Newspace parameters
Level: | \( N \) | \(=\) | \( 576 = 2^{6} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 576.r (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.59938315643\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) |
Defining polynomial: |
\( x^{12} - 16x^{8} - 24x^{7} + 96x^{5} + 304x^{4} + 384x^{3} + 288x^{2} + 144x + 36 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{19}]\) |
Coefficient ring index: | \( 2^{6}\cdot 3^{2} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{12} - 16x^{8} - 24x^{7} + 96x^{5} + 304x^{4} + 384x^{3} + 288x^{2} + 144x + 36 \)
:
\(\beta_{1}\) | \(=\) |
\( ( - 778 \nu^{11} + 5496 \nu^{10} - 7293 \nu^{9} + 5400 \nu^{8} + 10120 \nu^{7} - 68622 \nu^{6} - 13980 \nu^{5} + 12828 \nu^{4} + 200318 \nu^{3} + 699840 \nu^{2} + \cdots + 73584 ) / 51972 \)
|
\(\beta_{2}\) | \(=\) |
\( ( 962 \nu^{11} - 2392 \nu^{10} + 2887 \nu^{9} - 2220 \nu^{8} - 13990 \nu^{7} + 14442 \nu^{6} + 11380 \nu^{5} + 57708 \nu^{4} + 98118 \nu^{3} - 132080 \nu^{2} + 49284 \nu + 15984 ) / 51972 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 1360 \nu^{11} - 864 \nu^{10} - 400 \nu^{9} + 2902 \nu^{8} - 25539 \nu^{7} - 16320 \nu^{6} + 27692 \nu^{5} + 92050 \nu^{4} + 330320 \nu^{3} + 266532 \nu^{2} + 143634 \nu + 219540 ) / 51972 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 5984 \nu^{11} - 7522 \nu^{10} + 8393 \nu^{9} - 6600 \nu^{8} - 90816 \nu^{7} - 28498 \nu^{6} + 55616 \nu^{5} + 473748 \nu^{4} + 1167562 \nu^{3} + 792408 \nu^{2} + \cdots + 272448 ) / 103944 \)
|
\(\beta_{5}\) | \(=\) |
\( ( - 6823 \nu^{11} - 186 \nu^{10} + 2391 \nu^{9} - 2376 \nu^{8} + 113464 \nu^{7} + 159834 \nu^{6} - 23754 \nu^{5} - 683700 \nu^{4} - 2089522 \nu^{3} - 2446620 \nu^{2} + \cdots - 548280 ) / 103944 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 118 \nu^{11} - 90 \nu^{10} + 53 \nu^{9} - 32 \nu^{8} - 1866 \nu^{7} - 1416 \nu^{6} + 1364 \nu^{5} + 10408 \nu^{4} + 27758 \nu^{3} + 22776 \nu^{2} + 12468 \nu + 3468 ) / 1704 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 4689 \nu^{11} - 3876 \nu^{10} + 3854 \nu^{9} - 5534 \nu^{8} - 68264 \nu^{7} - 56268 \nu^{6} + 37850 \nu^{5} + 438544 \nu^{4} + 1102444 \nu^{3} + 911136 \nu^{2} + \cdots + 48876 ) / 51972 \)
|
\(\beta_{8}\) | \(=\) |
\( ( - 1688 \nu^{11} + 1054 \nu^{10} - 840 \nu^{9} + 684 \nu^{8} + 26378 \nu^{7} + 24587 \nu^{6} - 12648 \nu^{5} - 151968 \nu^{4} - 420176 \nu^{3} - 400856 \nu^{2} + \cdots - 105120 ) / 12993 \)
|
\(\beta_{9}\) | \(=\) |
