Defining parameters
Level: | \( N \) | \(=\) | \( 576 = 2^{6} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 576.p (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 72 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(192\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(576, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 216 | 48 | 168 |
Cusp forms | 168 | 48 | 120 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(576, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
576.2.p.a | $16$ | $4.599$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(-6\) | \(0\) | \(q-\beta _{12}q^{3}+(\beta _{3}-\beta _{4}-\beta _{7})q^{5}+(\beta _{6}+\cdots)q^{7}+\cdots\) |
576.2.p.b | $16$ | $4.599$ | 16.0.\(\cdots\).3 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{4}q^{3}+(\beta _{3}+\beta _{6})q^{5}+(-\beta _{14}-\beta _{15})q^{7}+\cdots\) |
576.2.p.c | $16$ | $4.599$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(6\) | \(0\) | \(q-\beta _{12}q^{3}+(-\beta _{3}+\beta _{4}+\beta _{7})q^{5}+(-\beta _{6}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(576, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(576, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 2}\)