.70723 + 0.985668i 0.156501 + 0.0903560i
\(120\) 0 0
\(121\) −19.5278 + 11.2744i −1.77525 + 1.02494i
\(122\) 0 0
\(123\) −2.30629 + 2.50629i −0.207951 + 0.225985i
\(124\) 0 0
\(125\) −8.46600 + 8.46600i −0.757222 + 0.757222i
\(126\) 0 0
\(127\) 5.90485i 0.523971i 0.965072 + 0.261985i \(0.0843772\pi\)
−0.965072 + 0.261985i \(0.915623\pi\)
\(128\) 0 0
\(129\) 0.789144 + 1.24446i 0.0694802 + 0.109569i
\(130\) 0 0
\(131\) 0.417733 1.55900i 0.0364975 0.136211i −0.945273 0.326280i \(-0.894205\pi\)
0.981771 + 0.190070i \(0.0608714\pi\)
\(132\) 0 0
\(133\) 0.969725 + 3.61906i 0.0840859 + 0.313813i
\(134\) 0 0
\(135\) −8.33878 + 6.31555i −0.717688 + 0.543556i
\(136\) 0 0
\(137\) 5.55314 9.61831i 0.474436 0.821748i −0.525135 0.851019i \(-0.675985\pi\)
0.999572 + 0.0292708i \(0.00931852\pi\)
\(138\) 0 0
\(139\) 2.99230 11.1674i 0.253803 0.947207i −0.714949 0.699177i \(-0.753550\pi\)
0.968752 0.248030i \(-0.0797833\pi\)
\(140\) 0 0
\(141\) −13.6053 3.04620i −1.14577 0.256536i
\(142\) 0 0
\(143\) 11.8656 0.992250
\(144\) 0 0
\(145\) −9.36038 −0.777337
\(146\) 0 0
\(147\) 7.72274 8.39246i 0.636961 0.692198i
\(148\) 0 0
\(149\) 5.70216 21.2808i 0.467139 1.74339i −0.182558 0.983195i \(-0.558438\pi\)
0.649698 0.760193i \(-0.274896\pi\)
\(150\) 0 0
\(151\) 8.13154 14.0842i 0.661735 1.14616i −0.318425 0.947948i \(-0.603154\pi\)
0.980160 0.198210i \(-0.0635129\pi\)
\(152\) 0 0
\(153\) −5.23197 7.53920i −0.422980 0.609508i
\(154\) 0 0
\(155\) 0.0890353 + 0.332284i 0.00715149 + 0.0266897i
\(156\) 0 0
\(157\) 6.15846 22.9837i 0.491499 1.83430i −0.0573183 0.998356i \(-0.518255\pi\)
0.548817 0.835942i \(-0.315078\pi\)
\(158\) 0 0
\(159\) 3.69941 7.07023i 0.293382 0.560705i
\(160\) 0 0
\(161\) 5.25246i 0.413952i
\(162\) 0 0
\(163\) 11.4188 11.4188i 0.894390 0.894390i −0.100543 0.994933i \(-0.532058\pi\)
0.994933 + 0.100543i \(0.0320579\pi\)
\(164\) 0 0
\(165\) 6.03265 + 19.2741i 0.469641 + 1.50049i
\(166\) 0 0
\(167\) −0.427233 + 0.246663i −0.0330603 + 0.0190874i −0.516439 0.856324i \(-0.672743\pi\)
0.483379 + 0.875411i \(0.339409\pi\)
\(168\) 0 0
\(169\) 7.62393 + 4.40168i 0.586456 + 0.338591i
\(170\) 0 0
\(171\) 3.10075 17.1636i 0.237120 1.31253i
\(172\) 0 0
\(173\) 5.30952 + 19.8154i 0.403675 + 1.50654i 0.806486 + 0.591254i \(0.201367\pi\)
−0.402810 + 0.915284i \(0.631967\pi\)
\(174\) 0 0
\(175\) 0.528733 0.305264i 0.0399685 0.0230758i
\(176\) 0 0
\(177\) 0.0377401 + 0.908126i 0.00283672 + 0.0682590i
\(178\) 0 0
\(179\) 7.49467 + 7.49467i 0.560178 + 0.560178i 0.929358 0.369180i \(-0.120361\pi\)
−0.369180 + 0.929358i \(0.620361\pi\)
\(180\) 0 0
\(181\) 0.879477 0.879477i 0.0653710 0.0653710i −0.673665 0.739036i \(-0.735281\pi\)
0.739036 + 0.673665i \(0.235281\pi\)
\(182\) 0 0
\(183\) −2.88740 4.55337i −0.213443 0.336595i
\(184\) 0 0
\(185\) −3.78532 6.55636i −0.278302 0.482033i
\(186\) 0 0
\(187\) −17.1140 + 4.58567i −1.25150 + 0.335337i
\(188\) 0 0
\(189\) 3.10179 1.26198i 0.225622 0.0917954i
\(190\) 0 0
\(191\) −3.97558 + 6.88590i −0.287663 + 0.498246i −0.973251 0.229743i \(-0.926211\pi\)
0.685589 + 0.727989i \(0.259545\pi\)
\(192\) 0 0
\(193\) −2.95444 5.11723i −0.212665 0.368346i 0.739883 0.672736i \(-0.234881\pi\)
−0.952548 + 0.304389i \(0.901548\pi\)
\(194\) 0 0
\(195\) 1.56066 6.97042i 0.111761 0.499162i
\(196\) 0 0
\(197\) 11.6691 + 11.6691i 0.831390 + 0.831390i 0.987707 0.156317i \(-0.0499620\pi\)
−0.156317 + 0.987707i \(0.549962\pi\)
\(198\) 0 0
\(199\) −0.633451 −0.0449041 −0.0224521 0.999748i \(-0.507147\pi\)
−0.0224521 + 0.999748i \(0.507147\pi\)
\(200\) 0 0
\(201\) −0.162175 3.90237i −0.0114390 0.275252i
\(202\) 0 0
\(203\) 2.89441 + 0.775555i 0.203148 + 0.0544333i
\(204\) 0 0
\(205\) 3.82376 1.02457i 0.267063 0.0715592i
\(206\) 0 0
\(207\) −10.4263 + 22.1163i −0.724676 + 1.53719i
\(208\) 0 0
\(209\) −29.1628 16.8372i −2.01723 1.16465i
\(210\) 0 0
\(211\) 20.6854 + 5.54263i 1.42404 + 0.381570i 0.886915 0.461932i \(-0.152844\pi\)
0.537125 + 0.843503i \(0.319510\pi\)
\(212\) 0 0
\(213\) 25.3133 7.92286i 1.73444 0.542866i
\(214\) 0 0
\(215\) 1.71270i 0.116805i
\(216\) 0 0
\(217\) 0.110126i 0.00747582i
\(218\) 0 0
\(219\) −15.4352 + 4.83111i −1.04302 + 0.326456i
\(220\) 0 0
\(221\) 6.05289 + 1.62187i 0.407162 + 0.109099i
\(222\) 0 0
\(223\) −13.1779 7.60824i −0.882455 0.509485i −0.0109877 0.999940i \(-0.503498\pi\)
−0.871467 + 0.490454i \(0.836831\pi\)
\(224\) 0 0
\(225\) −2.83227 + 0.235815i −0.188818 + 0.0157210i
\(226\) 0 0
\(227\) −14.5596 + 3.90123i −0.966353 + 0.258934i −0.707287 0.706926i \(-0.750081\pi\)
−0.259066 + 0.965860i \(0.583415\pi\)
\(228\) 0 0
\(229\) 10.3931 + 2.78483i 0.686796 + 0.184026i 0.585309 0.810810i \(-0.300973\pi\)