\( ( - 4502 \nu^{11} + 3246 \nu^{10} - 927 \nu^{9} - 1080 \nu^{8} + 73378 \nu^{7} + 54024 \nu^{6} - 56276 \nu^{5} - 403744 \nu^{4} - 1035370 \nu^{3} - 847128 \nu^{2} + \cdots - 228796 ) / 34648 \)
|
\(\beta_{10}\) | \(=\) |
\( ( 25054 \nu^{11} - 18618 \nu^{10} + 8389 \nu^{9} + 272 \nu^{8} - 404246 \nu^{7} - 300648 \nu^{6} + 310036 \nu^{5} + 2217896 \nu^{4} + 5869134 \nu^{3} + 4806792 \nu^{2} + \cdots + 1030836 ) / 103944 \)
|
\(\beta_{11}\) | \(=\) |
\( ( - 13366 \nu^{11} + 8843 \nu^{10} - 7504 \nu^{9} + 5514 \nu^{8} + 211707 \nu^{7} + 177716 \nu^{6} - 88792 \nu^{5} - 1193088 \nu^{4} - 3315152 \nu^{3} - 3104220 \nu^{2} + \cdots - 830016 ) / 51972 \)
|
\(\nu\) | \(=\) |
\( ( -2\beta_{11} + \beta_{10} + \beta_{9} - 2\beta_{7} + 4\beta_{5} - 2\beta_{4} - 2\beta_{3} + \beta_1 ) / 6 \)
|
\(\nu^{2}\) | \(=\) |
\( ( -2\beta_{11} + 4\beta_{5} - 2\beta_{4} - 9\beta_{2} - 2\beta_1 ) / 6 \)
|
\(\nu^{3}\) | \(=\) |
\( ( - 4 \beta_{11} + 4 \beta_{10} + 4 \beta_{9} - 3 \beta_{8} + 4 \beta_{7} - 12 \beta_{6} + 8 \beta_{5} - 16 \beta_{4} + 4 \beta_{3} - 6 \beta_{2} - 4 \beta _1 - 6 ) / 6 \)
|
\(\nu^{4}\) | \(=\) |
\( ( 11\beta_{10} + 5\beta_{9} + 2\beta_{7} - 30\beta_{6} - 4\beta_{3} ) / 3 \)
|
\(\nu^{5}\) | \(=\) |
\( ( - 22 \beta_{11} + 38 \beta_{10} + 35 \beta_{9} + 42 \beta_{8} - 16 \beta_{7} - 39 \beta_{6} + 32 \beta_{5} + 38 \beta_{4} - 22 \beta_{3} + 21 \beta_{2} + 38 \beta _1 + 39 ) / 6 \)
|
\(\nu^{6}\) | \(=\) |
\( ( -56\beta_{11} + 81\beta_{8} + 64\beta_{5} + 16\beta_{4} + 40\beta_1 ) / 3 \)
|
\(\nu^{7}\) | \(=\) |
\( ( - 94 \beta_{11} - 35 \beta_{10} - 47 \beta_{9} + 60 \beta_{8} + 82 \beta_{7} - 108 \beta_{6} + 164 \beta_{5} - 70 \beta_{4} + 94 \beta_{3} - 60 \beta_{2} + 35 \beta _1 - 216 ) / 3 \)
|
\(\nu^{8}\) | \(=\) |
\( ( 70\beta_{10} - 35\beta_{9} + 214\beta_{7} - 669\beta_{6} + 214\beta_{3} - 669 ) / 3 \)
|
\(\nu^{9}\) | \(=\) |
\( ( 164 \beta_{11} + 308 \beta_{10} + 164 \beta_{9} + 321 \beta_{8} + 236 \beta_{7} - 1140 \beta_{6} - 472 \beta_{5} + 800 \beta_{4} + 164 \beta_{3} + 642 \beta_{2} + 308 \beta _1 - 570 ) / 3 \)
|
\(\nu^{10}\) | \(=\) |
\( ( -328\beta_{11} + 1908\beta_{8} - 328\beta_{5} + 2228\beta_{4} + 1908\beta_{2} + 1442\beta_1 ) / 3 \)
|
\(\nu^{11}\) | \(=\) |
\( ( - 1586 \beta_{11} - 2386 \beta_{10} - 1993 \beta_{9} + 3342 \beta_{8} + 800 \beta_{7} + 2949 \beta_{6} + 1600 \beta_{5} + 2386 \beta_{4} + 1586 \beta_{3} + 1671 \beta_{2} + 2386 \beta _1 - 2949 ) / 3 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).
