Properties

Label 576.2.p
Level $576$
Weight $2$
Character orbit 576.p
Rep. character $\chi_{576}(95,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $48$
Newform subspaces $3$
Sturm bound $192$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 576.p (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 72 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(192\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(576, [\chi])\).

Total New Old
Modular forms 216 48 168
Cusp forms 168 48 120
Eisenstein series 48 0 48

Trace form

\( 48 q - 24 q^{25} - 48 q^{33} + 72 q^{41} + 24 q^{49} + 24 q^{57} - 72 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(576, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
576.2.p.a 576.p 72.l $16$ $4.599$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 576.2.p.a \(0\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{12}q^{3}+(\beta _{3}-\beta _{4}-\beta _{7})q^{5}+(\beta _{6}+\cdots)q^{7}+\cdots\)
576.2.p.b 576.p 72.l $16$ $4.599$ 16.0.\(\cdots\).3 None 576.2.p.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{4}q^{3}+(\beta _{3}+\beta _{6})q^{5}+(-\beta _{14}-\beta _{15})q^{7}+\cdots\)
576.2.p.c 576.p 72.l $16$ $4.599$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 576.2.p.a \(0\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{12}q^{3}+(-\beta _{3}+\beta _{4}+\beta _{7})q^{5}+(-\beta _{6}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(576, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(576, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 2}\)