0.101487 + 0.994837i \(0.467640\pi\)
\(230\) 0 0
\(231\) −0.268456 6.45976i −0.0176631 0.425021i
\(232\) 0 0
\(233\) 2.05717 0.134770 0.0673848 0.997727i \(-0.478534\pi\)
0.0673848 + 0.997727i \(0.478534\pi\)
\(234\) 0 0
\(235\) 11.4584 + 11.4584i 0.747462 + 0.747462i
\(236\) 0 0
\(237\) −4.12638 + 18.4297i −0.268037 + 1.19714i
\(238\) 0 0
\(239\) 4.07795 + 7.06322i 0.263781 + 0.456882i 0.967243 0.253851i \(-0.0816971\pi\)
−0.703463 + 0.710732i \(0.748364\pi\)
\(240\) 0 0
\(241\) 5.82747 10.0935i 0.375380 0.650178i −0.615003 0.788524i \(-0.710845\pi\)
0.990384 + 0.138346i \(0.0441787\pi\)
\(242\) 0 0
\(243\) −15.5656 0.843360i −0.998535 0.0541015i
\(244\) 0 0
\(245\) −12.8041 + 3.43084i −0.818021 + 0.219188i
\(246\) 0 0
\(247\) 5.95500 + 10.3144i 0.378907 + 0.656287i
\(248\) 0 0
\(249\) 11.8715 + 18.7212i 0.752328 + 1.18641i
\(250\) 0 0
\(251\) −0.0658814 + 0.0658814i −0.00415840 + 0.00415840i −0.709183 0.705025i \(-0.750936\pi\)
0.705025 + 0.709183i \(0.250936\pi\)
\(252\) 0 0
\(253\) 33.3806 + 33.3806i 2.09862 + 2.09862i
\(254\) 0 0
\(255\) 0.442874 + 10.6567i 0.0277338 + 0.667350i
\(256\) 0 0
\(257\) 14.7849 8.53605i 0.922255 0.532464i 0.0379016 0.999281i \(-0.487933\pi\)
0.884354 + 0.466817i \(0.154599\pi\)
\(258\) 0 0
\(259\) 0.627265 + 2.34099i 0.0389764 + 0.145462i
\(260\) 0 0
\(261\) −10.6479 9.01107i −0.659087 0.557771i
\(262\) 0 0
\(263\) 6.39765 + 3.69369i 0.394496 + 0.227762i 0.684106 0.729382i \(-0.260192\pi\)
−0.289610 + 0.957145i \(0.593526\pi\)
\(264\) 0 0
\(265\) −8.03192 + 4.63723i −0.493397 + 0.284863i
\(266\) 0 0
\(267\) −2.00084 6.39260i −0.122449 0.391221i
\(268\) 0 0
\(269\) 7.77076 7.77076i 0.473792 0.473792i −0.429348 0.903139i \(-0.641256\pi\)
0.903139 + 0.429348i \(0.141256\pi\)
\(270\) 0 0
\(271\) 15.0480i 0.914103i 0.889440 + 0.457052i \(0.151095\pi\)
−0.889440 + 0.457052i \(0.848905\pi\)
\(272\) 0 0
\(273\) −1.06012 + 2.02608i −0.0641615 + 0.122624i
\(274\) 0 0
\(275\) −1.42020 + 5.30024i −0.0856410 + 0.319617i
\(276\) 0 0
\(277\) −3.62552 13.5306i −0.217836 0.812976i −0.985149 0.171702i \(-0.945073\pi\)
0.767313 0.641273i \(-0.221593\pi\)
\(278\) 0 0
\(279\) −0.218602 + 0.463702i −0.0130874 + 0.0277611i
\(280\) 0 0
\(281\) −7.72501 + 13.3801i −0.460835 + 0.798190i −0.999003 0.0446477i \(-0.985783\pi\)
0.538167 + 0.842838i \(0.319117\pi\)
\(282\) 0 0
\(283\) 1.71123 6.38640i 0.101722 0.379632i −0.896231 0.443588i \(-0.853705\pi\)
0.997953 + 0.0639565i \(0.0203719\pi\)
\(284\) 0 0
\(285\) −13.7267 + 14.9171i −0.813100 + 0.883612i
\(286\) 0 0
\(287\) −1.26727 −0.0748046
\(288\) 0 0
\(289\) 7.64299 0.449588
\(290\) 0 0
\(291\) 24.7799 + 5.54816i 1.45262 + 0.325239i
\(292\) 0 0
\(293\) 4.18520 15.6194i 0.244502 0.912493i −0.729131 0.684374i \(-0.760076\pi\)
0.973633 0.228119i \(-0.0732577\pi\)
\(294\) 0 0
\(295\) 0.528201 0.914872i 0.0307531 0.0532659i
\(296\) 0 0
\(297\) −11.6924 + 27.7327i −0.678462 + 1.60922i
\(298\) 0 0
\(299\) −4.32134 16.1274i −0.249909 0.932674i
\(300\) 0 0
\(301\) −0.141906 + 0.529601i −0.00817934 + 0.0305257i
\(302\) 0 0
\(303\) 2.26334 + 3.56925i 0.130026 + 0.205048i
\(304\) 0 0
\(305\) 6.26661i 0.358825i
\(306\) 0 0
\(307\) 7.76011 7.76011i 0.442893 0.442893i −0.450090 0.892983i \(-0.648608\pi\)
0.892983 + 0.450090i \(0.148608\pi\)
\(308\) 0 0
\(309\) −4.69732 + 5.10467i −0.267221 + 0.290395i
\(310\) 0 0
\(311\) 3.77550 2.17978i 0.214089 0.123604i −0.389121 0.921186i \(-0.627221\pi\)
0.603210 + 0.797582i \(0.293888\pi\)
\(312\) 0 0
\(313\) −2.20758 1.27455i −0.124780 0.0720416i 0.436311 0.899796i \(-0.356285\pi\)
−0.561091 + 0.827754i \(0.689618\pi\)
\(314\) 0 0
\(315\) −3.83009 0.691938i −0.215801 0.0389863i
\(316\) 0 0
\(317\) −4.91388 18.3388i −0.275991 1.03001i −0.955174 0.296044i \(-0.904333\pi\)
0.679183 0.733969i \(-0.262334\pi\)
\(318\) 0 0
\(319\) −23.3235 + 13.4658i −1.30586 + 0.753941i
\(320\) 0 0
\(321\) 4.25515 + 2.22646i 0.237500 + 0.124269i
\(322\) 0 0
\(323\) −12.5752 12.5752i −0.699701 0.699701i
\(324\) 0 0
\(325\) 1.37230 1.37230i 0.0761216 0.0761216i
\(326\) 0 0
\(327\) −12.2721 + 23.4541i −0.678648 + 1.29702i
\(328\) 0 0
\(329\) −2.59377 4.49254i −0.142999 0.247681i
\(330\) 0 0
\(331\) 20.8335 5.58231i 1.14511 0.306831i 0.364106 0.931357i \(-0.381374\pi\)
0.781004 + 0.624526i \(0.214708\pi\)
\(332\) 0 0
\(333\) 2.00571 11.1022i 0.109912 0.608398i
\(334\) 0 0
\(335\) −2.26977 + 3.93135i −0.124011 + 0.214793i
\(336\) 0 0
\(337\) 8.17417 + 14.1581i 0.445275 + 0.771239i 0.998071 0.0620772i \(-0.0197725\pi\)
−0.552796 + 0.833317i \(0.686439\pi\)
\(338\) 0 0
\(339\) 7.69997 + 7.08552i 0.418205 + 0.384832i