\(n\) | \(65\) | \(127\) | \(325\) |
\(\chi(n)\) | \(\beta_{6}\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
97.1 |
|
0 | −1.59470 | − | 0.675970i | 0 | 1.50000 | − | 0.866025i | 0 | −1.80664 | + | 3.12920i | 0 | 2.08613 | + | 2.15594i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||
97.2 | 0 | −1.10182 | − | 1.33641i | 0 | 1.50000 | − | 0.866025i | 0 | −0.495361 | + | 0.857990i | 0 | −0.571993 | + | 2.94497i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
97.3 | 0 | −0.492881 | + | 1.66044i | 0 | 1.50000 | − | 0.866025i | 0 | −2.17731 | + | 3.77121i | 0 | −2.51414 | − | 1.63680i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
97.4 | 0 | 0.492881 | − | 1.66044i | 0 | 1.50000 | − | 0.866025i | 0 | 2.17731 | − | 3.77121i | 0 | −2.51414 | − | 1.63680i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
97.5 | 0 | 1.10182 | + | 1.33641i | 0 | 1.50000 | − | 0.866025i | 0 | 0.495361 | − | 0.857990i | 0 | −0.571993 | + | 2.94497i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
97.6 | 0 | 1.59470 | + | 0.675970i | 0 | 1.50000 | − | 0.866025i | 0 | 1.80664 | − | 3.12920i | 0 | 2.08613 | + | 2.15594i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
481.1 | 0 | −1.59470 | + | 0.675970i | 0 | 1.50000 | + | 0.866025i | 0 | −1.80664 | − | 3.12920i | 0 | 2.08613 | − | 2.15594i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
481.2 | 0 | −1.10182 | + | 1.33641i | 0 | 1.50000 | + | 0.866025i | 0 | −0.495361 | − | 0.857990i | 0 | −0.571993 | − | 2.94497i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
481.3 | 0 | −0.492881 | − | 1.66044i | 0 | 1.50000 | + | 0.866025i | 0 | −2.17731 | − | 3.77121i | 0 | −2.51414 | + | 1.63680i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
481.4 | 0 | 0.492881 | + | 1.66044i | 0 | 1.50000 | + | 0.866025i | 0 | 2.17731 | + | 3.77121i | 0 | −2.51414 | + | 1.63680i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
481.5 | 0 | 1.10182 | − | 1.33641i | 0 | 1.50000 | + | 0.866025i | 0 | 0.495361 | + | 0.857990i | 0 | −0.571993 | − | 2.94497i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
481.6 | 0 | 1.59470 | − | 0.675970i | 0 | 1.50000 | + | 0.866025i | 0 | 1.80664 | + | 3.12920i | 0 | 2.08613 | − | 2.15594i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
72.n | even | 6 | 1 | inner |
72.p | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 576.2.r.f | yes | 12 |
3.b | odd | 2 | 1 | 1728.2.r.e | 12 | ||
4.b | odd | 2 | 1 | inner | 576.2.r.f | yes | 12 |
8.b | even | 2 | 1 | 576.2.r.e | ✓ | 12 | |
8.d | odd | 2 | 1 | 576.2.r.e | ✓ | 12 | |
9.c | even | 3 | 1 | 576.2.r.e | ✓ | 12 | |
9.c | even | 3 | 1 | 5184.2.d.q | 12 | ||
9.d | odd | 6 | 1 | 1728.2.r.f | 12 | ||
9.d | odd | 6 | 1 | 5184.2.d.r | 12 | ||
12.b | even | 2 | 1 | 1728.2.r.e | 12 | ||
24.f | even | 2 | 1 | 1728.2.r.f | 12 | ||
24.h | odd | 2 | 1 | 1728.2.r.f | 12 | ||
36.f | odd | 6 | 1 | 576.2.r.e | ✓ | 12 | |
36.f | odd | 6 | 1 | 5184.2.d.q | 12 | ||
36.h | even | 6 | 1 | 1728.2.r.f | 12 | ||
36.h | even | 6 | 1 | 5184.2.d.r | 12 | ||
72.j | odd | 6 | 1 | 1728.2.r.e | 12 | ||
72.j | odd | 6 | 1 | 5184.2.d.r | 12 | ||
72.l | even | 6 | 1 | 1728.2.r.e | 12 | ||
72.l | even | 6 | 1 | 5184.2.d.r | 12 | ||
72.n | even | 6 | 1 | inner | 576.2.r.f | yes | 12 |
72.n | even | 6 | 1 | 5184.2.d.q | 12 | ||
72.p | odd | 6 | 1 | inner | 576.2.r.f | yes | 12 |
72.p | odd | 6 | 1 | 5184.2.d.q | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
576.2.r.e | ✓ | 12 | 8.b | even | 2 | 1 | |
576.2.r.e | ✓ | 12 | 8.d | odd | 2 | 1 | |
576.2.r.e | ✓ | 12 | 9.c | even | 3 | 1 | |
576.2.r.e | ✓ | 12 | 36.f | odd | 6 | 1 | |
576.2.r.f | yes | 12 | 1.a | even | 1 | 1 | trivial |
576.2.r.f | yes | 12 | 4.b | odd | 2 | 1 | inner |
576.2.r.f | yes | 12 | 72.n | even | 6 | 1 | inner |
576.2.r.f | yes | 12 | 72.p | odd | 6 | 1 | inner |
1728.2.r.e | 12 | 3.b | odd | 2 | 1 | ||
1728.2.r.e | 12 | 12.b | even | 2 | 1 | ||
1728.2.r.e | 12 | 72.j | odd | 6 | 1 | ||
1728.2.r.e | 12 | 72.l | even | 6 | 1 | ||
1728.2.r.f | 12 | 9.d | odd | 6 | 1 | ||
1728.2.r.f | 12 | 24.f | even | 2 | 1 | ||
1728.2.r.f | 12 | 24.h | odd | 2 | 1 | ||
1728.2.r.f | 12 | 36.h | even | 6 | 1 | ||
5184.2.d.q | 12 | 9.c | even | 3 | 1 | ||
5184.2.d.q | 12 | 36.f | odd | 6 | 1 | ||
5184.2.d.q | 12 | 72.n | even | 6 | 1 | ||
5184.2.d.q | 12 | 72.p | odd | 6 | 1 | ||
5184.2.d.r | 12 | 9.d | odd | 6 | 1 | ||
5184.2.d.r | 12 | 36.h | even | 6 | 1 | ||
5184.2.d.r | 12 | 72.j | odd | 6 | 1 | ||
5184.2.d.r | 12 | 72.l | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{2} - 3T_{5} + 3 \)
acting on \(S_{2}^{\mathrm{new}}(576, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{12} \)
$3$
\( T^{12} + 2 T^{10} + 7 T^{8} + 12 T^{6} + \cdots + 729 \)
$5$
\( (T^{2} - 3 T + 3)^{6} \)
$7$
\( T^{12} + 33 T^{10} + 810 T^{8} + \cdots + 59049 \)
$11$
\( T^{12} - 39 T^{10} + 1350 T^{8} + \cdots + 6561 \)
$13$
\( (T^{6} - 3 T^{5} - 24 T^{4} + 81 T^{3} + \cdots + 243)^{2} \)
$17$
\( (T^{3} - 24 T + 36)^{4} \)
$19$
\( (T^{2} + 4)^{6} \)
$23$
\( T^{12} + 117 T^{10} + \cdots + 2492305929 \)
$29$
\( (T^{6} + 9 T^{5} - 36 T^{4} - 567 T^{3} + \cdots + 93987)^{2} \)
$31$
\( T^{12} + 117 T^{10} + \cdots + 95004009 \)
$37$
\( (T^{6} + 60 T^{4} + 1008 T^{2} + \cdots + 3888)^{2} \)
$41$
\( (T^{6} - 9 T^{5} + 78 T^{4} - 45 T^{3} + \cdots + 81)^{2} \)
$43$
\( T^{12} - 123 T^{10} + \cdots + 47458321 \)
$47$
\( T^{12} + 297 T^{10} + \cdots + 514609673769 \)
$53$
\( (T^{6} + 180 T^{4} + 1728 T^{2} + \cdots + 432)^{2} \)
$59$
\( T^{12} - 147 T^{10} + 20898 T^{8} + \cdots + 531441 \)
$61$
\( (T^{6} + 9 T^{5} - 36 T^{4} - 567 T^{3} + \cdots + 4563)^{2} \)
$67$
\( T^{12} - 231 T^{10} + \cdots + 352275361 \)
$71$
\( (T^{6} - 288 T^{4} + 19872 T^{2} + \cdots - 124848)^{2} \)
$73$
\( (T^{3} - 84 T - 164)^{4} \)
$79$
\( T^{12} + 93 T^{10} + 7758 T^{8} + \cdots + 4782969 \)
$83$
\( T^{12} - 171 T^{10} + \cdots + 43046721 \)
$89$
\( (T^{3} + 12 T^{2} - 36 T - 108)^{4} \)
$97$
\( (T^{6} + 3 T^{5} + 222 T^{4} + \cdots + 1408969)^{2} \)
show more
show less