\(340\) 0 0
\(341\) 0.699874 + 0.699874i 0.0379003 + 0.0379003i
\(342\) 0 0
\(343\) 8.75470 0.472709
\(344\) 0 0
\(345\) 23.9999 15.2189i 1.29211 0.819358i
\(346\) 0 0
\(347\) −7.81694 2.09454i −0.419635 0.112441i 0.0428214 0.999083i \(-0.486365\pi\)
−0.462457 + 0.886642i \(0.653032\pi\)
\(348\) 0 0
\(349\) −16.0919 + 4.31180i −0.861378 + 0.230806i −0.662356 0.749189i \(-0.730443\pi\)
−0.199022 + 0.979995i \(0.563777\pi\)
\(350\) 0 0
\(351\) 8.48563 6.42677i 0.452930 0.343035i
\(352\) 0 0
\(353\) −11.3077 6.52852i −0.601849 0.347478i 0.167919 0.985801i \(-0.446295\pi\)
−0.769769 + 0.638323i \(0.779628\pi\)
\(354\) 0 0
\(355\) −29.7779 7.97897i −1.58045 0.423480i
\(356\) 0 0
\(357\) 0.746018 3.33196i 0.0394835 0.176346i
\(358\) 0 0
\(359\) 21.1411i 1.11578i −0.829914 0.557892i \(-0.811610\pi\)
0.829914 0.557892i \(-0.188390\pi\)
\(360\) 0 0
\(361\) 14.8003i 0.778966i
\(362\) 0 0
\(363\) 28.7394 + 26.4460i 1.50843 + 1.38805i
\(364\) 0 0
\(365\) 18.1576 + 4.86533i 0.950415 + 0.254663i
\(366\) 0 0
\(367\) 27.7535 + 16.0235i 1.44872 + 0.836419i 0.998405 0.0564512i \(-0.0179785\pi\)
0.450315 + 0.892870i \(0.351312\pi\)
\(368\) 0 0
\(369\) 5.33604 + 2.51556i 0.277783 + 0.130955i
\(370\) 0 0
\(371\) 2.86784 0.768436i 0.148891 0.0398952i
\(372\) 0 0
\(373\) 0.692592 + 0.185580i 0.0358611 + 0.00960894i 0.276705 0.960955i \(-0.410758\pi\)
−0.240844 + 0.970564i \(0.577424\pi\)
\(374\) 0 0
\(375\) 18.3741 + 9.61404i 0.948836 + 0.496467i
\(376\) 0 0
\(377\) 9.52522 0.490574
\(378\) 0 0
\(379\) 3.65005 + 3.65005i 0.187491 + 0.187491i 0.794610 0.607120i \(-0.207675\pi\)
−0.607120 + 0.794610i \(0.707675\pi\)
\(380\) 0 0
\(381\) 9.76057 3.05499i 0.500049 0.156512i
\(382\) 0 0
\(383\) −9.73635 16.8639i −0.497504 0.861703i 0.502492 0.864582i \(-0.332417\pi\)
−0.999996 + 0.00287933i \(0.999083\pi\)
\(384\) 0 0
\(385\) −3.75724 + 6.50774i −0.191487 + 0.331665i
\(386\) 0 0
\(387\) 1.64879 1.94828i 0.0838127 0.0990368i
\(388\) 0 0
\(389\) 0.311311 0.0834155i 0.0157841 0.00422934i −0.250918 0.968008i \(-0.580733\pi\)
0.266702 + 0.963779i \(0.414066\pi\)
\(390\) 0 0
\(391\) 12.4655 + 21.5909i 0.630407 + 1.09190i
\(392\) 0 0
\(393\) −2.79311 + 0.116077i −0.140894 + 0.00585530i
\(394\) 0 0
\(395\) 15.5215 15.5215i 0.780972 0.780972i
\(396\) 0 0
\(397\) 3.56364 + 3.56364i 0.178854 + 0.178854i 0.790856 0.612002i \(-0.209636\pi\)
−0.612002 + 0.790856i \(0.709636\pi\)
\(398\) 0 0
\(399\) 5.48052 3.47533i 0.274369 0.173984i
\(400\) 0 0
\(401\) −16.5507 + 9.55556i −0.826503 + 0.477182i −0.852654 0.522476i \(-0.825008\pi\)
0.0261506 + 0.999658i \(0.491675\pi\)
\(402\) 0 0
\(403\) −0.0906033 0.338136i −0.00451327 0.0168438i
\(404\) 0 0
\(405\) 14.7537 + 10.5163i 0.733116 + 0.522561i
\(406\) 0 0
\(407\) −18.8639 10.8911i −0.935049 0.539851i
\(408\) 0 0
\(409\) 11.7821 6.80241i 0.582589 0.336358i −0.179573 0.983745i \(-0.557472\pi\)
0.762161 + 0.647387i \(0.224138\pi\)
\(410\) 0 0
\(411\) −18.7719 4.20298i −0.925948 0.207318i
\(412\) 0 0
\(413\) −0.239132 + 0.239132i −0.0117669 + 0.0117669i
\(414\) 0 0
\(415\) 25.7652i 1.26476i
\(416\) 0 0
\(417\) −20.0076 + 0.831479i −0.979775 + 0.0407177i
\(418\) 0 0
\(419\) 2.09039 7.80143i 0.102122 0.381125i −0.895881 0.444295i \(-0.853454\pi\)
0.998003 + 0.0631698i \(0.0201210\pi\)
\(420\) 0 0
\(421\) −4.12570 15.3973i −0.201074 0.750419i −0.990610 0.136715i \(-0.956345\pi\)
0.789536 0.613704i \(-0.210321\pi\)
\(422\) 0 0
\(423\) 2.00367 + 24.0652i 0.0974220 + 1.17009i
\(424\) 0 0
\(425\) −1.44895 + 2.50965i −0.0702842 + 0.121736i
\(426\) 0 0
\(427\) 0.519221 1.93776i 0.0251268 0.0937747i
\(428\) 0 0
\(429\) −6.13889 19.6135i −0.296388 0.946950i
\(430\) 0 0
\(431\) −0.112162 −0.00540266 −0.00270133 0.999996i \(-0.500860\pi\)
−0.00270133 + 0.999996i \(0.500860\pi\)
\(432\) 0 0
\(433\) 20.7054 0.995038 0.497519 0.867453i \(-0.334244\pi\)
0.497519 + 0.867453i \(0.334244\pi\)
\(434\) 0 0
\(435\) 4.84277 + 15.4725i 0.232193 + 0.741849i
\(436\) 0 0
\(437\) −12.2639 + 45.7694i −0.586661 + 2.18945i
\(438\) 0 0
\(439\) 19.9756 34.5988i 0.953384 1.65131i 0.215361 0.976534i \(-0.430907\pi\)
0.738023 0.674776i \(-0.235760\pi\)
\(440\) 0 0
\(441\) −17.8680 8.42350i −0.850859 0.401119i
\(442\) 0 0
\(443\) −1.21372 4.52965i −0.0576654 0.215210i 0.931081 0.364813i \(-0.118867\pi\)
−0.988746 + 0.149603i \(0.952200\pi\)
\(444\) 0 0
\(445\) −2.01501 + 7.52010i −0.0955204 + 0.356487i
\(446\) 0 0
\(447\) −38.1267 + 1.58448i −1.80333 + 0.0749432i
\(448\) 0 0
\(449\) 0.895625i 0.0422672i 0.999777 + 0.0211336i \(0.00672753\pi\)
−0.999777 + 0.0211336i \(0.993272\pi\)
\(450\) 0 0
\(451\) 8.05379 8.05379i 0.379238 0.379238i
\(452\) 0 0
\(453\) −27.4879 6.15448i −1.29149 0.289163i
\(454\) 0 0
\(455\) 2.30167 1.32887i 0.107904 0.0622983i
\(456\) 0 0
\(457\) 28.9564 + 16.7180i 1.35453 + 0.782036i 0.988880 0.148719i \(-0.0475148\pi\)
0.365646 + 0.930754i \(0.380848\pi\)
\(458\) 0 0
\(459\) −9.75525 + 12.5489i −0.455336 + 0.585731i
\(460\) 0 0
\(461\) −1.29659 4.83893i −0.0603881 0.225371i 0.929136 0.369738i \(-0.120552\pi\)
−0.989524 + 0.144366i \(0.953886\pi\)
\(462\) 0 0
\(463\) 16.0584 9.27134i 0.746299 0.430876i −0.0780562 0.996949i \(-0.524871\pi\)
0.824355 + 0.566073i \(0.191538\pi\)
\(464\) 0 0
\(465\) 0.503194 0.319087i 0.0233351 0.0147973i
\(466\) 0 0
\(467\) 13.6565 + 13.6565i 0.631948 + 0.631948i 0.948556 0.316608i \(-0.102544\pi\)
−0.316608 + 0.948556i \(0.602544\pi\)
\(468\) 0 0
\(469\) 1.02759 1.02759i 0.0474497 0.0474497i
\(470\) 0 0
\(471\) −41.1777 + 1.71127i −1.89737 + 0.0788512i
\(472\) 0 0
\(473\) −2.46389 4.26758i −0.113290 0.196224i
\(474\) 0 0
\(475\) −5.32008 + 1.42551i −0.244102 + 0.0654069i
\(476\) 0 0
\(477\) −13.6009 2.45712i −0.622741 0.112504i
\(478\) 0 0
\(479\) −1.37861 + 2.38783i −0.0629904 + 0.109103i −0.895801 0.444456i \(-0.853397\pi\)
0.832810 + 0.553558i \(0.186730\pi\)
\(480\) 0 0
\(481\) 3.85198 + 6.67182i 0.175635 + 0.304209i
\(482\) 0 0
\(483\) −8.68219 + 2.71746i −0.395053 + 0.123649i
\(484\) 0 0
\(485\) −20.8696 20.8696i −0.947639 0.947639i
\(486\) 0 0
\(487\) −17.4202 −0.789383 −0.394692 0.918814i \(-0.629149\pi\)
−0.394692 + 0.918814i \(0.629149\pi\)
\(488\) 0 0
\(489\) −24.7828 12.9673i −1.12071 0.586400i
\(490\) 0 0
\(491\) 16.1550 + 4.32873i 0.729066 + 0.195353i 0.604213 0.796822i \(-0.293487\pi\)
0.124853 + 0.992175i \(0.460154\pi\)
\(492\) 0 0
\(493\) −13.7384 + 3.68120i −0.618747 + 0.165793i
\(494\) 0 0
\(495\) 28.7385 19.9436i 1.29170 0.896400i
\(496\) 0 0
\(497\) 8.54681 + 4.93450i 0.383377 + 0.221343i
\(498\) 0 0
\(499\) −32.1048 8.60246i −1.43721 0.385099i −0.545654 0.838011i \(-0.683719\pi\)
−0.891556 + 0.452911i \(0.850385\pi\)
\(500\) 0 0
\(501\) 0.628765 + 0.578590i 0.0280912 + 0.0258495i
\(502\) 0 0
\(503\) 5.04620i 0.224999i −0.993652 0.112499i \(-0.964114\pi\)
0.993652 0.112499i \(-0.0358857\pi\)
\(504\) 0 0
\(505\) 4.91221i 0.218590i
\(506\) 0 0
\(507\) 3.33148 14.8795i 0.147956 0.660821i
\(508\) 0 0
\(509\) −39.6362 10.6205i −1.75684 0.470745i −0.770777 0.637105i \(-0.780132\pi\)
−0.986065 + 0.166360i \(0.946799\pi\)
\(510\) 0 0
\(511\) −5.21158 3.00891i −0.230547 0.133106i
\(512\) 0 0
\(513\) −29.9752 + 3.75445i −1.32344 + 0.165763i
\(514\) 0 0
\(515\) 7.78801 2.08679i 0.343181 0.0919549i
\(516\) 0 0
\(517\) 45.0351 + 12.0671i 1.98064 + 0.530711i
\(518\) 0 0
\(519\) 30.0074 19.0284i 1.31718 0.835254i
\(520\) 0 0
\(521\) 10.9553 0.479963 0.239981 0.970778i \(-0.422859\pi\)
0.239981 + 0.970778i \(0.422859\pi\)
\(522\) 0 0
\(523\) −8.18896 8.18896i −0.358078 0.358078i 0.505026 0.863104i \(-0.331483\pi\)
−0.863104 + 0.505026i \(0.831483\pi\)
\(524\) 0 0
\(525\) −0.778145 0.716049i −0.0339610 0.0312509i
\(526\) 0 0
\(527\) 0.261358 + 0.452685i 0.0113849 + 0.0197193i
\(528\) 0 0
\(529\) 21.7133 37.6085i 0.944056 1.63515i
\(530\) 0 0
\(531\) 1.48159 0.532220i 0.0642953 0.0230964i
\(532\) 0 0
\(533\) −3.89110 + 1.04262i −0.168542 + 0.0451607i
\(534\) 0 0
\(535\) −2.79088 4.83394i −0.120660 0.208989i
\(536\) 0 0
\(537\) 8.51100 16.2660i 0.367277 0.701931i
\(538\) 0 0
\(539\) −26.9686 + 26.9686i −1.16162 + 1.16162i
\(540\) 0 0
\(541\) −16.3651 16.3651i −0.703590 0.703590i 0.261589 0.965179i \(-0.415753\pi\)
−0.965179 + 0.261589i \(0.915753\pi\)
\(542\) 0 0
\(543\) −1.90877 0.998740i −0.0819131 0.0428600i
\(544\) 0 0
\(545\) 26.6444 15.3831i 1.14132 0.658941i
\(546\) 0 0
\(547\) 6.32886 + 23.6196i 0.270603 + 1.00990i 0.958731 + 0.284314i \(0.0917658\pi\)
−0.688129 + 0.725589i \(0.741568\pi\)
\(548\) 0 0
\(549\) −6.03276 + 7.12857i −0.257472 + 0.304240i
\(550\) 0 0
\(551\) −23.4108 13.5162i −0.997332 0.575810i
\(552\) 0 0
\(553\) −6.08559 + 3.51352i −0.258786 + 0.149410i
\(554\) 0 0
\(555\) −8.87910 + 9.64909i −0.376897 + 0.409581i
\(556\) 0 0
\(557\) 1.55709 1.55709i 0.0659760 0.0659760i −0.673349 0.739325i \(-0.735145\pi\)
0.739325 + 0.673349i \(0.235145\pi\)
\(558\) 0 0
\(559\) 1.74287i 0.0737154i
\(560\) 0 0
\(561\) 16.4342 + 25.9165i 0.693854 + 1.09419i
\(562\) 0 0
\(563\) 7.85187 29.3036i 0.330917 1.23500i −0.577311 0.816524i \(-0.695898\pi\)
0.908228 0.418475i \(-0.137435\pi\)
\(564\) 0 0
\(565\) −3.14775 11.7476i −0.132427 0.494224i
\(566\) 0 0
\(567\) −3.69079 4.47427i −0.154999 0.187902i
\(568\) 0 0
\(569\) −11.5050 + 19.9273i −0.482316 + 0.835395i −0.999794 0.0203012i \(-0.993537\pi\)
0.517478 + 0.855696i \(0.326871\pi\)
\(570\) 0 0
\(571\) −3.77973 + 14.1061i −0.158177 + 0.590324i 0.840636 + 0.541601i \(0.182182\pi\)
−0.998812 + 0.0487226i \(0.984485\pi\)
\(572\) 0 0
\(573\) 13.4391 + 3.00898i 0.561425 + 0.125702i
\(574\) 0 0
\(575\) 7.72120 0.321996
\(576\) 0 0
\(577\) −18.7394 −0.780130 −0.390065 0.920787i \(-0.627548\pi\)
−0.390065 + 0.920787i \(0.627548\pi\)
\(578\) 0 0
\(579\) −6.93013 + 7.53111i −0.288006 + 0.312982i
\(580\) 0 0
\(581\) −2.13478 + 7.96709i −0.0885654 + 0.330531i
\(582\) 0 0
\(583\) −13.3422 + 23.1094i −0.552578 + 0.957093i
\(584\) 0 0
\(585\) −12.3294 + 1.02655i −0.509757 + 0.0424425i
\(586\) 0 0
\(587\) 3.72984 + 13.9200i 0.153947 + 0.574538i 0.999193 + 0.0401610i \(0.0127871\pi\)
−0.845246 + 0.534377i \(0.820546\pi\)
\(588\) 0 0
\(589\) −0.257131 + 0.959624i −0.0105949 + 0.0395406i
\(590\) 0 0
\(591\) 13.2515 25.3260i 0.545095 1.04177i
\(592\) 0 0
\(593\) 11.6038i 0.476512i 0.971202 + 0.238256i \(0.0765758\pi\)
−0.971202 + 0.238256i \(0.923424\pi\)
\(594\) 0 0
\(595\) −2.80617 + 2.80617i −0.115042 + 0.115042i
\(596\) 0 0
\(597\) 0.327728 + 1.04708i 0.0134130 + 0.0428541i
\(598\) 0 0
\(599\) 2.74819 1.58667i 0.112288 0.0648294i −0.442804 0.896618i \(-0.646016\pi\)
0.555092 + 0.831789i \(0.312683\pi\)
\(600\) 0 0
\(601\) −29.2389 16.8811i −1.19268 0.688593i −0.233765 0.972293i \(-0.575105\pi\)
−0.958913 + 0.283700i \(0.908438\pi\)
\(602\) 0 0
\(603\) −6.36662 + 2.28704i −0.259269 + 0.0931354i
\(604\) 0 0
\(605\) −11.7487 43.8466i −0.477651 1.78262i
\(606\) 0 0
\(607\) 26.7618 15.4509i 1.08623 0.627133i 0.153657 0.988124i \(-0.450895\pi\)
0.932569 + 0.360991i \(0.117562\pi\)
\(608\) 0 0
\(609\) −0.215506 5.18564i −0.00873273 0.210133i
\(610\) 0 0
\(611\) −11.6602 11.6602i −0.471720 0.471720i
\(612\) 0 0
\(613\) −27.1318 + 27.1318i −1.09584 + 1.09584i −0.100951 + 0.994891i \(0.532189\pi\)
−0.994891 + 0.100951i \(0.967811\pi\)
\(614\) 0 0
\(615\) −3.67189 5.79049i −0.148065 0.233495i
\(616\) 0 0
\(617\) −4.23780 7.34009i −0.170607 0.295501i 0.768025 0.640420i \(-0.221240\pi\)
−0.938632 + 0.344919i \(0.887906\pi\)
\(618\) 0 0
\(619\) −24.4520 + 6.55190i −0.982810 + 0.263343i −0.714228 0.699914i \(-0.753222\pi\)
−0.268582 + 0.963257i \(0.586555\pi\)
\(620\) 0 0
\(621\) 41.9520 + 5.79205i 1.68348 + 0.232427i
\(622\) 0 0
\(623\) 1.24616 2.15841i 0.0499262 0.0864748i
\(624\) 0 0
\(625\) −9.68286 16.7712i −0.387315 0.670848i
\(626\) 0 0
\(627\) −12.7435 + 56.9165i −0.508925 + 2.27302i
\(628\) 0 0
\(629\) −8.13423 8.13423i −0.324333 0.324333i
\(630\) 0 0
\(631\) −32.2960 −1.28568 −0.642842 0.765999i \(-0.722245\pi\)
−0.642842 + 0.765999i \(0.722245\pi\)
\(632\) 0 0
\(633\) −1.54015 37.0600i −0.0612153 1.47300i
\(634\) 0 0
\(635\) −11.4821 3.07662i −0.455654 0.122092i
\(636\) 0 0
\(637\) 13.0295 3.49126i 0.516249 0.138329i
\(638\) 0 0
\(639\) −26.1926 37.7432i −1.03616 1.49310i
\(640\) 0 0
\(641\) 27.0376 + 15.6102i 1.06792 + 0.616564i 0.927613 0.373544i \(-0.121857\pi\)
0.140308 + 0.990108i \(0.455191\pi\)
\(642\) 0 0
\(643\) −18.2322 4.88530i −0.719007 0.192657i −0.119278 0.992861i \(-0.538058\pi\)
−0.599728 + 0.800204i \(0.704725\pi\)
\(644\) 0 0
\(645\) −2.83106 + 0.886101i −0.111473 + 0.0348902i
\(646\) 0 0
\(647\) 25.7862i 1.01376i 0.862017 + 0.506879i \(0.169201\pi\)
−0.862017 + 0.506879i \(0.830799\pi\)
\(648\) 0 0
\(649\) 3.03948i 0.119310i
\(650\) 0 0
\(651\) −0.182035 + 0.0569757i −0.00713452 + 0.00223305i
\(652\) 0 0
\(653\) −9.81233 2.62920i −0.383986 0.102889i 0.0616618 0.998097i \(-0.480360\pi\)
−0.445648 + 0.895208i \(0.647027\pi\)
\(654\) 0 0
\(655\) 2.81386 + 1.62458i 0.109947 + 0.0634777i
\(656\) 0 0
\(657\) 15.9714 + 23.0146i 0.623105 + 0.897885i
\(658\) 0 0
\(659\) −10.6102 + 2.84300i −0.413316 + 0.110748i −0.459484 0.888186i \(-0.651966\pi\)
0.0461683 + 0.998934i \(0.485299\pi\)
\(660\) 0 0
\(661\) −22.2643 5.96571i −0.865982 0.232039i −0.201633 0.979461i \(-0.564625\pi\)
−0.664350 + 0.747422i \(0.731291\pi\)
\(662\) 0 0
\(663\) −0.450673 10.8444i −0.0175027 0.421161i
\(664\) 0 0
\(665\) −7.54261 −0.292490
\(666\) 0 0
\(667\) 26.7966 + 26.7966i 1.03757 + 1.03757i
\(668\) 0 0
\(669\) −5.75842 + 25.7190i −0.222633 + 0.994352i
\(670\) 0 0
\(671\) 9.01513 + 15.6147i 0.348025 + 0.602797i
\(672\) 0 0
\(673\) −0.408559 + 0.707645i −0.0157488 + 0.0272777i −0.873792 0.486299i \(-0.838347\pi\)
0.858044 + 0.513577i \(0.171680\pi\)
\(674\) 0 0
\(675\) 1.85513 + 4.55967i 0.0714039 + 0.175502i
\(676\) 0 0
\(677\) 31.9657 8.56517i 1.22854 0.329186i 0.414529 0.910036i \(-0.363946\pi\)
0.814011 + 0.580850i \(0.197280\pi\)
\(678\) 0 0
\(679\) 4.72413 + 8.18243i 0.181295 + 0.314013i
\(680\) 0 0
\(681\) 13.9813 + 22.0483i 0.535765 + 0.844891i
\(682\) 0 0
\(683\) 21.1555 21.1555i 0.809494 0.809494i −0.175063 0.984557i \(-0.556013\pi\)
0.984557 + 0.175063i \(0.0560130\pi\)
\(684\) 0 0
\(685\) 15.8097 + 15.8097i 0.604056 + 0.604056i
\(686\) 0 0
\(687\) −0.773828 18.6203i −0.0295234 0.710410i
\(688\) 0 0
\(689\) 8.17337 4.71890i 0.311381 0.179776i
\(690\) 0 0
\(691\) −6.57213 24.5275i −0.250016 0.933071i −0.970796 0.239908i \(-0.922883\pi\)
0.720780 0.693164i \(-0.243784\pi\)
\(692\) 0 0
\(693\) −10.5389 + 3.78583i −0.400341 + 0.143812i
\(694\) 0 0
\(695\) 20.1562 + 11.6372i 0.764568 + 0.441423i
\(696\) 0 0
\(697\) 5.20926 3.00757i 0.197315 0.113920i
\(698\) 0 0
\(699\) −1.06432 3.40045i −0.0402561 0.128617i
\(700\) 0 0
\(701\) 15.7130 15.7130i 0.593472 0.593472i −0.345096 0.938568i \(-0.612153\pi\)
0.938568 + 0.345096i \(0.112153\pi\)
\(702\) 0 0
\(703\) 21.8637i 0.824605i
\(704\) 0 0
\(705\) 13.0122 24.8686i 0.490068 0.936607i
\(706\) 0 0
\(707\) −0.407001 + 1.51895i −0.0153069 + 0.0571260i
\(708\) 0 0
\(709\) 1.33304 + 4.97496i 0.0500632 + 0.186838i 0.986429 0.164187i \(-0.0524999\pi\)
−0.936366 + 0.351025i \(0.885833\pi\)
\(710\) 0 0
\(711\) 32.5988 2.71418i 1.22255 0.101790i
\(712\) 0 0
\(713\) 0.696366 1.20614i 0.0260791 0.0451704i
\(714\) 0 0
\(715\) −6.18236 + 23.0729i −0.231207 + 0.862877i
\(716\) 0 0
\(717\) 9.56552 10.3950i 0.357231 0.388210i
\(718\) 0 0
\(719\) −21.0741 −0.785932 −0.392966 0.919553i \(-0.628551\pi\)
−0.392966 + 0.919553i \(0.628551\pi\)
\(720\) 0 0
\(721\) −2.58110 −0.0961253
\(722\) 0 0
\(723\) −19.6992 4.41061i −0.732622 0.164032i
\(724\) 0 0
\(725\) −1.14008 + 4.25483i −0.0423414 + 0.158020i
\(726\) 0 0
\(727\) −6.94402 + 12.0274i −0.257539 + 0.446071i −0.965582 0.260098i \(-0.916245\pi\)
0.708043 + 0.706169i \(0.249578\pi\)
\(728\) 0 0
\(729\) 6.65913 + 26.1659i 0.246634 + 0.969109i
\(730\) 0 0
\(731\) −0.673562 2.51377i −0.0249126 0.0929751i
\(732\) 0 0
\(733\) 8.92809 33.3201i 0.329767 1.23071i −0.579666 0.814854i \(-0.696817\pi\)
0.909433 0.415851i \(-0.136516\pi\)
\(734\) 0 0
\(735\) 12.2955 + 19.3898i 0.453527 + 0.715203i
\(736\) 0 0
\(737\) 13.0611i 0.481113i
\(738\) 0 0
\(739\) 14.5953 14.5953i 0.536895 0.536895i −0.385721 0.922616i \(-0.626047\pi\)
0.922616 + 0.385721i \(0.126047\pi\)
\(740\) 0 0
\(741\) 13.9684 15.1798i 0.513144 0.557644i
\(742\) 0 0
\(743\) −45.2494 + 26.1248i −1.66004 + 0.958424i −0.687347 + 0.726330i \(0.741225\pi\)
−0.972693 + 0.232095i \(0.925442\pi\)
\(744\) 0 0
\(745\) 38.4099 + 22.1760i 1.40723 + 0.812464i
\(746\) 0 0
\(747\) 24.8037 29.3091i 0.907520 1.07237i
\(748\) 0 0
\(749\) 0.462476 + 1.72599i 0.0168985 + 0.0630661i
\(750\) 0 0
\(751\) 12.4720 7.20072i 0.455110 0.262758i −0.254876 0.966974i \(-0.582035\pi\)
0.709986 + 0.704216i \(0.248701\pi\)
\(752\) 0 0
\(753\) 0.142985 + 0.0748154i 0.00521068 + 0.00272642i
\(754\) 0 0
\(755\) 23.1503 + 23.1503i 0.842526 + 0.842526i
\(756\) 0 0
\(757\) −18.7302 + 18.7302i −0.680761 + 0.680761i −0.960172 0.279411i \(-0.909861\pi\)
0.279411 + 0.960172i \(0.409861\pi\)
\(758\) 0 0
\(759\) 37.9072 72.4474i 1.37594 2.62967i
\(760\) 0 0
\(761\) 22.9842 + 39.8099i 0.833178 + 1.44311i 0.895505 + 0.445050i \(0.146814\pi\)
−0.0623277 + 0.998056i \(0.519852\pi\)
\(762\) 0 0
\(763\) −9.51352 + 2.54914i −0.344413 + 0.0922851i
\(764\) 0 0
\(765\) 17.3862 6.24552i 0.628598 0.225807i
\(766\) 0 0
\(767\) −0.537503 + 0.930983i −0.0194081 + 0.0336159i
\(768\) 0 0
\(769\) 8.08642 + 14.0061i 0.291604 + 0.505072i 0.974189 0.225733i \(-0.0724778\pi\)
−0.682585 + 0.730806i \(0.739144\pi\)
\(770\) 0 0
\(771\) −21.7591 20.0228i −0.783636 0.721102i
\(772\) 0 0
\(773\) 3.33435 + 3.33435i 0.119928 + 0.119928i 0.764524 0.644596i \(-0.222974\pi\)
−0.644596 + 0.764524i \(0.722974\pi\)
\(774\) 0 0
\(775\) 0.161887 0.00581514
\(776\) 0 0
\(777\) 3.54506 2.24801i 0.127178 0.0806468i
\(778\) 0 0
\(779\) 11.0429 + 2.95893i 0.395652 + 0.106015i
\(780\) 0 0
\(781\) −85.6769 + 22.9570i −3.06576 + 0.821468i
\(782\) 0 0
\(783\) −9.38620 + 22.2627i −0.335435 + 0.795605i
\(784\) 0 0
\(785\) 41.4835 + 23.9505i 1.48061 + 0.854831i
\(786\) 0 0
\(787\) 0.0468477 + 0.0125528i 0.00166994 + 0.000447460i 0.259654 0.965702i \(-0.416392\pi\)
−0.257984 + 0.966149i \(0.583058\pi\)
\(788\) 0 0
\(789\) 2.79562 12.4862i 0.0995269 0.444519i
\(790\) 0 0
\(791\) 3.89338i 0.138433i
\(792\) 0 0
\(793\) 6.37697i 0.226453i
\(794\) 0 0
\(795\) 11.8207 + 10.8774i 0.419237 + 0.385782i
\(796\) 0 0
\(797\) −19.0545 5.10564i −0.674945 0.180851i −0.0949636 0.995481i \(-0.530273\pi\)
−0.579981 + 0.814630i \(0.696940\pi\)
\(798\) 0 0
\(799\) 21.3240 + 12.3114i 0.754388 + 0.435546i
\(800\) 0 0
\(801\) −9.53164 + 6.61467i −0.336784 + 0.233718i
\(802\) 0 0
\(803\) 52.2431 13.9985i 1.84362 0.493996i
\(804\) 0 0
\(805\) 10.2135 + 2.73671i 0.359980 + 0.0964562i
\(806\) 0 0
\(807\) −16.8652 8.82453i −0.593685 0.310638i
\(808\) 0 0
\(809\) −20.7043 −0.727925 −0.363963 0.931414i \(-0.618576\pi\)
−0.363963 + 0.931414i \(0.618576\pi\)
\(810\) 0 0
\(811\) −14.8452 14.8452i −0.521285 0.521285i 0.396675 0.917959i \(-0.370164\pi\)
−0.917959 + 0.396675i \(0.870164\pi\)
\(812\) 0 0
\(813\) 24.8740 7.78540i 0.872371 0.273046i
\(814\) 0 0
\(815\) 16.2545 + 28.1537i 0.569372 + 0.986181i
\(816\) 0 0
\(817\) 2.47311 4.28356i 0.0865232 0.149863i
\(818\) 0 0
\(819\) 3.89754 + 0.704124i 0.136191 + 0.0246041i
\(820\) 0 0
\(821\) −27.9379 + 7.48593i −0.975038 + 0.261261i −0.710954 0.703239i \(-0.751736\pi\)
−0.264084 + 0.964500i \(0.585070\pi\)
\(822\) 0 0
\(823\) 21.2527 + 36.8108i 0.740823 + 1.28314i 0.952121 + 0.305722i \(0.0988978\pi\)
−0.211297 + 0.977422i \(0.567769\pi\)
\(824\) 0 0
\(825\) 9.49594 0.394634i 0.330606 0.0137394i
\(826\) 0 0
\(827\) −11.9196 + 11.9196i −0.414485 + 0.414485i −0.883298 0.468812i \(-0.844682\pi\)
0.468812 + 0.883298i \(0.344682\pi\)
\(828\) 0 0
\(829\) 9.25865 + 9.25865i 0.321566 + 0.321566i 0.849368 0.527801i \(-0.176983\pi\)
−0.527801 + 0.849368i \(0.676983\pi\)
\(830\) 0 0
\(831\) −20.4900 + 12.9932i −0.710792 + 0.450730i
\(832\) 0 0
\(833\) −17.4435 + 10.0710i −0.604382 + 0.348940i
\(834\) 0 0
\(835\) −0.257039 0.959284i −0.00889521 0.0331974i
\(836\) 0 0
\(837\) 0.879586 + 0.121439i 0.0304030 + 0.00419755i
\(838\) 0 0
\(839\) 21.0564 + 12.1569i 0.726947 + 0.419703i 0.817304 0.576206i \(-0.195467\pi\)
−0.0903570 + 0.995909i \(0.528801\pi\)
\(840\) 0 0
\(841\) 6.39158 3.69018i 0.220399 0.127248i
\(842\) 0 0
\(843\) 26.1137 + 5.84679i 0.899403 + 0.201374i
\(844\) 0 0
\(845\) −12.5315 + 12.5315i −0.431096 + 0.431096i
\(846\) 0 0
\(847\) 14.5316i 0.499313i
\(848\) 0 0
\(849\) −11.4419 + 0.475504i −0.392685 + 0.0163193i
\(850\) 0 0
\(851\) −7.93286 + 29.6059i −0.271935 + 1.01488i
\(852\) 0 0
\(853\) −0.499139 1.86281i −0.0170902 0.0637814i 0.956854 0.290569i \(-0.0938445\pi\)
−0.973944 + 0.226787i \(0.927178\pi\)
\(854\) 0 0
\(855\) 31.7594 + 14.9723i 1.08615 + 0.512041i
\(856\) 0 0
\(857\) 15.0498 26.0670i 0.514090 0.890431i −0.485776 0.874083i \(-0.661463\pi\)
0.999866 0.0163473i \(-0.00520374\pi\)
\(858\) 0 0
\(859\) 12.3205 45.9807i 0.420370 1.56884i −0.353462 0.935449i \(-0.614996\pi\)
0.773831 0.633392i \(-0.218338\pi\)
\(860\) 0 0
\(861\) 0.655647 + 2.09477i 0.0223444 + 0.0713895i
\(862\) 0 0
\(863\) 4.03429 0.137329 0.0686644 0.997640i \(-0.478126\pi\)
0.0686644 + 0.997640i \(0.478126\pi\)
\(864\) 0 0
\(865\) −41.2979 −1.40417
\(866\) 0 0
\(867\) −3.95425 12.6337i −0.134293 0.429062i
\(868\) 0 0
\(869\) 16.3461 61.0045i 0.554504 2.06944i
\(870\) 0 0
\(871\) 2.30974 4.00059i 0.0782626 0.135555i
\(872\) 0 0
\(873\) −3.64937 43.8310i −0.123513 1.48345i
\(874\) 0 0
\(875\) 1.99702 + 7.45296i 0.0675114 + 0.251956i
\(876\) 0 0
\(877\) −10.4278 + 38.9169i −0.352120 + 1.31413i 0.531949 + 0.846776i \(0.321460\pi\)
−0.884070 + 0.467355i \(0.845207\pi\)
\(878\) 0 0
\(879\) −27.9837 + 1.16295i −0.943868 + 0.0392254i
\(880\) 0 0
\(881\) 35.0413i 1.18057i −0.807195 0.590285i \(-0.799015\pi\)
0.807195 0.590285i \(-0.200985\pi\)
\(882\) 0 0
\(883\) −4.73704 + 4.73704i −0.159414 + 0.159414i −0.782307 0.622893i \(-0.785957\pi\)
0.622893 + 0.782307i \(0.285957\pi\)
\(884\) 0 0
\(885\) −1.78554 0.399778i −0.0600201 0.0134384i
\(886\) 0 0
\(887\) 12.6364 7.29561i 0.424288 0.244963i −0.272623 0.962121i \(-0.587891\pi\)
0.696910 + 0.717159i \(0.254558\pi\)
\(888\) 0 0
\(889\) 3.29558 + 1.90270i 0.110530 + 0.0638146i
\(890\) 0 0
\(891\) 51.8908 + 4.97919i 1.73841 + 0.166809i
\(892\) 0 0
\(893\) 12.1123 + 45.2036i 0.405322 + 1.51268i
\(894\) 0 0
\(895\) −18.4785 + 10.6686i −0.617669 + 0.356612i
\(896\) 0 0
\(897\) −24.4225 + 15.4869i −0.815445 + 0.517093i
\(898\) 0 0
\(899\) 0.561832 + 0.561832i 0.0187381 + 0.0187381i
\(900\) 0 0
\(901\) −9.96490 + 9.96490i −0.331979 + 0.331979i
\(902\) 0 0
\(903\) 0.948836 0.0394319i 0.0315753 0.00131221i
\(904\) 0 0
\(905\) 1.25193 + 2.16840i 0.0416154 + 0.0720801i
\(906\) 0 0
\(907\) 35.8204 9.59805i 1.18940 0.318698i 0.390750 0.920497i \(-0.372216\pi\)
0.798648 + 0.601799i \(0.205549\pi\)
\(908\) 0 0
\(909\) 4.72889 5.58787i 0.156848 0.185338i
\(910\) 0 0
\(911\) −18.5603 + 32.1474i −0.614931 + 1.06509i 0.375465 + 0.926837i \(0.377483\pi\)
−0.990397 + 0.138256i \(0.955850\pi\)
\(912\) 0 0
\(913\) −37.0657 64.1997i −1.22670 2.12470i
\(914\) 0 0
\(915\) 10.3586 3.24215i 0.342443 0.107182i
\(916\) 0 0
\(917\) −0.735495 0.735495i −0.0242882 0.0242882i
\(918\) 0 0
\(919\) 34.5722 1.14043 0.570215 0.821495i \(-0.306860\pi\)
0.570215 + 0.821495i \(0.306860\pi\)
\(920\) 0 0
\(921\) −16.8421 8.81243i −0.554967 0.290380i
\(922\) 0 0
\(923\) 30.3023 + 8.11949i 0.997414 + 0.267256i
\(924\) 0 0
\(925\) −3.44128 + 0.922089i −0.113149 + 0.0303181i
\(926\) 0 0
\(927\) 10.8681 + 5.12355i 0.356957 + 0.168280i
\(928\) 0 0
\(929\) 52.2313 + 30.1558i 1.71365 + 0.989378i 0.929509 + 0.368800i \(0.120231\pi\)
0.784145 + 0.620578i \(0.213102\pi\)
\(930\) 0 0
\(931\) −36.9776 9.90812i −1.21189 0.324726i
\(932\) 0 0
\(933\) −5.55646 5.11305i −0.181910 0.167394i
\(934\) 0 0
\(935\) 35.6678i 1.16646i
\(936\) 0 0
\(937\) 35.3168i 1.15375i 0.816833 + 0.576874i \(0.195728\pi\)
−0.816833 + 0.576874i \(0.804272\pi\)
\(938\) 0 0
\(939\) −0.964660 + 4.30849i −0.0314805 + 0.140602i
\(940\) 0 0
\(941\) 41.8587 + 11.2160i 1.36456 + 0.365632i 0.865487 0.500931i \(-0.167009\pi\)
0.499069 + 0.866563i \(0.333676\pi\)
\(942\) 0 0
\(943\) −13.8797 8.01342i −0.451984 0.260953i
\(944\) 0 0
\(945\) 0.837812 + 6.68903i 0.0272540 + 0.217594i
\(946\) 0 0
\(947\) 49.1797 13.1777i 1.59813 0.428217i 0.653650 0.756797i \(-0.273237\pi\)
0.944476 + 0.328581i \(0.106570\pi\)
\(948\) 0 0
\(949\) −18.4774 4.95101i −0.599802 0.160717i
\(950\) 0 0
\(951\) −27.7714 + 17.6105i −0.900549 + 0.571059i
\(952\) 0 0
\(953\) −36.4989 −1.18231 −0.591157 0.806556i \(-0.701329\pi\)
−0.591157 + 0.806556i \(0.701329\pi\)
\(954\) 0 0
\(955\) −11.3184 11.3184i −0.366254 0.366254i
\(956\) 0 0
\(957\) 34.3255 + 31.5863i 1.10959 + 1.02104i
\(958\) 0 0
\(959\) −3.57874 6.19856i −0.115564 0.200162i
\(960\) 0 0
\(961\) −15.4854 + 26.8215i −0.499529 + 0.865210i
\(962\) 0 0
\(963\) 1.47879 8.18557i 0.0476534 0.263776i
\(964\) 0 0
\(965\) 11.4899 3.07872i 0.369874 0.0991074i
\(966\) 0 0
\(967\) −8.71394 15.0930i −0.280222 0.485358i 0.691218 0.722647i \(-0.257075\pi\)
−0.971439 + 0.237289i \(0.923741\pi\)
\(968\) 0 0
\(969\) −14.2804 + 27.2925i −0.458754 + 0.876760i
\(970\) 0 0
\(971\) −28.3062 + 28.3062i −0.908390 + 0.908390i −0.996142 0.0877520i \(-0.972032\pi\)
0.0877520 + 0.996142i \(0.472032\pi\)
\(972\) 0 0
\(973\) −5.26848 5.26848i −0.168900 0.168900i
\(974\) 0 0
\(975\) −2.97837 1.55839i −0.0953841 0.0499086i
\(976\) 0 0
\(977\) 1.76106 1.01675i 0.0563414 0.0325287i −0.471565 0.881831i \(-0.656311\pi\)
0.527906 + 0.849303i \(0.322977\pi\)
\(978\) 0 0
\(979\) 5.79756 + 21.6368i 0.185291 + 0.691515i
\(980\) 0 0
\(981\) 45.1183 + 8.15101i 1.44052 + 0.260242i
\(982\) 0 0
\(983\) −27.8069 16.0543i −0.886903 0.512054i −0.0139748 0.999902i \(-0.504448\pi\)
−0.872928 + 0.487849i \(0.837782\pi\)
\(984\) 0 0
\(985\) −28.7709 + 16.6109i −0.916716 + 0.529266i
\(986\) 0 0
\(987\) −6.08412 + 6.61173i −0.193660 + 0.210454i
\(988\) 0 0
\(989\) −4.90308 + 4.90308i −0.155909 + 0.155909i
\(990\) 0 0
\(991\) 22.8049i 0.724420i 0.932096 + 0.362210i \(0.117978\pi\)
−0.932096 + 0.362210i \(0.882022\pi\)
\(992\) 0 0
\(993\) −20.0060 31.5491i −0.634872 1.00118i
\(994\) 0 0
\(995\) 0.330049 1.23176i 0.0104632 0.0390494i
\(996\) 0 0
\(997\) 9.43584 + 35.2150i 0.298836 + 1.11527i 0.938123 + 0.346303i \(0.112563\pi\)
−0.639287 + 0.768968i \(0.720770\pi\)
\(998\) 0 0
\(999\) −19.3894 + 2.42856i −0.613454 + 0.0768362i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.2.y.a.47.10 88
3.2 odd 2 1728.2.z.a.1007.16 88
4.3 odd 2 144.2.u.a.83.21 yes 88
9.4 even 3 1728.2.z.a.1583.16 88
9.5 odd 6 inner 576.2.y.a.239.20 88
12.11 even 2 432.2.v.a.35.2 88
16.5 even 4 144.2.u.a.11.13 88
16.11 odd 4 inner 576.2.y.a.335.20 88
36.23 even 6 144.2.u.a.131.13 yes 88
36.31 odd 6 432.2.v.a.179.10 88
48.5 odd 4 432.2.v.a.251.10 88
48.11 even 4 1728.2.z.a.143.16 88
144.5 odd 12 144.2.u.a.59.21 yes 88
144.59 even 12 inner 576.2.y.a.527.10 88
144.85 even 12 432.2.v.a.395.2 88
144.139 odd 12 1728.2.z.a.719.16 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.u.a.11.13 88 16.5 even 4
144.2.u.a.59.21 yes 88 144.5 odd 12
144.2.u.a.83.21 yes 88 4.3 odd 2
144.2.u.a.131.13 yes 88 36.23 even 6
432.2.v.a.35.2 88 12.11 even 2
432.2.v.a.179.10 88 36.31 odd 6
432.2.v.a.251.10 88 48.5 odd 4
432.2.v.a.395.2 88 144.85 even 12
576.2.y.a.47.10 88 1.1 even 1 trivial
576.2.y.a.239.20 88 9.5 odd 6 inner
576.2.y.a.335.20 88 16.11 odd 4 inner
576.2.y.a.527.10 88 144.59 even 12 inner
1728.2.z.a.143.16 88 48.11 even 4
1728.2.z.a.719.16 88 144.139 odd 12
1728.2.z.a.1007.16 88 3.2 odd 2
1728.2.z.a.1583.16 88 9.4 even 3